元胞自动机matlab环境下对交通流问题的仿真 数学建模
交通流中地NaSch模型及MATLAB代码元胞自动机
元胞自动机 NaSch模型及其MATLAB代码作业要求根据前面的介绍,对NaSch模型编程并进行数值模拟:●模型参数取值:Lroad=1000,p=0.3,Vmax=5。
●边界条件:周期性边界。
●数据统计:扔掉前50000个时间步,对后50000个时间步进行统计,需给出的结果。
●基本图(流量-密度关系):需整个密度范围内的。
●时空图(横坐标为空间,纵坐标为时间,密度和文献中时空图保持一致, 画500个时间步即可)。
●指出NaSch模型的创新之处,找出NaSch模型的不足,并给出自己的改进思路。
●流量计算方法:密度=车辆数/路长;流量flux=density×V_ave。
在道路的某处设置虚拟探测计算统计时间T内通过的车辆数N;流量flux=N/T。
●在计算过程中可都使用无量纲的变量。
1、NaSch模型的介绍作为对184号规则的推广,Nagel和Schreckberg在1992年提出了一个模拟车辆交通的元胞自动机模型,即NaSch模型(也有人称它为NaSch模型)。
●时间、空间和车辆速度都被整数离散化。
● 道路被划分为等距离的离散的格子,即元胞。
● 每个元胞或者是空的,或者被一辆车所占据。
● 车辆的速度可以在(0~Vmax )之间取值。
2、NaSch 模型运行规则在时刻t 到时刻t+1的过程中按照下面的规则进行更新:(1)加速:),1min(max v v v n n +→规则(1)反映了司机倾向于以尽可能大的速度行驶的特点。
(2)减速:),min(n n n d v v →规则(2)确保车辆不会与前车发生碰撞。
(3)随机慢化: 以随机概率p 进行慢化,令:)0,1-min(n n v v → 规则(3)引入随机慢化来体现驾驶员的行为差异,这样既可以反映随机加速行为,又可以反映减速过程中的过度反应行为。
这一规则也是堵塞自发产生的至关重要因素。
(4)位置更新:n n n v x v +→ ,车辆按照更新后的速度向前运动。
高速公路交通流状态的元胞自动机模型仿真与推演
第12期2023年6月无线互联科技Wireless Internet TechnologyNo.12June,2023作者简介:陈晓静(1983 ),女,江苏宿迁人,高级工程师,硕士;研究方向:交通信息工程㊂高速公路交通流状态的元胞自动机模型仿真与推演陈晓静(江苏长天智远交通科技有限公司,江苏南京210019)摘要:文章提出了一个新的元胞自动机模型即AD 模型㊂该模型最主要的改进在于车辆的减速方式更加合理㊂本研究使用SUMO 进行微观交通仿真㊂文章假设了3种可能的下游场景,包括车道封闭㊁限流瓶颈和限速瓶颈,并使用AD 模型㊁IDM 模型和SUMO 默认的Krauss 模型分别进行分析㊂结果表明在限速瓶颈场景下,使用AD 模型可以得到最好的仿真效果㊂这一成果对未来的高速公路交通流管控工作具有重要的参考价值㊂关键词:元胞自动机模型;高速公路交通流;微观仿真;SUMO 中图分类号:U4㊀㊀文献标志码:A0㊀引言㊀㊀元胞自动机(Cellular Automata,CA)模型具有进化规则灵活㊁计算效率高的优点,是研究复杂系统行为的一个重要理论框架,已被广泛应用于各个领域[1]㊂在交通领域中,很多学者通过建立交通模型去描述和解释非平衡相变[2]㊁自组织临界性㊁亚稳态区域和同步交通等非线性现象[3-4]㊂传统的交通研究方法无法准确解释上述各类非线性现象及其特性㊂相比之下,元胞自动机非常适合于描述非线性现象[5]㊂因此,近年来越来越多的学者开始使用元胞自动机模型进行交通流模拟,包括高速公路[6]和城市道路[7]等㊂本文提出了一种新的元胞自动机模型,在合理设置车辆减速方式和参数的基础上,实现了更好的模拟效果,能够用于微观仿真中的高速公路交通流运行态势分析和管控措施研究㊂1㊀元胞自动机模型规则㊀㊀自从1992年Nagel 和Schreckenberg 提出了著名的NS 模型[8]之后,这一领域的学者先后提出了很多元胞自动机模型,但它们都存在着各自的缺点㊂其中比较集中的一点是,对车辆减速过程的描述往往过于粗糙㊂例如:NS 模型中不论车辆大小如何,都可以在一个更新时间步(通常为1s)直接减速到0㊂这样虽然可以避免碰撞,但很容易产生过大的㊁异常的减速度㊂故本文提出了一种新的元胞自动机模型,即期望减速度(Anticipated Deceleration,AD)模型㊂具体规则为:(1)计算前车的虚拟速度:vᶄn -1=MIN{v m -1,MAX{0,V anti (AD ,gap n -1)-1},v n -1};(2)确定性的加速或减速运动:v n =MIN{v n +A n ,v m }㊀㊀㊀如果(1-r )v n +rB (v n ,AD )<gap n +vᶄn -1V anti (AD ,gap n +vᶄn -1)反之ìîíïïï(3)随机慢化:v n =MAX{v n -1,0},触发概率为p;(4)位置更新:x n (t +1)=x n (t )+v n (t );其中x n 表示第n 辆车的位置,v n 表示第n 辆车的速度,A n 表示第n 辆车的加速度,gap n 表示第n 辆车的间距,括号里的t 和t +1表示时刻,模拟时间间隔为1s㊂关于模型的具体含义,需要解释的是:(1)将格点设置为1格=1m,认为1辆车的长度为8格=8m,加速时的加速度则为1m /s 2㊂(2)因为现实中车辆的减速能力有限,所以本模型引入了AD 模型㊂在某一AD 值作用下,车辆不能在瞬间减速到0,如果速度为ν,在离散化的元胞自动机模型中假设m =int(v /|AD |),那么这辆车的刹车距离B 是ν和AD 的函数:B (v ,AD )=v +(v +AD )+(v +2AD )+...+(v +mAD )=(2v +mAD )(m +1)/2由于元胞自动机模型是离散模型,减速发生在运动之前,并且AD 不一定是整数,所以此处减速距离并不等于v 2/(2AD )㊂此时车辆的减速方式不再是直接减速至与车头间距相同(v n =gap n ),而是通过寻找能满足条件B (v ,AD )ɤgap 的最大速度值来实现,记为v n =V anti (AD ,gap n )㊂具体方法是逐个试验ν,ν-1, ,类似于穷举㊂和基于NS 规则的模型相比,在AD 模型中,当车辆接近前方的慢车时,它会采用更大的减速度刹车㊂这样就降低了在未来某时刻忽然采用过大减速度的可能性,同时这一机理也促进了同步流的稳定形成㊂另外,当密度不断增加时,车辆速度会下降,此时AD 模型的减速规则会越来越接近NS 模型㊂(3)为了体现后车对前车运动状态的即时反应,前车的虚拟速度效应也在AD 模型中有应用㊂和前人模型的区别是,将前人使用的vᶄn -1=MIN{v m -1,MAX{0,gap n -1-1},v n -1}改变为:vᶄn -1=MIN{v m -1,MAX{0,V anti (AD ,gap n -1)-1},v n -1}(4)此处考虑两种不同的驾驶策略,一种偏保守,另一种偏激进,且前者的比例为r ,后者的比例为1-r ㊂r =1则演化为保守模型,r =0演化为激进模型㊂此处r 的含义非常接近于一些跟驰模型中的侵略性参数㊂(5)关于参数取值,通常取随机慢化概率p =0.1,保守车辆比例r =0,Vm =32m /s (对应大约120km /h)㊂而AD 取值可以根据具体需要调整,本文统一取值为-4m /s 2㊂2㊀交通流数据特征㊀㊀本文的仿真研究区域是润扬大桥北侧㊁扬溧高速与沪陕高速交会处的路段㊂由南向北的车流从桩号为K3+315的地点A 开始运动,经过桩号为K0+795的地点B 之后,可以分别从地点C(桩号K0+350)和地点D(桩号K0+310)的立交驶出㊂这4个地点均安装有监像头㊂在2022年9月30日,即国庆放假前一天,这一路段在下午出现了较长时间的交通拥堵,并影响到了道路上游区域,因此本文选择这一场景进行微观交通仿真研究㊂具体的交通流量通过自行开发的视频检测程序提取,其基础框架为YOLO V5+Deepsort,可以确保较高的精度㊂其中,地点B 统计车辆驶离高速公路主线前的流量;地点C 统计车辆从汊河枢纽驶入高速前的流量;地点D 