特征值与特征向量的概念

合集下载

6.1.1 特征值和特征向量的概念

6.1.1 特征值和特征向量的概念

6.1.1 特征值和特征向量的概念
小结 (1) 特征值、特征向量、特征子空间、特征多 项式的概念 (2) 计算特征值和特征向量的方法
即是对应于特征值 λ0 的全部特征向量,
其中ci为F上不全为零的常数.
6.1.1 特征值和特征向量的概念
−2
例1

A
=
0
−4
1 1
2
0
,
求A的特征值与特征向量.
1 3
λ 2 1 1
解 det( λE A) 0 λ 2 0
4 1 λ 3
( λ+1)λ 22 ,
从而 A的特征值为 λ1 1, λ2 λ3 2.
6.1.1 特征值和特征向量的概念
对于特征值λ1= − 1, 解线性方程组(− E − A)X =0,
即求解
1
0
−1 −3
−1 0
x1 x2
0 = 0
4 −1 −4 x3 0
得到一个基础解系 X1=(1, 0,1)T .
所以属于λ1 1的全部特征向量为
c1 X1 , 其中c1为F中非零常数.
得到一个基础解系X1 =(1, i)T .
所以属于λ1 2i 的全部特征向量为
c1 X1 , 其中c1为非零复数.
6.1.1 特征值和特征向量的概念
对于特征值λ2 = − 2i, 解线性方程组(−2iE − A)X = 0,
得到一个基础解系 X2 =(1,i)T . 所以属于λ2 = 2i 的全部特征向量为 c2 X2 (其中c2是非零复数).
6.1.1 特征值和特征向量的概念
定义 设 λ0是 A 的一个特征值, 则 Vλ0 = { X ∈ F n | AX = λ0 X }

特征值和特征向量

特征值和特征向量

特征值和特征向量特征值和特征向量是线性代数中非常重要的概念,在数学和工程领域中广泛应用。

它们与矩阵与向量的关系密切相关,可以用于解决许多实际问题。

一、特征值与特征向量的定义特征值和特征向量是矩阵的固有性质,它们描述了矩阵在线性变换下的特殊性质。

特征值(eigenvalue)是一个数,表示矩阵变换后的向量与原向量方向相等或反向。

特征向量(eigenvector)则是与特征值对应的向量。

对于一个n维矩阵A和一个n维向量x,如果满足以下等式:Ax = λx其中λ为标量,称为特征值,x称为特征向量。

我们可以将这个等式分解为(A-λI)x=0,其中I为单位矩阵,如果矩阵A存在一个非零向量x使得等式成立,则说明λ为矩阵A的特征值,x为对应的特征向量。

特征值和特征向量总是成对出现,一个特征值可能对应多个特征向量。

二、特征值与特征向量的求解为了求解矩阵的特征值与特征向量,我们可以使用特征值问题的基本公式:det(A-λI) = 0其中,det表示行列式求值。

解这个方程可以得到矩阵A的特征值λ。

然后,我们将每个特征值代入方程(A-λI)x = 0,求解得到对应的特征向量x。

三、特征值与特征向量的意义特征值和特征向量在许多应用中起着重要的作用,它们可以帮助我们理解矩阵的几何性质和变换规律。

在线性代数中,特征值和特征向量有以下几个重要意义:1. 几何意义:特征向量表示了矩阵变换后不改变方向的向量。

特征值表示了特征向量在变换中的缩放因子。

通过分析特征向量和特征值,我们可以了解变换对向量空间的拉伸、压缩、旋转等操作。

2. 矩阵对角化:如果矩阵A有n个线性无关的特征向量,我们可以将这些特征向量组成一个矩阵P,并将其逆矩阵P^{-1}乘以A和AP^{-1},就可以得到一个对角矩阵D,D的对角线上的元素就是矩阵A的特征值。

这个过程称为矩阵的对角化,可以简化矩阵的运算和分析。

3. 矩阵的奇异值分解:特征值和特征向量也与矩阵的奇异值分解密切相关。

特征值与特征向量的求解方式

特征值与特征向量的求解方式

特征值与特征向量的求解方式在线性代数中,特征值与特征向量是重要的概念。

它们的求解在机器学习、图像处理、物理学等诸多领域中具有重要的应用。

本文将介绍特征值与特征向量的概念和求解方式。

一、特征值与特征向量的定义给定一个n阶方阵A,如果存在非零向量x,使得Ax=kx,其中k是一个常数,那么 k 称为矩阵A的特征值,x称为特征值k对应的特征向量。

特别的,当 k=0 时,x称为矩阵A的零向量。

特征值与特征向量有以下重要性质:1. 一个n阶方阵最多有n个不同的特征值。

2. 若A为实对称矩阵,则其特征向量对应的特征值均为实数。

3. 若A为正定矩阵,则其特征值均为正数。

4. 若A可逆,则其特征值均非零。

特征向量的长度一般不为1,我们可以将其归一化得到单位向量,使得 Ax=kx 中的特征向量x满足 ||x||=1。

二、1.利用特征多项式对 n 阶矩阵 A,设λ 为其特征值,用 |A-λI| =0 表示,其中 I 为n 阶单位矩阵。

化简方程,即得到 A 的特征值λ 的解析式。

求得λ 后,代入 (A-λI)x=0,可以得到对应的特征向量 x。

举个例子,对于矩阵 A=[1 2;2 1],我们有| A-λI |= | 1-λ 2; 2 1-λ| = (1-λ)^2 -4 = 0解得λ1=3, λ2=-1。

将λ1,λ2 代入 (A-λI)x=0 中分别求解,即可得到 A 的两个特征向量。

该方法简单易懂,但对于高阶矩阵,求解特征多项式需要高代数计算,计算复杂度较高。

2.利用幂法幂法是求最大特征值与对应特征向量的较为有效的方法。

该方法基于一下简单事实:给定一个向量 x,令 A 去作用若干次,Ax,A^2x,A^3x,...,A^nx,它们的向量长度将快速增长或快速衰减,且它们的比值趋于最大特征对应的幂指数。

假设 A 有一个不为零的特征向量 x,它对应的特征值为λ1,即Ax=λ1x。

那么,A^mx = A^mx/λ1^m λ1x当 m 充分大时, A^mx 与λ1^mx 相比变化就很小了。

线性代数矩阵的特征值与特征向量

线性代数矩阵的特征值与特征向量

线性代数矩阵的特征值与特征向量矩阵的特征值和特征向量是线性代数中非常重要的概念,具有广泛的应用。

在此,我们将详细介绍特征值和特征向量的定义、性质和计算方法。

希望能对读者理解这两个概念有所帮助。

1.特征值和特征向量的定义在线性代数中,对于一个n阶矩阵A,如果存在一个非零向量x,使得Ax=λx,其中λ是一个标量,则称λ是矩阵A的特征值,x是对应于特征值λ的特征向量。

2.特征值和特征向量的性质(1)对于任意矩阵A和非零向量x,如果Ax=λx,则(x,λ)是(A-λI)的一个特征对,其中I是单位矩阵。

(2)对于任意非零常数k,kλ和kx也是特征值λ和特征向量x的特征对。

(3)如果矩阵A的特征向量x1和x2对应于不同的特征值λ1和λ2,则x1和x2线性无关。

(4)若矩阵A的特征值都不相同,则它一定能够对角化。

3.特征值和特征向量的计算(以2阶矩阵为例)对于一个2阶矩阵A,我们可以通过以下步骤来计算其特征值和特征向量:(1)解特征方程det(A-λI)=0,其中I是单位矩阵。

(2)将特征值代入(A-λI)x=0,求解x的向量,即为对应于特征值的特征向量。

4.实对称矩阵的特征值和特征向量对于实对称矩阵,其特征值一定是实数且存在线性无关的特征向量。

具体计算方法为:(1)求解特征方程det(A-λI)=0,得到特征值λ1, λ2, ..., λn。

(2)将特征值代入(A-λI)x=0,解出x的向量,即为对应于特征值的特征向量。

5.正交矩阵的特征值和特征向量对于正交矩阵,其特征值的模一定是1,且特征向量是两两正交的。

具体计算方法同样为求解特征方程和特征向量方程。

6.特征值和特征向量的应用特征值和特征向量有广泛的应用,例如:(1)主成分分析(PCA):利用特征值和特征向量可以找到数据的主要特征方向,用于数据降维和分析。

(2)图像处理:利用特征值和特征向量可以进行图像压缩、增强和分析。

(3)物理学中的量子力学:波函数的特征值和特征向量对应着物理量的测量结果和对应的本征态。

特征值和特征向量

特征值和特征向量

练习
3. 已知 A的特征值 为
(1)求AT、aA(a为任意实数A( ) k k为 、正整数)的特 (2设 ) A可逆,A求 1的特征值。
4.试证 A有特征值零的充分 条必 件要 是 A0.
§4.2 相似矩阵与矩阵 可对角化的条件
1. 相似矩阵概念 2. 相似矩阵基本性质 3. 方阵的对角化含义 4. 矩阵可对角化的条件
特征值和特征向量
§4.1 矩阵的特征值 和特征向量
1. 特征值与特征向量定义 2. 相关概念 3.两个有用公式
(特征方程根与系数的关系) 4.特征值与特征向量求法 5.特征值与特征向量的性质
1. 特征值与特征向量定义
定义4.1
设A为n阶方阵, 若存在常数
及非零向量
,使A成立 ,则称 为方A的 阵特征 , 值

A2, 故x=0,y=1.
课堂练习
设矩A阵 12
2 x
24与B5
y
4 2 1
4
相似 ,求x,y.
3.方阵的对角化含义
所谓方阵
A 可以对角化,
是指 A与对角阵
Λ相似.
即存在可逆矩阵
P , 使 P1AP成立.
4.
矩阵可对角化的条件
定理(充要条件)
n阶方阵
个线性无关的特征向量.
可对角化
A
A 有 n
A A O (EA)O
推论1、2(P159) 若α1,α2是A属于λ0的特征向量,则c1α1+ c2α2也是A属于λ0的特征向量。
3.两个有用公式(特征方程根与系数的关系)
设 n阶方 A 的 阵 特征 1,2,值 ,n为 ,
则 (1 1 )2 na1 1a2 2 an;n

特征值和特征向量的性质

特征值和特征向量的性质

1






为___3_/4_ .
A* 1的一个特征值为____2/_3 .
2 1 1
例6
已知 1
k
1T
为A
1
1
2 1
0的都是矩阵A的特征值.
3. A I 0
a11 a1
an1
an2 ann
称以为未知数的一元 n次方程
为A的
.