统计车辆从汊河枢纽驶入高速后的流量㊂4个地点的交通流量统计结果如图1所示,时间为下午4点40到晚上6点,包括以1min 为间隔和以10min 为间隔的结果,数值单位全部换算为辆/h /车道,均为2或3个车道的平均结果㊂由于摄像头转动,导致5点40以后K0+310处的数据难以采集㊂从图2可以看到,除K0+350之外,其余地点的流量变化幅度较大㊂K0+350的流量明显小于上游K0+795处,可推测这一带拥堵严重,从而积压了大量车辆㊂而K0+310的流量有所恢复,主要原因是有较多车辆通过D 点立交进入主线㊂图1㊀4个地点的流量统计结果3 微观交通仿真和评价3.1㊀仿真配置㊀㊀从监控视频和流量统计结果可以看到,在K0+ 350和K0+310下游一带,出现了严重的拥堵,本文用3种不同的手段对这一拥堵场景进行仿真,具体包括:(1)场景A:车道封闭㊂假设在K0+310下游(图2中的路段1)发生特殊事件(例如:交通事故),导致左车道临时关闭,具体影响长度为20m,并于20min 后恢复通行㊂(2)场景B:设置限流瓶颈㊂假设在K0+310下游有一个限流瓶颈,每一辆车在瓶颈处(图2中的路段1下游2km)都要停车10s,这一设置的原理类似于收费站㊂(3)场景C:设置限速瓶颈㊂假设在K0+310下游路段2的限速降为40km/h,从而造成拥堵效果㊂本文使用的微观仿真交通软件是SUMO㊂它是一种开源㊁微观㊁多模态的交通仿真软件[9],自带有很多跟驰模型和换道模型,并且可以利用TraCI接口,用Python和C++语言实现模型二次开发㊂在仿真区域内设置如下3种车辆行驶路径,并按照实际流量赋值:(1)驶离高速公路主线:A->B->C;(2)驶入高速公路主线:C->D;(3)完整通过仿真区域:A->B->C->D㊂仿真时间段为T=3100s,其中前100s没有任何车辆输入,用于清空道路㊂车辆从第101s开始进入道路,按照实地采集的10min统计数据输入车辆,具体结果如表1所示㊂表1㊀仿真流量配置实际时间仿真时间/s A->B->C->D A ->B->C(驶离高速)C->D (驶入高速)左中右左中右4:40PM101~7001571638761117170 4:50PM701~130020821010261117192 5:00PM1301~190017720910661117136 5:10PM1901~25001381627461117152 5:20PM2501~31001121047161117174㊀㊀本文共使用3种跟驰模型进行仿真㊂除前文所述的AD模型外,还使用了SUMO默认的Krauss模型[10]和交通流领域常用的IDM模型[11]进行对比㊂由于AD模型不是SUMO内置的模型,需要单独进行外部配置才能加载到SUMO的代码库中,具体步骤包括:编写名称标签㊁编写相关参数的声明㊁设置默认值㊁调整构造函数,然后使用Visual Studio进行自动编译㊂3.2㊀仿真结果评价㊀㊀分析场景A的仿真结果,如图2所示,包括K0+ 310处左右车道的平均流量和平均速度曲线㊂可以看到在车道封闭的20min内,车辆到达K0+310时减速非常明显,尤其是左车道㊂而在封闭解除后,两个车道的交通状态都会迅速恢复,流量和速度都和车道封闭时存在巨大的差异㊂相比之下,实际交通数据的流量波动较小(图中黑色曲线),前后不存在显著差异㊂总而言之,3种模型的仿真结果都和实际交通状态不太一致,意味着场景A的配置可能与现实交通不吻合㊂分析场景B的结果,如图3所示㊂可以看到此时3个模型的结果差异并不大,均在1000s左右开始形成严重的拥堵㊂和实际交通数据相比,模拟结果的波动始终更大,3个模型的流量均下降至很低,说明即便是短暂的停车,也会对整个系统产生很大的影响㊂这意味着场景B的配置也可能与现实交通不太吻合㊂分析场景C的结果㊂从图4可以清楚地看到,此时的仿真平均流量明显和实际交通数据更为接近,两个车道的吻合程度均超过了场景A和B㊂在定量层面,IDM模型的仿真结果波动性较强,而Krauss模型和AD模型的结果比较稳定,值得进一步研究和对比㊂为了定量评估各场景下模型的表现,参照公式(1)㊁(2)计算仿真结果稳定段数据值和实测数据值的均方根误差(Root Mean Square Error,RMSE)以及平均绝对百分比误差(Mean Absolute Percentage Error,MAPE):RMSE=1mðm i=1(h(x i)-y i)2(1) MAPE=1mðm i=1h(x i)-y i y i(2)图2㊀场景A的仿真结果对比㊀㊀其中,i为第i个数据;m为总数据量;h(x i)为数据i对应的仿真结果;y i为数据i对应的实际值㊂此时计算结果如表2所示,不同场景和模型的MAPE和RMSE 结果各不相同㊂为统一起见,此处主要使用MAPE结果进行仿真效果评价㊂就仿真场景而言,场景C的3种模型平均仿真结果相对最好,MAPE的平均值为25.9%㊂就跟驰模型而言,AD模型在3种场景里的仿真结果最好,MAPE的平均值为62.8%㊂而场景C+AD 模型具有最好的仿真结果,MAPE的平均值仅有16.0%㊂这说明本场景最佳的仿真方案是假设路段1限速40km/h,并使用AD模型㊂这体现出元胞自动机模型在高速公路交通流仿真中具备了一定的优势㊂图3㊀场景B的仿真结果对比图4㊀场景C的仿真结果对比表2㊀不同模型下各场景误差计算场景模型车道时间范围/s MAPE RMSE场景A KraussADIDM左车道1050~2220130.3%328.1右车道1080~222044.7%646.1左车道1050~2220118.9%322.0右车道1080~222040.7%542.1左车道1200~242027.7%316.0右车道1200~242044.3%217.3场景B KraussADIDM左车道1080~3000191.2%440.7右车道1050~300033.1%208.7左车道1080~300099.1%475.1右车道1050~300086.2%427.4左车道1180~320028.6%187.0右车道1180~3200204.2%473.2场景C KraussADIDM左车道780~300022.2%189.3右车道780~300012.3%112.3左车道780~300018.3%151.6右车道780~300013.6%126.2左车道880~310061.2%946.5右车道880~310027.9%338.44 结语㊀㊀本文提出了一个新的元胞自动机模型,即AD模型㊂和前人模型相比,最主要的改进在于车辆的减速方式更加合理㊂接着简要分析了润扬大桥北侧路段在拥堵时段的交通流特征,在采集监控摄像头视频数据的基础上,使用SUMO进行了微观交通仿真,并使用AD模型㊁IDM模型和SUMO默认的Krauss模型在车道封闭㊁限流瓶颈和限速瓶颈3个场景下分别进行分析㊂结果表明在限速瓶颈场景下,使用AD模型可以得到最好的仿真效果㊂这一成果对未来的高速公路交通流管控工作具有重要的参考价值㊂参考文献[1]黎夏,叶嘉安.基于神经网络的元胞自动机及模拟复杂土地利用系统[J].地理研究,2005(1): 19-27.[2]KERNER B S,REHBORN H.Experimental properties of phase transitions in traffic flow[J]. Physical Review Letters,1997(20):4030-4033. [3]KERNER B S,KONHUSER P.Cluster effect in initially homogeneous traffic flow[J].Physical Review E,1993(4):2335-2338.[4]雷丽,薛郁,戴世强.交通流的一维元胞自动机敏感驾驶模型[J].物理学报,2003(9):2121-2126. [5]HELBING D,HENNECKE A,SHVETSOV V,et al. MASTER:Macroscopic traffic simulation based on a gas-kinetic,non-local traffic model[J].Transportation Research Part B,2001(2):183-211.[6]KNOSPE W,SANTEN L,SCHADSCHNEIDER A, et al.Towards a realistic microscopic description of highway traffic[EB/OL].(2000-11-24)[2023-07-07].https:///usercenter/paper/ show?paperid=ce8512ad8eca4645c77ed80dc06a07 bc&site=xueshu_se.[7]JIN C J,WANG W,JIANG R.Cellular automaton simulations of a T-shaped unsignalised intersection with refined configurations[J].Transportmetrica A,2014 (10):273-283.[8]NAGEL K,SCHRECKENBERG M.A cellular automaton model for freeway traffic[J].Journal De Physique I,1992(12):2221-2229.[9]LOPEZ P A,BEHRISCH M,BIEKER-WALZ L, et al.Microscopic traffic simulation using SUMO[C]. Maui:IEEE Intelligent Transportation Systems Conference(ITSC),2018.[10]KRAUßS,WAGNER P,GAWRON C.Metastable states in a microscopic model of traffic flow[J]. Physical Review E,1997(55):5597-5602. [11]TREIBER M,KESTING A,THIEMANN C. Traffic flow dynamics:data,models and simulation [M].Berlin:Springer,2013.(编辑㊀王永超)Simulation and deduction of cellular automata model for highway traffic flow stateChen XiaojingITSSKY Technology Co. Ltd. Nanjing210019 ChinaAbstract This paper proposes a new cellular automaton model namely AD model.The main improvement of the model is that the vehicle deceleration mode is more reasonable.The microscopic traffic simulation was performed using SUMO.Three possible downstream scenarios were assumed including lane closure flow-limiting bottleneck and rate -limiting bottlenecks and analyzed separately using the AD model the IDM model and the default Krauss model of SUMO.The results show that the best simulation results can be obtained using the AD model in the rate-limiting bottleneck scenario.This achievement has an important reference value for the future expressway traffic flow control work.Key words cell automaton model highway traffic flow micro-simulation SUMO。
基于元胞自动机的模拟城市交通流
基于元胞自动机的模拟城市交通流随着城市化进程的不断加速,城市交通也成为人们生活中不可避免的问题。
如何合理地规划城市交通,使其具有高效性和安全性,成为城市规划者和交通管理者共同关心的问题。
而基于元胞自动机的模拟城市交通流技术,成为了解决这一问题的重要手段。
1. 元胞自动机的介绍和应用领域元胞自动机是一种基于离散化的动态系统,由一些规则简单的微观的运动组成。
在元胞自动机中,每个格子可以存在多种状态,根据其中的规则实现状态的转变和演化。
元胞自动机的应用领域非常广泛,如人工神经网络、分形几何、城市模拟等。
2. 基于元胞自动机的交通流模拟基于元胞自动机的交通流模拟是一种通过建立规则体系对交通流进行建模和模拟的技术。
在该技术下,城市道路被看作是由相邻的元胞(交叉路口)组成的格子面板。
车辆在道路上行驶,具有速度和转向的自由。
这种模拟可以帮助人们更好地了解城市交通的运行规律,同时可以辅助城市规划师更好地规划路网,以使交通流更稳定、高效和安全。
3. 城市交通流模拟的实现方法(1)建立城市交通网络首先需要建立城市交通网络,该网络由交叉路口和道路组成。
为了使模拟更加真实,需要采用实际城市道路网络中的数据,并加入如红绿灯、车道、限速等规则。
(2)建立车辆模型在城市交通流模拟中,车辆模型是非常重要的一部分。
车辆模型需要考虑到车辆的大小、速度、转弯半径等各种因素,以便更真实地模拟车辆在道路上的行驶。
(3)建立交通流模型交通流模型是整个模拟的核心部分。
交通流模型需要考虑到交叉路口中车辆之间的互动以及车辆与路面环境之间的互动。
通过对模型中的各种因素进行权衡和计算,可以模拟出城市交通流的运行规律。
4. 基于元胞自动机的交通流模拟应用之举例在实际的应用中,基于元胞自动机的交通流模拟可以帮助城市规划师更加准确地规划路网和优化城市交通系统。
例如,在俄罗斯的某个城市中,采用元胞自动机的交通流模拟技术,成功地解决了该市区域交通拥堵的问题。
基于元胞自动机的交通仿真模型研究
基于元胞自动机的交通仿真模型研究随着城市化和汽车使用量的增加,交通对城市生活和经济发展的影响越来越大。
因此,研究交通流量和交通事故等问题成为了一个重要的话题。
交通仿真模型是研究车流量和交通流动的一种方法。
同时,基于元胞自动机的交通仿真模型成为了一种有效的研究方法。
元胞自动机是一种离散化的动态系统,其由格子或单元(具有一定的状态和接收特定形式的输入)以及它们周围邻居组成。
在这个系统中,每个单元都可以根据其周围的环境和一些规则,自动更新其状态。
基于元胞自动机的交通仿真模型中,道路和车辆被建模成元胞,交通规则被翻译成元胞自动机的规则。
在基于元胞自动机的交通仿真模型中,道路被建模为网格,每个单元格代表着一段特定长度的道路段,而车辆代表一些元胞自动机中的粒子。
车辆会尝试从道路上通过它们的方向和速度,他们可以在其前面的单元格上进行移动。
仿真将会在地图上每秒进行一次更新,根据设定的规则来计算车辆的移动。
现在的交通仿真模型往往是基于离散时间 - 离散事件(DE)方程的构造。
通常,道路上的车辆并非均匀分布。
我们可以通过在交通仿真模型中构建正确的模拟方法来模拟不同的情况,例如,微观交通模型和宏观交通模型。
在微观交通模型中,我们可以通过模拟每个车辆的行为,满足全局交通流动的条件。
例如,模拟车辆的驾驶决策,以及车辆的速度和方向等变量,都可以有效的刻画道路流量和交通状态。
在宏观交通模型中,将道路看做是密度流的场,因此速度是道路密度和平均车速的函数。
通常情况下,这种模型侧重于给出车流量和道路容量的关系,可以用来评估部分路段的通行能力。
然而,在实际应用中,交通仿真模型的鲁棒性和准确性是关键因素。
目前,仿真模型常常存在一些性能问题和精度问题,尤其是对于高密度交通环境,模型的表现往往是不稳定和低效的。
这时候,我们可以使用一些高级的模拟技术,例如将元胞自动机与其他方法相结合,来提高仿真效果和准确性。
在实践中,基于元胞自动机的交通仿真模型已被广泛应用于交通监管、交通流量管理和交通规划等应用场景。
元胞自动机的交通流模拟算法