,它是的n次多项式, 称其
为方阵A的
.
4. 设 n阶方阵 A aij 的特征值为1, 2 ,,
n , 则有 (1) 1 2 n a11 a22 ann;
例1 求A 3 1的特征值和特征向量. 1 3
解 A的特征多项式为
A I 3 1 (3 )2 1 1 3
8 6 2 (4 )(2 ) 解特征方程 A I 0
即得A的特征值为 2, 4.
1
2
当 2时,对应的特征向量应满足 1
3 2 1
1 32
x1 x2
0 0

xx1 1xx2 200, .
解得 x1
x2,









可取

p 1
c
11 ,
c
0.
当 4时,由 2
3 4 1
1 34
x1 x2
0 0
,即
1 1
1 1
x1 x2
0 0
,
解得 x1 x2 ,所以对应的特征向量可取为
1 p2 c 1 , c 0.
(a11 a22 ann ) 由同次项系数应该相等,知成立

4-1 特征值与特征向量

4-1 特征值与特征向量

kI A k A
k k -
A ③ 若A可逆,则 是 A*的一个特征值; l
A A A A
A A A I

A I= A

A A A
A
A可逆 0. 假设 =0, I - A =0 - A =0, 与A可逆矛盾. 0 A \ 是 A* 的一个特征值; l
一特征值与特征向量的概念一特征值与特征向量的概念定义定义11a为n阶方阵如果存在数和n维非零向量使得则称为a的特征值称为a的对应于特征值的特征向量
一、特征值与特征向量的概念 定义1 A为n阶方阵,如果存在数λ和n维非零 向量α,使得 A
则λ称为A的特征值, 称为A的对应于特征值 λ的特征向量. Ax y 线性变换 A
0, 是方程的非零解, I A 0.
特征值:方程 I A 0 的根. 特征向量: 齐次线性方程组 I A x 0 非零解向量.
定义2 称 I A 为A的特征矩阵. a11 a12 a1n a21 a22 a2 n I A
1 例3 设矩阵 轾 - 1 0 犏 已知矩阵A有特征值1 1, 2 2, A= 犏 x 0 2 犏 犏 2 1 求x,及A的另一个特征值. 4 臌 3 3 x 2 解:1 2 3 1 x 1 1 - 1 0 123 A 2 x 0 = x + 2 23 x 2 4
1 2 n
n
I A 1 2 n
n 1
1 12 n
n
令 0, 0I A = A (-1)n A 1 12 n

特征值与特征向量的概念

特征值与特征向量的概念

4
1
3 λ
1 2 λ = (2 λ) = (2 λ)(λ2 λ 2) 3λ 4 = (λ + 1)(λ 2)2 , 所以 的特征值为 1 = 1, λ2 = λ3 = 2. A λ
上页 下页 返回
( 当λ1 = 1 , 解方程 A+ E)x = 0. 时 由 1 1 1 1 0 1 A+ E = 0 3 0~ 0 1 0 . 4 1 4 0 0 0 1 p 得基础解系 1 = 0, 1 λ k 所以对应于 1 = 1 的全部特征向量为p1(k ≠ 0).
§2 方阵的特征值与特征向量
★特征值与特征向量的概念 ★特征值与特征向量的求法
在工程技术中的一些问题常可归纳为求一 个方阵的特征值及特征向量, 个方阵的特征值及特征向量,本节将介绍相应 的特征值理论. 的特征值理论.
下页 关闭
特征值与特征向量的概念
定义6 设A是 n 阶方阵,如果数 λ 和 n 维非零 定义 是 阶方阵, 列向量 x 使关系式 Ax = λ x (1) 成立,那么, 称为方阵A 成立,那么,这样的数 λ 称为方阵 的特征值 ,非零 称为A 特征向量. 向量 x 称为 的对应于特征值 λ 的特征向量. (1) 式也可以写成如下形式: 式也可以写成如下形式: ( A- λ E ) x = 0 - (2)
1 所以特征向量可取: 所以特征向量可取: p1 = . 1
则对应于特征值 1 = 2 的全部特征向量为 λ k1 p1(k1 ≠ 0).
上页 下页 返回
当λ2 = 4时, 解方程组 3 4 1 x1 0 ( A λ2 E)x = 1 3 4 x = 0, 2
上页 下页 返回
, ( λ 当 2 = λ3 = 2时 解方程 A 2E)x = 0. 由 1 4 1 1 1 4 A 2E = 0 0 0~ 0 0 4 1 1 0 0 1 1 4 4 p 得基础解系 2 = 1 , p3 = 0 . 0 1 1 4 0 , 0