元胞自动机的交通流模拟算法元胞自动机(Cellular Automata,CA)是一种离散的空间模型,由许多相同形态和行为的元胞组成,每个元胞根据一定的规则与周围的元胞进行交互作用。
其中,交通流模拟算法是元胞自动机在交通领域的应用之一。
本文将介绍交通流模拟算法的基本原理、应用场景和发展趋势。
一、交通流模拟算法的基本原理交通流模拟算法基于元胞自动机的思想,将道路划分为一系列的元胞,并对每个元胞进行状态的定义和更新。
在交通流模拟中,每个元胞可以表示一个车辆,其状态包括位置、速度、加速度等。
通过定义元胞之间的交互规则,模拟车辆在道路上的运动和交通流的演化。
交通流模拟算法的核心是规则的制定和更新。
常用的规则包括加速规则、减速规则、保持规则等。
加速规则可以使车辆在没有障碍物的情况下提高速度;减速规则可以使车辆在遇到障碍物或交通拥堵时减速;保持规则可以使车辆保持一定的距离和速度,以保证交通流的稳定性。
二、交通流模拟算法的应用场景交通流模拟算法广泛应用于城市交通规划、交通信号优化、交通拥堵预测等领域。
通过模拟交通流的运动和演化,可以评估不同交通策略对交通流的影响,优化交通信号控制,预测交通拥堵情况,提供科学依据和决策支持。
在城市交通规划中,交通流模拟算法可以模拟城市道路网络的运行情况,评估不同道路规划方案对交通流的影响。
通过模拟交通流的运动和演化,可以评估道路的通行能力、交通拥堵程度和交通状况的稳定性,为城市交通规划提供科学依据。
在交通信号优化中,交通流模拟算法可以模拟交通信号的控制策略,评估不同信号控制方案对交通流的影响。
通过模拟交通流的运动和演化,可以评估信号配时的合理性、交通信号的协调性和交通状况的改善程度,为交通信号优化提供科学依据。
在交通拥堵预测中,交通流模拟算法可以模拟交通拥堵的演化过程,预测交通拥堵的发生时间和地点。
通过模拟交通流的运动和演化,可以评估不同交通拥堵预测模型的准确性和可靠性,为交通拥堵预测提供科学依据。
基于元胞自动机模型的交通规则仿真研究
基于元胞自动机模型的交通规则仿真研究【摘要】本文围绕多车道交通规则及其通行性能问题,利用元胞自动机理论,建立了多车道交通流元胞自动机模型,在计算机上进行了模拟仿真,从空间、时间和状态等特征上模拟了各车辆的行驶情况,获得了不同超车规则、最高限速和最低限速对应的交通流各种特性,包括车辆平均速度、道路交通流量、车辆换道超车频率、道路占用率、道路利用率等指标,评价了不同交通规则的实际效果,为优化交通规则,改善道路通行能力,提高道路资源利用效率提供了可行方法。
【关键词】多车道元胞自动机模型;交通规则;交通流;通行性能;计算机仿真Abstract:This paper propose the multi-lane traffic flow cellular automaton model to analysis performance of different traffic rules,which models the traffic system by nonlinear dynamical system with discrete space,time and states.our algorithm outputs macro indicators of traffic flow under different rules,including average speed,traffic flow,lane changing frequency,road occupancy rate,road utilization,etc.We evaluated the actual effect of three traffic rules,and found the feasible method to optimize traffic rules,to improve road capacity,efficiency as well as utilization of the whole traffic system.Key words:multi-lane cellular automation;traffic rules;traffic flow;traffic capacity;computer simulation1.引言如何解决交通堵塞、交通安全及相应的环境污染问题成为近一个世纪以来各国政府和公众关注的焦点,科学家希望通过交通流仿真技术,分析研究实际交通环境下车辆行为,揭示车辆运动规律,预测未来道路网流量,制定科学的交通规划和交通规则,促进交通问题的解决。
基于Matlab的元胞自动机的仿真设计
精品文档供您编辑修改使用专业品质权威编制人:______________审核人:______________审批人:______________编制单位:____________编制时间:____________序言下载提示:该文档是本团队精心编制而成,希望大家下载或复制使用后,能够解决实际问题。
文档全文可编辑,以便您下载后可定制修改,请根据实际需要进行调整和使用,谢谢!同时,本团队为大家提供各种类型的经典资料,如办公资料、职场资料、生活资料、学习资料、课堂资料、阅读资料、知识资料、党建资料、教育资料、其他资料等等,想学习、参考、使用不同格式和写法的资料,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of classic materials for everyone, such as office materials, workplace materials, lifestylematerials, learning materials, classroom materials, reading materials, knowledge materials, party building materials, educational materials, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!基于Matlab的元胞自动机的仿真设计摘要:元胞自动机(Cellular Automaton,CA)是一种基于空间离散和时间离散的模拟模型,广泛应用于各种复杂系统的建模与仿真。
基于MATLAB的交通流计算机模拟
基于MATLAB的交通流计算机模拟交通流计算是交通工程中的一个重要研究方向,用于分析交通流量、交通状况和交通运行的模拟。
MATLAB是一种强大的数学计算软件,可以用于建立交通流计算的模拟模型。
本文将介绍基于MATLAB的交通流计算机模拟。
交通流计算模拟可以用来预测不同交通系统中的交通流量、速度、密度等参数。
这些参数的准确估计对于合理规划交通路网、提高交通运行效率至关重要。
使用MATLAB进行交通流计算模拟能够提供实时的、准确的交通状况估计,帮助交通工程师和规划者分析和解决交通问题。
下面以一个简单的例子来介绍如何使用MATLAB进行交通流计算机模拟。
假设有一个单车道的道路,长度为1公里,开始时没有车辆在道路上行驶。
我们想要模拟在不同时间段内车辆在道路上的行驶情况。
首先,我们需要确定道路的交通流量。
交通流量是单位时间内通过其中一路段的车辆数量。
为了模拟不同时间段的流量变化,我们可以使用MATLAB中的随机数生成函数。
假设在第1分钟,交通流量为20辆/分钟,在第2分钟,交通流量为30辆/分钟,以此类推。
我们可以使用以下代码来生成交通流量数据:```matlabflow = [20 30 40 35 30 25]'; % 设置每分钟的交通流量flow_sim = repelem(flow, 60); % 将每分钟的交通流量扩展为每秒的交通流量```接下来,我们需要根据交通流量来模拟车辆在道路上的行驶情况。
我们可以使用MATLAB中的离散事件仿真来模拟车辆的行驶。
首先,我们需要定义车辆的速度、车辆间距等参数。
然后,我们可以使用以下代码来模拟车辆的行驶情况:```matlabvehicle_speed = 60; % 车辆速度,单位为km/hsafe_distance = 10; % 车辆之间的最小安全距离,单位为mvehicle_number = length(flow_sim); % 计算需要车辆的数量vehicle_position = zeros(vehicle_number, 1); % 存储每辆车的位置vehicle_velocity = zeros(vehicle_number, 1); % 存储每辆车的速度for t = 1:length(flow_sim)%更新车辆位置和速度vehicle_position = vehicle_position + vehicle_velocity;vehicle_velocity = min(vehicle_velocity,safe_distance/(t/3600));%添加新车辆if flow_sim(t) > 0vehicle_position(end+1) = 0;vehicle_velocity(end+1) = vehicle_speed;endend```通过以上代码,我们可以得到不同时间段内车辆在道路上的位置。
交通流量问题MATLAB求解
3 .问题解答
由上面所得的方程组通解表达式,取适当的 c1 和 c2 使特解为非 负数,即得一组满足问题条件的解。例如,取 c1 0, c2 200 ,得
x [200 200 500 200 0 0 200]T
将对应数据填写,得下图
显然,这一问题的解是不唯一的。
2 . 程序和计算结果
在 MATLAB 环境中,首先输入方程组的系数矩阵 A 和方程组 右端向量 b, A=[1 0 1 0 0 0 0;1 –1 0 1 0 0 0;0 1 0 0 –1 0 0;0 0 1 0 0 1 0;0 0 0 1 0 1 –1;0 0 0 0 1 0 -1] b = [700;200;200;500;0;-200] 然后用命令 r1=rank(A);r2=rank([A b]) 计算系数矩阵的秩 r1,和增广矩阵[A b]的秩 r2,得 r1= 5;r2 = 5 这说明系数矩阵和增广矩阵的秩相等。最后,用命令 [R,ID]=rref([A b]) 将增广矩阵化为最简行阶梯形矩阵,得数据
R= 1 0 0 0 0 0 ID = 1 2 0 1 0 0 0 0 3 0 0 1 0 0 0 4 0 0 0 1 0 0 5 0 0 0 0 1 0 -1 0 1 1 0 0 0 -1 0 -1 200 0 500 0
-1 -200 0 0
由此可确定对应的齐次方程组的基础解系以及非齐次方程组的 通解。取 x6 , x7 为自由未知数,直接可得原方程组的通解形式
x1 1 0 200 1 0 x2 0 x3 1 0 500 x4 c1 1 c2 1 0 x 0 1 200 5 x6 1 0 0 0 1 0 x7
基于元胞自动机的自动驾驶交通流仿真研究
基于元胞自动机的自动驾驶交通流仿真研究
基于元胞自动机的自动驾驶交通流仿真研究
邱小平1,2,3,马丽娜1*
【摘要】将Arnab Bose自动驾驶模型与经典的NaSch模型相结合,提出一个适用于自动驾驶的单车道元胞自动机交通流模型。
利用MATLAB语言对自动驾驶车辆运行情况进行仿真分析,发现模拟结果较好地呈现了自动驾驶环境下的交通流特征。
另外,还发现在自动驾驶中设置不同的车头时距对道路通行能力以及拥堵会产生很大的影响,车头时距为0.5 s时的通行能力约是车头时距为3 s的通行能力的4倍,当车头时距从4 s减小为1 s时交通拥堵可降低约95%,可以作为一种缓解拥堵的策略。
【期刊名称】西华大学学报(自然科学版)
【年(卷),期】2017(036)002
【总页数】5
【关键词】元胞自动机;自动驾驶模型;车头间距;车头时距;目标间距
·新能源汽车与低碳动输·
近年来,伴随计算机、信息、制造等先进高新技术和自动驾驶车辆技术的不断发展,以及智能技术在车辆和基础设施中的运用,使得交通系统变得更加高速、高效,自动驾驶汽车更是成为了当今最受关注的前沿科技之一,未来的道路交通系统很有可能因此而焕然一新。
在不久的将来,自动驾驶车辆将会成为主流,对于自动驾驶车辆交通流的相关研究,对缓解交通拥堵、提高道路利用率以及道路安全性都具有重要的意义。
元胞自动机模型是一种应用较为广泛的数学模型[2-6]。
由于元胞自动机本身具备的特征,在交通领域得到快速发展,成为20世纪末和21世纪初交通领域的。
基于元胞自动机的城市交通流模拟与仿真研究
基于元胞自动机的城市交通流模拟与仿真研究近年来,随着城市化进程的不断加快,城市交通问题日益凸显。
为了解决城市交通流量高峰时的拥堵问题,提高交通效率,研究人员们开始使用元胞自动机模型来进行交通流模拟与仿真研究。
一、元胞自动机模型简介元胞自动机是一种复杂系统建模与仿真的重要工具。
它由一系列格点(元胞)组成的二维网格构成,每个元胞代表一个交通参与者,可以是车辆、行人等。
每个元胞都有一定的状态和行为规则,如按照红绿灯信号进行行驶或停止等。
二、城市交通流模拟城市交通流模拟主要包括流量模拟和行为模拟两方面。
流量模拟通过统计每个时刻通过某一点的交通流量,来研究交通流量的分布和变化规律。
而行为模拟则是通过调整元胞的行为规则,控制交通参与者的行为,以实现交通流的优化与控制。
在城市交通流模拟过程中,研究人员可以根据真实的路网和交通组成,将其构建为元胞自动机模型,然后通过调整元胞的状态转换规则,模拟出不同时间段内的交通流量分布、拥堵现象等。
这样可以帮助决策者更好地了解和分析城市交通问题,从而制定更科学合理的交通规划方案。
三、元胞自动机在城市交通流仿真中的应用元胞自动机模型在城市交通流仿真中有着广泛的应用。
通过模拟交通流的运行情况,可以评估不同交通组织方式的效果,如交叉口信号灯、交通流量管制等。
此外,还可以通过模拟不同交通流量分布情况下的交通拥堵现象,探索拥堵产生的原因和解决方法。
另外,元胞自动机模型还可以用于研究特定道路网络中的交通流特性。
例如,可以通过模拟不同区域的交通流量分布,并分析路段的通行能力,以找出导致交通瓶颈的关键路段,并采用合适的调控措施来改善交通流动性。
四、元胞自动机模型的优势和挑战元胞自动机模型在城市交通流模拟研究中具有以下优势:首先,可以模拟大量交通参与者的行为,从而更真实地反映交通流的特征。
其次,可以通过调整元胞的行为规则,实现交通流的优化与控制。
再次,模型参数可调性强,模型灵活性高,适用于不同道路网络和交通组织方式的研究。
基于元胞自动机模拟带收费站和红绿灯的交通问题matlab源码
基于元胞自动机模拟带收费站和红绿灯的交通问题matlab源码基于元胞自动机模拟带收费站和红绿灯的交通问题,是交通仿真领域的一项研究。
这项技术可以帮助交通规划者预测交通问题的发生,并为改善交通流提供数据支持。
MATLAB是一款强大的数值计算软件,可以用来实现这个问题的仿真过程。
下面将分步骤阐述如何实现这个交通问题的元胞自动机仿真。
1.建立环境首先我们需要在MATLAB中建立仿真环境,包括定义道路网格、交通流量和车辆类型等。
在此基础上,我们可以设定道路的长度和宽度、车流量、车辆速度等参数,构建仿真模型。
这些参数的设定对仿真结果的准确性和效率都有较大影响。
2.模拟红绿灯控制在交通流模型中,红绿灯控制是最关键的问题之一。
我们需要设定红绿灯时序和控制方式,用元胞自动机“告诉”仿真环境哪些车辆可以通行、哪些车辆需要停车等。
3.实现收费站功能收费站是现代城市交通网络中一个非常重要的环节。
在仿真中,我们可以通过定义特定的元胞状态,用元胞自动机实现收费站的功能。
根据收费站的类型不同,我们可以定义不同的元胞状态和处理流程。
4.仿真流程优化模拟仿真的流程对最后的结果影响很大。
我们需要根据仿真实验的目标、节点、数据等内容对仿真流程进行优化,提升仿真效率、降低误差率。
5.仿真结果分析仿真结束后,我们需要对仿真结果进行分析,包括交通流量分布、车辆延误情况、交通拥堵等细节。
通过分析这些数据,我们可以了解交通流中的瓶颈和问题,提出相应的改进方案。
总之,利用MATLAB和元胞自动机技术可以很好地模拟带收费站和红绿灯的交通问题,为交通规划和改进提供有力的支持。
对于交通问题的研究者和交通规划人员,这项技术都有很大的研究与应用前景。
自动驾驶专用车道matlab元胞自动机代码
自动驾驶技术是近年来备受关注的领域,其应用不仅可以提高交通效率,还可以提高行车安全性。
而在自动驾驶技术中,matlab元胞自动机代码是一种常用的建模和仿真工具,可以帮助工程师们设计和测试自动驾驶系统。