矩阵特征值与特征向量

矩阵特征值与特征向量

矩阵特征值与特征向量在线性代数中,矩阵的特征值和特征向量是非常重要的概念。

它们在很多数学和工程领域都有广泛的应用。

本文将详细介绍矩阵特征值和特征向量的定义、性质以及计算方法。

一、特征值与特征向量的定义1. 特征值:对于一个n阶方阵A,如果存在一个非零向量X使得AX=kX,其中k为一个常数,那么k就是矩阵A的特征值。

我们可以把这个等式改写为(A-kI)X=0,其中I是单位矩阵。

这样,求解特征值就等价于求解矩阵(A-kI)的零空间。

2. 特征向量:特征向量是与特征值相对应的非零向量。

对于一个特征值k,其对应的特征向量X满足AX=kX。

二、特征值与特征向量的性质1. 特征值与特征向量是成对出现的,一个特征值对应一个特征向量。

2. 特征值的个数等于矩阵A的阶数。

特征值可以是实数或复数。

3. 特征向量可以乘以一个非零常数得到一个新的特征向量。

4. 如果矩阵A是实对称矩阵,那么其特征值一定是实数。

如果矩阵A是正定或负定矩阵,那么其特征值一定大于0或小于0。

5. 特征向量相互之间线性无关。

三、特征值与特征向量的计算方法1. 求特征值:求解特征值的常用方法是求解矩阵A的特征多项式的根。

特征多项式的形式为|A-kI|=0,其中|A-kI|表示矩阵A-kI的行列式。

2. 求特征向量:已知特征值k后,将k代入(A-kI)X=0即可得到特征向量。

可以使用高斯-约当消元法或者迭代法来求解。

四、矩阵特征值与特征向量的应用1. 特征值与特征向量广泛应用于机器学习和数据分析领域。

在主成分分析(PCA)中,我们可以通过计算数据的协方差矩阵的特征向量来实现数据降维和特征提取。

2. 特征值与特征向量也在图像处理和信号处理中有许多应用。

例如,在图像压缩算法中,我们可以利用矩阵的特征值和特征向量来实现图像的降噪和压缩。

3. 特征值和特征向量还可以应用于动力系统的稳定性分析。

通过求解动力系统的雅可比矩阵的特征值,我们可以判断系统的稳定性和临界点的类型。

特征值与特征向量_

特征值与特征向量_

特征值与特征向量_一、特征值与特征向量的定义在线性代数中,对于一个nxn的矩阵A,如果存在一个非零向量v,使得Av=λv,其中λ是一个常数,则称λ为矩阵A的特征值,v为对应的特征向量。

特征向量是指矩阵在一些方向上的不发生变化的向量,而特征值则表示该方向上的缩放比例。

矩阵乘以特征向量v等于用特征值λ来放缩这个向量。

二、特征值与特征向量的性质1.特征值和特征向量总是成对出现,即一个特征向量对应一个特征值,可能有多个特征向量对应同一个特征值。

2.特征值可以为复数,但如果A是实对称矩阵,则特征值一定是实数。

3.矩阵的特征值可以通过求解方程,A-λI,=0得到,其中I是单位矩阵。

4.特征向量可以通过求解方程(A-λI)v=0得到,其中0是全零向量。

5.特征值的和等于矩阵的迹(所有主对角线上的元素之和),特征值的乘积等于矩阵的行列式。

三、特征值与特征向量的应用1.特征值分解特征值分解是矩阵分析中非常重要的一种分解方法,对于一个nxn的矩阵A,其特征值分解为A=VΛV^(-1),其中V是由特征向量构成的矩阵,Λ是由特征值构成的对角矩阵。