下面将介绍如何使用matlab元胞自动机代码来实现自动驾驶专用车道的模拟。
文章内容将按照以下主题展开:一、自动驾驶专用车道的概念及意义1.1 自动驾驶专用车道的定义1.2 自动驾驶专用车道的意义和作用二、matlab元胞自动机代码的基本原理2.1 元胞自动机的定义和特点2.2 matlab中的元胞自动机代码实现三、自动驾驶专用车道的matlab元胞自动机代码设计3.1 自动驾驶车辆的行为建模3.2 车道交通流模拟3.3 交通规则和控制策略四、matlab元胞自动机代码实现实例4.1 代码框架和基本结构4.2 参数设置和模型验证4.3 模拟结果分析五、自动驾驶专用车道的未来发展方向5.1 自动驾驶技术的趋势5.2 自动驾驶专用车道的未来发展方向通过以上几个主题的介绍,读者可以全面了解自动驾驶专用车道的概念、matlab元胞自动机代码的基本原理和代码实现方法,以及自动驾驶技术的未来发展方向。
希望本文的内容对读者对自动驾驶技术有所帮助,也能引发更多对于自动驾驶专用车道以及matlab元胞自动机代码的讨论和研究。
六、自动驾驶专用车道的概念及意义1.1 自动驾驶专用车道的定义自动驾驶专用车道是为自动驾驶车辆专门设置的通行道路,旨在为自动驾驶车辆提供更加高效、安全的行驶环境。
这些道路通常采用先进的交通管理系统和智能交通设施,以便自动驾驶车辆能够更好地感知和适应道路环境。
自动驾驶专用车道旨在降低交通拥堵、提高交通运输效率,并且可以为用户带来更舒适的出行体验。
1.2 自动驾驶专用车道的意义和作用自动驾驶专用车道的建设与发展对于推动自动驾驶技术的应用具有重要意义。
自动驾驶专用车道可以有效地促进自动驾驶车辆在道路上行驶的安全性与稳定性。
元胞自动机matlab环境下对交通流问题的仿真 数学建模
function [ v d p ] = multi_driveway( nl,nc,fp,dt,nt )% 在某一特定车流密度下的(车流密度由fp决定)单、双车道仿真模型% nc:车道数目(1或2),nl:车道长度——输入参数% v:平均速度,d:换道次数(1000次)p:车流密度——输出参数% dt:仿真步长时间,nt:仿真步长数目——输入参数% fp:车道入口处新进入车辆的概率——输入参数% test:% nl = 400;fp = 0.5;% nc = 2;dt=0.01;nt=500;%构造元胞矩阵B=ones(2*nc+1,nl+2);%奇数行为不可行车道B(1:2:(2*nc+1),:)=1.2;%初始化仿真元胞状态(1为无车,0为有车)bb=B(2:2:2*nc,:);bb(bb~=0)=1;B(2:2:2*nc,:)=bb;B(2:2:2*nc,end)=0;%显示初始交通流图figure(1);H=imshow(B,[]);set(gcf,'position',[241 132 560 420]) ;%241 132 560 420set(gcf,'doublebuffer','on'); %241title('cellular-automation to traffic modeling','color','b');%初始化化存储元胞上车辆状态的矩阵S(1:nc,nl) = 0;Q(1:nc,1:2) = 0;Acc(1:nc,1:(nl+2))=0;%初始化换道频率、平均速度、车流密度相关变量ad = 0;av(1:nt) = 0;ap(1:nt) = 0;c = 1;for n = 1:ntA=B(2:2:2*nc,:);%确定前n-2个车辆的状态S(:,:) = 0;S(A(:,1:end-2)==0&A(:,2:end-1)==1&A(:,3:end)==1)=2;%加速的车S(A(:,1:end-2)==0&A(:,2:end-1)==0)=3;%停车的车S(A(:,1:end-2)==0&A(:,2:end-1)==1&A(:,3:end)==0)=1;%减速行驶的车%确定最后2两个元胞的状态Q(:,:) = 0;Q(A(:,end-1)==0&A(:,end)==0) = 1;Q(A(:,end-1)==0&A(:,end)==1) = 2;Q(A(:,end-1)==1&A(:,end)==0) = 2;Q(:,end) = 1;%获得所有元胞上车辆的状态Acc = [ S Q ];%换路规则if(nc>1&&n>nl/2)%遍历每一个元胞for g = 1:length(Acc(1,:))%停车状态车辆如另一条路有2空位则换路if( Acc(1,g)==3&&Acc(2,g)==0&&Acc(2,g+1)==0)A(1,g)=1;A(2,g)=0;ad=ad+1;elseif( Acc(2,g)==3&&Acc(1,g)==0&&Acc(1,g+1)==0 )A(1,g)=0;A(2,g)=1;ad=ad+1;%均速行驶车辆如另一条路有3空位则换路elseif( Acc(1,g)==1&&Acc(2,g)==0&&Acc(2,g1)==0&&Acc(2,g+1)==0 ) A(1,g)=1;A(2,g)=0;ad =ad+1;elseif( Acc(2,g)==1&&Acc(1,g)==0&&Acc(1,g+1)==0&&Acc(1,g+1)==0 ) A(1,g)=0;A(2,g)=1;ad=ad+1;endend%换路后重新设置元胞上的车辆状态S(:,1:end) = 0;S(A(:,1:end-2)==0&A(:,2:end-1)==1&A(:,3:end)==1)=2;%寻找加速的车S(A(:,1:end-2)==0&A(:,2:end-1)==0)=3;%寻找停车的车S(A(:,1:end-2)==0&A(:,2:end-1)==1&A(:,3:end)==0)=1;%寻找减速行驶的车%确定最后2两个元胞的状态Q(:,1:end) = 0;Q(A(:,end-1)==0&A(:,end)==0) = 1;%Q(A(:,end-1)==0&A(:,end)==1) = 3;Q(A(:,end-1)==1&A(:,end)==0) = 2;Q(:,end) = 1;%获得所有元胞状态Acc = [ S Q ];end%根据当前状态改变元胞位置%匀速运行车辆向前走1格A( Acc(:,1:end)==1 ) = 1;A( [ zeros(nc,1) Acc(:,1:end-1)]==1 ) = 0;%高速运行车辆向前走2格A( Acc(:,1:end)==2) = 1;A( [ zeros(nc,3) Acc(:,1:end-2)]==2) = 0;%计算平均速度、换道频率、车流密度等参数%获得运行中的车辆数目NmatN = A<1;N = sum(sum(matN));%获得运行中的车辆速度之和VE = S((S==1)|(S==2));V = sum(E);%计算此时刻的车流密度并保存ap(n) = N/( nc*(nl+2) );%计算此时刻的平均速率并保存if(N~=0&&n>nl/2)av(c) = V/N;c = c+1;end%在车道入口处随机引入新的车辆A = [ round(fp/rand(nc,1))&A(1:nc,1) A(:,2:end)];A(A~=0)=1;%将新的车辆加入元胞矩阵中B(2:2:2*nc,:)=A;%显示交通流图set(H,'CData',B);%仿真步长pause(dt);end%仿真结束,计算结果d = ad;p = mean(ap);v = sum(av)/c;end。
基于元胞自动机的快速路交通流建模与仿真研究的开题报告
基于元胞自动机的快速路交通流建模与仿真研究的开题报告标题:基于元胞自动机的快速路交通流建模与仿真研究一、研究背景及意义随着城市化的快速发展和人口增长,城市道路交通流量持续增大,交通拥堵已成为城市交通的一大难题。
如何有效地缓解交通拥堵,提高道路交通效率,一直是交通领域研究的热点之一。
传统的道路交通流量模型限于交通流量的分析和预测,缺乏交通流的动态模拟,无法真实反映交通状况。
元胞自动机(Cellular Automaton,CA)是一种基于离散时间、空间数据的计算模型,具有并行处理能力和动态演化特征。
将元胞自动机应用于交通流模拟,可以实现交通流量的动态模拟和仿真,更加真实、准确地反映交通场景,有助于研究和优化城市交通。