特征值分解可以用于求解线性方程组、矩阵的幂次计算、矩阵的逆等问题,也可以用于降维和数据压缩等领域。

2.特征值与特征向量的几何意义特征向量可以表示矩阵的一些方向上的不变性,通过求解矩阵的特征向量,可以了解矩阵对于不同方向上的变化情况。

例如,在计算机图形学中,可以通过矩阵的特征向量来描述形状的变化、旋转、缩放等操作。

3.矩阵的谱分析通过分析矩阵的特征值和特征向量,可以了解矩阵的性质和结构。

例如,对于对角矩阵,其特征值就是主对角线上的元素,特征向量为标准基向量。

四、总结特征值与特征向量是线性代数中的重要概念,具有广泛的应用。

特征值与特征向量可以用于矩阵分解、线性方程组求解、数据压缩和图形变换等问题,对于理解和分析矩阵的性质和结构有着重要的意义。

深入理解特征值与特征向量的概念和性质,对于掌握线性代数和应用数学具有重要的作用。

特征值与特征向量的求解

特征值与特征向量的求解

特征值与特征向量的求解特征值和特征向量是线性代数中一对重要的概念,广泛应用于物理学、工程学和计算机科学等领域。

在本篇文章中,我们将深入探讨特征值和特征向量的定义、性质以及求解方法。

一、特征值与特征向量的定义在介绍特征值与特征向量的求解方法之前,我们先来了解它们的定义。

在一个n维向量空间V中,若存在一个n阶方阵A和一个非零向量X,使得下式成立:AX = λX其中,λ为标量,称为矩阵A的特征值;X为矩阵A的特征向量。

特征值与特征向量的求解方法有多种,下面将介绍其中两种常用的方法。

二、特征值与特征向量的求解方法1. 特征方程法特征方程法是求解特征值和特征向量的一种常用方法。

假设A是一个n阶方阵,我们的目标是求解它的特征值和特征向量。

首先,我们将上述特征方程AX = λX两边同时左乘一个单位矩阵I,得到:(A-λI)X = 0其中,I为n阶单位矩阵,0为n维零向量。

由于X为非零向量,所以矩阵(A-λI)必须是奇异矩阵,即其行列式为0:|A-λI| = 0这就是特征方程。

接下来,我们需要求解特征方程|A-λI| = 0的根λ,即矩阵A的特征值。

求解得到的特征值λ可以有重根。

然后,将每个特征值λ带入原特征方程(A-λI)X = 0,解得对应的特征向量X。

注意,对于每个不同的特征值,我们都可以对应多个特征向量。

通过特征方程法,我们可以求解出矩阵A的所有特征值和对应的特征向量。

2. 幂法幂法是求解矩阵特征值和特征向量的一种迭代方法,适用于大规模稀疏矩阵。

幂法的基本思想是:通过迭代将初始向量不断与矩阵A进行乘法运算,使得向量的模不断增大,趋向于对应最大特征值的特征向量。

具体做法是:1) 先选择一个非零向量X0作为初始向量。

2) 迭代计算X(k+1) = AX(k),其中k表示迭代次数。

3) 归一化向量X(k+1),即X(k+1) = X(k+1) / ||X(k+1)||,其中||X(k+1)||表示向量X(k+1)的模。

线性代数5.2-方正的特征值和特征向量

线性代数5.2-方正的特征值和特征向量
解得 x 1 = − x 2 , 所以对应的特征向量可 取为 − 1 p2 = . 1
− 1 1 0 例2 求矩阵 A = − 4 3 0 的特征值和特征向量 . 1 0 2

A的特征多项式为 的特征多项式为
−1− λ 1 0 2 A − λE = − 4 3−λ 0 = ( 2 − λ ) (1− λ ) , 1 0 2−λ 所以A 所以 的特征值为 λ 1 = 2, λ 2 = λ 3 = 1.
3. 对于特征值 λi , 求齐次方程组
( A − λi E ) x = 0
的非零解 , 就是对应于 λi的特征向量 .
思考题
设4阶方阵 A满足条件 : det (3E + A ) = 0, AAT = 2 E , det A < 0, 求A∗的一个特征值 .
思考题解答
解 因为 det A < 0, 故A可逆.由 det( A + 3 E ) = 0知 1 − 3是A的一个特征值 , 从而 − 是 A− 1的一个特征 3 值. 又由 A AT = 2 E得 det( A AT ) = det( 2 E ) = 16,即 2 (det A) = 16, 于是 det A = ±4, 但 det A < 0,因此 det 4 ∗ A = −4, 故 A 有一个特征值为 . 3
− 3 1 0 A − 2E = − 4 1 0 1 0 0
得基础解系
− 1 p2 = − 2 , 1
所以k p 2 ( k ≠ 0)是对应于 λ 2 = λ 3 = 1的全部特征值 .
− 2 1 1 的特征值与特征向量. 的特征值与特征向量 例3 设 A = 0 2 0 ,求A的特征值与特征向量. − 4 1 3

矩阵的特征值及特征向量

矩阵的特征值及特征向量
1.相似矩阵 相似是矩阵之间的一种关系,它具有很多良好 的性质,除了课堂内介绍的以外,还有:
2.相似变换与相似变换矩阵
相似变换是对方阵进行的一种运算,它把A
变成
,而可逆矩阵 称为进行这一变换的
相似变换矩阵.
这种变换的重要意义在于简化对矩阵的各种 运算,其方法是先通过相似变换,将矩阵变成与 之等价的对角矩阵,再对对角矩阵进行运算,从 而将比较复杂的矩阵的运算转化为比较简单的对 角矩阵的运算.
对角化,但如果能找到 个线性无关的特征向量, 还是能对角化.
例1 判断下列实矩阵能否化为对角阵? 解
解之得基础解系
求得基础解系
故 不能化为对角矩阵.
解之得基础解系
例2 A能否对角化?若能对角 解
解之得基础解系
所以 可对角化.
注意
即矩阵 的列向量和对角矩阵中特征值的位置 要相互对应.
四、小结
二、特征值和特征向量的性质
证明


类推之,有
ห้องสมุดไป่ตู้
把上列各式合写成矩阵形式,得
注意
1 . 属于不同特征值的特征向量是线性无关 的.
2 . 属于同一特征值的特征向量的非零线性 组合仍是属于这个特征值的特征向量.
3 . 矩阵的特征向量总是相对于矩阵的特征 值而言的,一个特征值具有的特征向量不唯一; 一个特征向量不能属于不同的特征值.
三、特征值与特征向量的求法
例5 设A是 阶方阵,其特征多项式为

四、小结
求矩阵特征值与特征向量的步骤:
思考题
思考题解答
、 相似矩阵
一、相似矩阵与相似变换的概念 二、相似矩阵与相似变换的性质 三、利用相似变换将方阵对角化
一、相似矩阵与相似变换的概念