本研究旨在基于元胞自动机模型,建立快速路交通流模型,通过仿真实验,分析交通流的特性和规律,为优化城市交通提供科学依据。
二、研究内容及方案(一)研究内容本研究主要包括以下三个方面:1. 基于元胞自动机建立快速路交通流模型:采集实测数据,确定模型参数,建立快速路交通流模型。
模型考虑车辆运动规则、交通信号灯系统和路段拓扑结构等因素,以车辆时间间隔、速度、密度等交通参数作为状态变量,建立交通流模型。
2. 交通流仿真实验:采用Matlab编程实现交通流仿真,通过模拟车流运动,分析不同车流密度、速度对交通拥堵的影响,验证模型的准确性。
3. 优化措施研究:根据实验结果,提出针对性的优化措施,如信号灯控制策略、拓宽路段、减少交通流等,对交通状况进行优化和改善。
(二)研究方案1. 数据采集与参数确定:在实际快速路上进行交通流实测,在采集数据的同时,记录交通信号灯系统和路段拓扑结构等因素,并进行数据处理和统计分析,确定模型参数。
2. 基于元胞自动机建立交通流模型:根据数据统计分析得出的模型参数,建立交通流元胞自动机模型。
在车辆产生、运动和消失过程中,考虑车辆之间的交互作用,以及车辆运动和道路环境的影响。
3. 交通流仿真实验:基于Matlab软件编程实现交通流仿真实验,分析不同车流密度下的交通状况,并与实际情况进行对比,验证模型的准确性和可靠性。
交通流中的NaSch模型及MATLAB代码元胞自动机
交通流中的NaSch模型及MATLAB代码元胞自动机元胞自动机 NaSch模型及其MATLAB代码作业要求根据前面的介绍,对NaSch模型编程并进行数值模拟:●模型参数取值:Lroad=1000,p=0.3,Vmax=5。
●边界条件:周期性边界。
●数据统计:扔掉前50000个时间步,对后50000个时间步进行统计,需给出的结果。
●基本图(流量-密度关系):需整个密度范围内的。
●时空图(横坐标为空间,纵坐标为时间,密度和文献中时空图保持一致, 画500个时间步即可)。
●指出NaSch模型的创新之处,找出NaSch模型的不足,并给出自己的改进思路。
●流量计算方法:密度=车辆数/路长;流量flux=density×V_ave。
在道路的某处设置虚拟探测计算统计时间T内通过的车辆数N;流量flux=N/T。
●在计算过程中可都使用无量纲的变量。
1、NaSch模型的介绍作为对184号规则的推广,Nagel和Schreckberg在1992年提出了一个模拟车辆交通的元胞自动机模型,即NaSch模型(也有人称它为NaSch模型)。
●时间、空间和车辆速度都被整数离散化。
图3.1.1 NaSch模型运行图图3.1.2 NaSch模型3.2流量密度分析图 3.2描述了交通流量与密度的关系,从图中可知,该模型中,当密度为0——0.185时,流量随密度的增加而增加;当密度超过0.185时,流量开始随密度的增加而下降。
图3.2 基于NaSch模型的流量密度图3.3 NaSch模型时空图分析图3.3.1和图3.3.2描述了,时间步从11001开始到11500结束,共500个时间步的空间和时间的关系,从图中可以模拟出自发产生的堵塞现象。
图3.3.1 基于NaSch模型的时空图图3.3.2 基于NaSch模型的时空图4 模型评价优点:该程序基本实现了NaSch模型的基本功能,并且最大速度、元胞数量、车辆数量以及运行间隔时间都可以修改,程序很灵活,并且可以清晰的看出每一次运行过程。
基于元胞自动机的交通流计算机模拟
以上演化步骤作为一个周期反复进行下去 ,它实际上描 述了较为接近实际的高速公路上车辆的运动状况 。
ABSTRACT: Cellular automata models quantize comp lex behavior into simp le individual components. In general, CA are idealization of physical system s in which both space and time are assumed to be discrete and each of the inter2 acting units can have only a finite number of discrete states. Based on the cellular automata theory, this paper de2 scribes the moving character of vehicles in traffic flow as changing rules of cellular automation, thus traffic flow simu2 lation models based on cellular automation are p resented. After calibrating the basic parameters such as cellular length, maximum speed and so on, this paper first discusses and establishes the traffic cellular automation on traffic simulation; secondly analyzes the updating rule and establishes a traffic simulation model for single lane; thirdly, a computer simulation system is fulfilled w ith all cellular automation models in C language. The simulating result ac2 cords to real traffic flow. KEYWO RD S: Traffic cellular automation; Traffic flow; Cellular automation model; Simulation; Involving rule
基于元胞自动机的城市路段混合交通流建模与仿真的开题报告
基于元胞自动机的城市路段混合交通流建模与仿真的开题报告1. 研究背景及意义城市交通流是城市管理和规划中一个非常重要的领域。
混合交通流是城市交通的一种常见形式,指的是汽车、公交车、自行车和行人等各种交通工具混合行驶在城市道路上的情况。
城市路段混合交通流的流动状态和交通事件的发生情况对城市交通运行的效率和安全具有重要的影响。
因此,深入研究城市路段混合交通流的建模和仿真具有重要的实际意义和科学价值。
元胞自动机是一种广泛应用于建模和仿真的数学方法,它具有描述复杂现象的能力,尤其在城市交通流建模中有着显著的优势。
因此,基于元胞自动机的城市路段混合交通流建模和仿真,成为了近年来城市交通研究领域的热点之一。
2. 研究内容和方案本文拟基于元胞自动机理论和相关实际数据对城市路段混合交通流进行建模和仿真,力求获得具有一定实用意义和科学价值的成果,研究内容主要包括:2.1 基于元胞自动机的城市路段混合交通流模型的构建在此研究中我们将设计一个基于元胞自动机理论的城市路段混合交通流模型,考虑城市交通的复杂性和非线性特征,为城市交通路段的运行和管理提供理论支持和借鉴。
2.2 元胞自动机模型的参数与初值的影响分析在构建模型后,我们将通过调节元胞自动机模型中的参数和初值,探索其对交通流状态的影响,结合实际数据进行分析,为后续实验提供依据。
2.3 具体场景下的元胞自动机模拟基于模型和参数分析的结果,我们将采用实际场景下的数据和模拟交通流实验,对模型的可用性和可扩展性进行评估和验证,掌握模型的有效性。
3. 研究进度安排本研究计划分为以下几个阶段进行:第一阶段:文献调研和数据采集,对国内外关于城市路段混合交通流的研究进行探讨,收集相关数据,制定研究方案。
第二阶段:基于元胞自动机理论构建城市路段混合交通流模型并分析模型参数和初值的影响。
第三阶段:以实际场景下的数据进行元胞自动机模拟,掌握模型的有效性和可用性。
第四阶段:结合实际数据和模拟实验结果进行有效性和可扩展性评价和验证,并撰写研究成果报告。
基于元胞自动机的事故交通流模型仿真