一、特征值与特征向量的概念

一、特征值与特征向量的概念

判断一个方阵A是否可对角化?
1. 求出A的所有特征值:1, ,s.
2. 对于i 1, s,求齐次线性方程组
(iE A)X =0
的基础解系的向量个数n1, ,ns.
s
若 ni =n, 则A可对角化; 否则不可对角化. i 1
四、小结
1.相似矩阵 相似是矩阵之间的一种关系,它具有很多良好 的性质,除了课堂内介绍的以外,还有: (1)A与B相似,则det( A) det(B); ( 2)若A与B相似, 且A可逆, 则B也可逆, 且A 1与 B 1相似; (3)A与B相似,则kA与kB相似, k为常数;
二、相似变换的性质
1. 相似变换是等价关系 (1)自 反 性 A与A本身相似. (2)对 称 性 若A与B相似,则B与A相似. (3)传 递 性 若A与B相似, B与C相似, 则A与C相似.
三、利用对角矩阵计算矩阵多项式
若A相似于某对角矩阵,则存在可逆矩阵P使得P1AP .
则 Ak Pk P1,
(2) 设1, ,s为不同的特征值. 对于i 1, s, 求
齐次线性方程组将(i E A) X 0的基础解系
{i1, , iri },
ri
ri
则 kijij ,其中ki1, ,kiri不全为零(足以保证 kijij 0),
i=1
i=1
即为矩阵A对应i的全部特征向量.
四、特征值和特征向量的性质
性质(总结):
A 为正交矩阵的充要条件是下列条件之一成立:
1 A1 AT ; 2 AAT E;
3 A的列向量是两两正交的单位向量;
4 A的行向量是两两正交的单位向量.
二、实对称矩阵的性质
说明:本节所提到的对称矩阵,除非特别说明, 均指实对称矩阵.

一特征值与特征向量概念

一特征值与特征向量概念
二、性质
(1) 反身性: A∽A; (2) 对称性: A∽B,则B∽A;
(3) 传递性: A∽B,B∽C,则A∽C;
(4)A∽B,则 R A = R B
(5)A∽B,则 A B
(6)A∽B,且A可逆,则 A1 ∽ B1
定理
若n阶矩阵A与B相似,则A与B有相同的特征 多项式,从而A与B有相同的特征值.
故有 E A n a11 a22 L ann n1 L
比较①,有 1 2 L n a11 a22 L ann .
定义 方阵A的主对角线上的元素之和称为方阵A的迹.
记为 tr A aii i .
二、特征值和特征向量的性质
推论1 n阶方阵A可逆A的n个特征值全不为零. 若数λ为可逆阵的A的特征值,
0或1.
3、三阶方阵A的三个特征值为1、2、0,则
2E 3A2 ( )
4、求下列方阵的特征值与特征向量
2 1 1
A
0 4
2 1
0 3
3 1 1
B
7 6
5 6
1 2
四、特征向量的性质 定理 互不相等的特征值所对应的特征向量线性无关。 定理 互不相等的特征值对应的各自线性无关的特征
向量并在一块,所得的向量组仍然线性无关。
而对对角阵 有
1k
k
2k
(1)
,()
(2 )
,
O
O
nk
(n
)
这样可以方便地计算A的多项式 ( A).
三、相似对角化
对n阶方阵A,若能寻得相似变换矩阵P使
P1AP
称之为把方阵A对角化.
定理的推论说明,如果n阶矩阵A与对角矩阵Λ相
似,则Λ的主对角线上的元素就是A的全部特征值. 那么,使得 P1AP 的矩阵P又是怎样构成的呢?

特征值与特征向量的计算

特征值与特征向量的计算

特征值与特征向量的计算特征值和特征向量是线性代数中的重要概念,广泛应用于各个领域的数学和工程问题中。

它们的计算方法也是学习线性代数的基础知识之一。

本文将介绍特征值与特征向量的概念以及计算方法。

一、特征值与特征向量的定义在矩阵的运算中,特征值和特征向量是由方阵产生的重要结果。

对于一个方阵A,当存在一个非零向量v使得满足以下等式时:Av = λv其中,λ为标量,称为特征值,而v称为矩阵A对应于λ的特征向量。

特征值和特征向量的计算可以帮助我们理解矩阵的性质,比如矩阵的对角化、矩阵的相似性等。

二、特征值与特征向量的计算方法1. 通过特征方程求解要计算一个矩阵的特征值和特征向量,最常见的方法是通过特征方程求解。

对于一个n阶方阵A,其特征值求解的步骤如下:a) 计算矩阵A与单位矩阵的差值A-λI,其中λ为待求的特征值,I 为n阶单位矩阵。

b) 解特征方程|A-λI|=0,求得特征值λ。

c) 将求得的特征值代入方程A-λI=0,解出特征向量v。

2. 使用特征值分解方法特征值分解是另一种计算特征值和特征向量的方法,适用于对角化矩阵。

对于对角化矩阵A,其特征值分解的步骤如下:a) 求解A的特征值λ和对应的特征向量v。

b) 将特征向量v按列组成矩阵P。

c) 求解对角矩阵D,其中D的对角线元素为特征值。

d) 根据A=PDP^-1,将计算得到的矩阵P和D代入,求解出矩阵A。

三、特征值与特征向量的应用特征值与特征向量的计算方法在实际应用中具有广泛的应用,以下是几个常见的应用场景:1. 机器学习中的主成分分析(PCA)主成分分析是一种常用的降维技术,通过特征值与特征向量的计算可以实现数据降维和分析。

2. 物理学中的量子力学量子力学中,量子态可由特征向量表示,相应的能量则为特征值,通过求解特征值和特征向量,可以揭示微观粒子的性质。

3. 图像处理中的特征提取在图像处理的过程中,通过计算图像的特征值和特征向量,可以提取出图像的关键信息,用于图像识别、分类等任务。

(完整版)线性代数第五章特征值与特征向量(自考经管类原创)

(完整版)线性代数第五章特征值与特征向量(自考经管类原创)

Ak
( PP 1 )k
Pk P1
0 P
k
5
P1
上例中,对二阶方阵AP,存在可逆矩阵P, 使得P1AP .
对角阵的对角元是A的特征值,可逆阵P 即为相应对角元位置的特征值的线性无关的特 征向量组成.
接下来,主要研究方阵化对角阵的问题.
定义 设 A, B 都是 n 阶矩阵,若存在可逆矩阵P,使得 P1AP B
特征值, A 为 A 的一个特征值.
问题( :1)已知是A的特征值,求f (A)特征值
(2)已知f (A)=O,求A的特征值
例6 设3阶矩阵A的一个特征值是-3,则-A2必有 一个特征值 ___
例7
设A=
1 0
2 3
,求B=A2
-2A+3E 的所有特征值 2
例8 设三阶矩阵A的特征值分别为1,2,3, 则 A 2E __
4 1 3
( 1) 22 ,
令 ( 1) 22 0
得A的特征值为1 1,2 3 2.
当1 1时,解方程E A x 0.由
1 1 1 1 0 1
E
A
0
3
0
0
1
0
,
4 1 4 0 0 0
得基础解系
1 p1 0, 1
故对应于1 1的全体特征向量为
k p1
E A
a21
L
a22 L
LL
an1
an2 L
a1n
a2n
L
ann
称E A 为A的特征方阵 .
记 f E A ,它是 的 n 次多项式,
称其 为方阵 A的 特征多项式 .
称以 为未知数的一元n 次方程 E A 0
为A的特征方程 .

特征值特征向量

特征值特征向量

二、特征值与特征向量的求法
(1) 令 A − λ I = 0, 求出λi
(2)对每个λi , 令( A − λi I ) x = 0, 求出基础解系ξ1 , ..., ξ t ,
则对应于λi的全部特征根为: x = c1ξ1 + Biblioteka .. + ct ξ t .
注: 1) 特征向量不唯一; 2)λi 对应的特征向量不构成向量空间
T
当λ2,3 = 1 时, 解方程 ( A − 1 ⋅ I ) x = 0, 得
基础解系
ξ 2 = ( −1, −2,1)
T
∴ λ2,3 = 1的特征向量为: kξ 2 , k ≠ 0, k ∈ R
显然, 显然,ρ λ2 = 1 ≤ 2 = mλ2 .
− 2 1 1 的特征值与特征向量. A 例3 设 = 0 2 0 , 求A 的特征值与特征向量. − 4 1 3
(少了个0向量).
λi的特征子空间=λi的特征向量+零向量
即为(A − λi I ) x = 0的解空间,记为N(A − λi I )
dim ( N ( A − λi ) ) 称为λi的几何重数, 记为ρ λi
称λi 在f (λ ) = 0的重数为代数重数,记为mλi
(代 数 重 数 ≥ 几 何 重 数 )
3. 方阵A与A 的特征值相同,
T
但 特 征 向 量 却 未 必 一 样.
0 0 A= , λ1,2 = 0, 1 0 0 x = c 1
0 1 A= , λ1,2 = 0, 0 0
1 x = c 0
4. 设 Ax = λ x , 且 A 可逆,则 可逆,
∴ y j T Axi = y j T λi xi , xi T AT y j = xi T λ j y j

特征值与特征向量的概念

特征值与特征向量的概念
(1). k 是矩阵 kA 的特征值 (2). m 是矩阵Am的特征值
(3).设 g( x) a0 xm a1xm1 L am
则 g() 是矩阵 g(A) 的特征值
(4).当A可逆时, 1是矩阵 A1的特征值
A 为A的伴随矩阵A*的特征值
定理
设 1, 2 ,L , m 是方阵A的特征值,
p1 , p2 ,L , pm
1 x 2 x
1 2 x 0,
由于1 2 0, 则x 0, 与定义矛盾 .
思考题
设4阶方阵A满足条件: det3E A 0,
AAT 2E,det A 0,求A的一个特征值.
征向量.
二、特征值和特征向量的性质
1. 设n 阶方阵A的特征值为: 则
1, 2 ,L , nபைடு நூலகம்
(1) 1 2 n a11 a22 ann;
(2) 12 n A .
称为矩阵的迹
2. A 与其转置矩阵AT 有相同的特征值,事实上 有相同的特征多项式。
3. 若 是矩阵A的特征值, x 是A的属于的 特征向量,则
x2 x3
0
解得 基础解系:
0
p 1
0 1
,
所以k p1(k 0)是对应于1 2的全部特征值.
当 2 3 1 时 ,由
E A x 0
2 1 0 1 0 1

E
A
4 1
2 0
01
~
0 0
1 0
2 0
,
解得 基础解系:
1
p
2
2 1
,
所以k p2 (k 0)是对应于 2 3 1的全部特征值.
2 1
例2 解
求矩阵A
1 4