基于元胞自动机的事故交通流模型仿真刘霞;胡凯;龚鹏【摘要】针对发生事故的双车道模型,考虑行驶车辆是否在事故车道以及距离事故的远近,分析不同区域的换道特点,建立双车道元胞自动机模型.在开放边界条件下,改变进口车辆的驶入率和事故的持续时间,得到了车流量和平均车速的变化曲线,结果表明,在发生交通事故时应缩短事故处理时间,并将入口车辆进入率降至一定值.%A two-lane cellular automaton model was established under the traffic accident.Considering whether the vehicle is in the accident lane and the distance from the accident, different characteristics of lane change were analyzed.In the open boundary conditions, traffic flow, density and average speed were analyzed by changing the entry rate of the imported vehicles and duration of the accident.The results show that the accident processing time should be shortened and the entry rate of vehicle should be reduced to a certain value in the case of traffic accidents.【期刊名称】《解放军理工大学学报(自然科学版)》【年(卷),期】2017(018)003【总页数】4页(P285-288)【关键词】元胞自动机;交通流;交通事故;双车道【作者】刘霞;胡凯;龚鹏【作者单位】江汉大学物理与信息工程学院,湖北武汉 430056;江汉大学物理与信息工程学院,湖北武汉 430056;江汉大学物理与信息工程学院,湖北武汉430056【正文语种】中文【中图分类】TP391元胞自动机是一种时空离散的动力学模型,通过一定形式的规则网格将空间分割成许多元胞,这些元胞根据确定的局部规则作同步更新,从而构成整个动态系统的演化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
%获得所有元胞状态
Acc = [ S Q ];
end
%根据当前状态改变元胞位置
%匀速运行车辆向前走1格
A( Acc(:,1:end)==1 ) = 1;
A(1,g)=0;
A(2,g)=1;
ad=ad+1;
end
end
%换路后重新设置元胞上的车辆状态
S(:,1:end) = 0;
A( [ zeros(nc,1) Acc(:,1:end-1)]==1 ) = 0;
%高速运行车辆向前走2格
A( Acc(:,1:end)==2) = 1;
A( [ zeros(nc,2) Acc(:,1:end-2)]==2) = 0;
%计算平均速度、换道频率、车流密度等参数
S(A(:,1:end-2)==0&A(:,2:end-1)==0)=3;%停车的车
S(A(:,1:end-2)==0&A(:,2:end-1)==1&A(:,3:end)==0)=1;%减速行驶的车
%确定最后2两个元胞的状态
Q(:,:) = 0;
A(A~=0)=1;
%将新的车辆加入元胞矩阵中
B(2:2:2*nc,:)=A;
%显示交通流图
set(H,'CData',B);
%仿真步长
pause(dt);
end
%仿真结束,计算结果
d = ad;
c = 1;
for n = 1:nt
A=B(2:2:2*nc,:);
%确定前n-2个车辆的状态
S(:,:) = 0;
S(A(:,1:end-2)==0&A(:,2:end-1)==1&A(:,3:end)==1)=2;%加速的车
%获得运行中的车辆数目N
matN = A<1;
N = sum(sum(matN));
%获得运行中的车辆速度之和V
E = S((S==1)|(S==2));
V = sum(E);
%计算此时刻的车流密度并保存
A(2,g)=1;
ad=ad+1;
%均速行驶车辆如另一条路有3空位则换路
elseif( Acc(1,g)==1&&Acc(2,g)==0&&Acc(2,g+1)==0&&Acc(2,g+1)==0 )
set(gcf,'position',[241 132 560 420]) ;%241 132 560 420
set(gcf,'doublebuffer','on'); %241
title('cellular-automation to traffic modeling','color','b');
% dt:仿真步长时间,nt:仿真步长数目——输入参数
% fp:车道入口处新进入车辆的概率——输入参数
% test:
% nl = 400;fp = 0.5;
% nc = 2;dt=0.01;nt=500;
%构造元胞矩阵
B=ones(2*nc+1,nl+2);
%奇数行为不可行车道
A(1,g)=1;
A(2,g)=0;
ad =ad+1;
elseif( Acc(2,g)==1&&Acc(1,g)==0&&Acc(1,g+1)==0&&Acc(1,g+1)==0 )
function [ v d p ] = multi_driveway( nl,nc,fp,dt,nt )
% 在某一特定车流密度下的(车流密度由fp决定)单、双车道仿真模型
% nc:车道数目(1或2),nl:车道长度——输入参数
% v:平均速度,d:换道次数(1000次)p:车流密度——输出参数
A(1,g)=1;
A(2,g)=0;
ad=ad+1;
elseif( Acc(2,g)==3&&Acc(1,g)==0&&Acc(1,g+1)==0 )
A(1,g)=0;
Acc = [ S Q ];
%换路规则
if(nc>1&&n>nl/2)
%遍历每一个元胞
for g = 1:length(Acc(1,:))
%停车状态车辆如另一条路有2空位则换路
if( Acc(1,g)==3&&Acc(2,g)==0&&Acc(2,g+1)==0)
%确定最后2两个元胞的状态
Q(:,1:end) = 0;
Q(A(:,end-1)==0&A(:,end)==0) = 1;%
Q(A(:,end-1)==0&A(:,end)==1) = 2;
Q(A(:,end-1)==1&A(:,end)==0) = 2;
B(1:2:(2*nc+1),:)=1.2;
%初始化仿真元胞状态(1为无车,0为有车)
bb=B(2:2:2*nc,:);bb(bb~=0)=1;B(2:2:2*nc,:)=bb;B(2:2:2*nc,end)=0;
%显示初始交通流图
figure(1);
H=imshow(B,[]);
Q(A(:,end-1)==0&A(:,end)==0) = 1;
Q(A(:,end-1)==0&A(:,end)==1) = 2;
Q(A(:,end-1)==1&A(:,end)==0) = 2;
Q(:,end) = 1;
%获得所有元胞上车辆的状态
%初始化化存储元胞上车辆状态的矩阵
S(1:nc,nl) = 0;
Q(1:nc,1:2) = 0;
Acc(1:nc,1:(nl+2))=0;
%初始化换道频率、平均速度、车流密度相关变量
ad = 0;
av(1:nt) = 0;
ap(1:nt) = 0;
S(A(:,1:end-2)==0&A(:,2:end-1)==1&A(:,3:ennd-2)==0&A(:,2:end-1)==0)=3;%寻找停车的车
S(A(:,1:end-2)==0&A(:,2:end-1)==1&A(:,3:end)==0)=1;%寻找减速行驶的车
p = mean(ap);
v = sum(av)/c;
end
ap(n) = N/( nc*(nl+2) );
%计算此时刻的平均速率并保存
if(N~=0&&n>nl/2)
av(c) = V/N;
c = c+1;
end
%在车道入口处随机引入新的车辆
A = [ round(fp*rand(nc,1))&A(1:nc,1) A(:,2:end)];