特征值与特征向量定义与计算

特征值与特征向量定义与计算

特征值与特征向量定义与计算特征值(eigenvalue)是指对于一个n阶方阵A,如果存在非零向量x使得Ax=kx,其中k是一个常数,那么k被称为A的特征值,x被称为对应于特征值k的特征向量(eigenvector)。

特征向量是非零向量x,特征向量关于特征值的命名较为模糊,如eigenvector(特征向量)和characteristic vector(特征向量)是指同一概念。

一般通过选取适当的非零向量,使得线性变换矩阵作用于该向量后,只改变向量的长度而不改变方向。

1.对于给定的n阶矩阵A,求解其特征方程。

特征方程的形式为,A-λI,=0,其中λ是待求特征值,I是单位矩阵。

求解特征方程可以得到n个特征值。

2.对于每个特征值λ,求解特征方程(A-λI)x=0,其中x是特征向量。

这是一个线性方程组,通过高斯消元法或其他方法求解,可以得到特征向量。

特征值和特征向量之间的关系可以通过下面的等式描述:Ax=λx。

即矩阵A作用于特征向量x后,结果是特征值λ与特征向量的乘积。

特征向量与特征值的性质:1.对于n阶矩阵A,最多有n个线性无关的特征向量。

2. 特征向量可以通过线性组合得到,即如果x1和x2是矩阵A对应于特征值λ的特征向量,则任意实数a、b,ax1+bx2仍然是对应于特征值λ的特征向量。

3.一个矩阵的不同特征值对应的特征向量是线性无关的。

特征值和特征向量的应用:1.特征值和特征向量在信号处理中常用于图像压缩和模式识别等领域。

2.特征值和特征向量可以用于求解矩阵的指数、对角化、独立性等问题。

3.特征向量可以用于判断矩阵或线性变换的性质,如对称矩阵的特征向量必然正交。

总结:特征值和特征向量是矩阵和线性变换的重要特性,它们可以用于求解矩阵的乘法、对角化、矩阵方程等问题。

特征值和特征向量具有一些重要的性质,如线性无关性、正交性等。

特征值和特征向量在计算机科学、物理、工程和其他领域中有广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
称为A 的特征多项式。 注: 在复数域中,特征值有n个(包括重数)
在一般数域中不然。
求矩阵特征值与特征向量的步骤:
1. 计算A的特征多项式 det E A
2. 求A的特征方程 det E A 0 的全部根,
即A的特征值 1, 2 , , n
3. 对特征值 i ,求齐次线性方程组
i E A x 0
的特征向量,则向量组
11 ,12 , ,1r1 ;21,22 , ,2r2 ; ; s1, s2 , , srs
线性无关。
定理 是n 阶方阵A的k 重特征值 ,V是其对应的 特征子空间,则特征子空间的维数 dim (V) k , 即几何重数不超过代数重数。
注意 1. 属于不同特征值的特征向量是线性无关的.
类推之,有
1k x1 p1 k2 x2 p2 km xm pm 0.
k 1,2,,m 1
把上列各式合写成矩阵形式,得
1 1 1m1
x1
p1
,
x2
p2
,,
xm
pm
1
1
2
m
m2 1
m1 m
0,0,,0
上式等号左端第二个矩 阵的行列式为范德蒙行 列
式,当各i不相等时 , 该行列式不等于 0, 从而该矩阵
(1). k 是矩阵 kA 的特征值 (2). m 是矩阵Am的特征值
(3).设 g( x) a0 xm a1 xm1 am
则 g() 是矩阵 g(A) 的特征值
(4).当A可逆时, 1是矩阵 A1的特征值
A 为A的伴随矩阵A*的特征值
定理
设 1, 2 , , m 是方阵A的特征值,
p1 , p2 , , pm
例4 证明:若 是矩阵A的特征值,是A的属于的特征向量,则(1) m是Am的特征值m是任意常数 .
(2) 当A可逆时,1是A1的特征值.
证明 1 Ax x
是特征值的性质
AAx Ax Ax x A2 x 2 x
再继续施行上述步骤 m 2次,就得
Am x m x
故 m 是矩阵Am的特征值,且 x 是 Am 对应于m的特
的非零解,就是对应于 i , 的特征向量。
例1 求A 3 1的特征值和特征向量 . 1 3
解 A的特征多项式为
3 1 ( 3)2 1
1 3
( 4)( 2)
所以A的特征值为1 2, 2 4.
当 1 2 时 ,由 2E A x 0
23
1
2
1
3
x1 x2
1 4
1 3
1 0
1 1
0 0
的特征值和特征向量
.
2
0
E A 4 3 0 ( 2)( 1)2,
1 0 2
所以A的特征值为1 2, 2 3 1.
当 1 2 时 ,由

21
4 1
1 23
0
2E A x 0
0 x1
2
0
2
x2 x3
0
解得 基础解系:
可逆.于是有 x1 p1, x2 p2 ,, xm pm 0,0,,0, 即 x j pj 0 j 1,2,,m.但 pj 0,故 x j 0 j 1,2,,m.
所以向量组 p1, p2 ,, pm 线性无关.
推论
设 1, 2 , , s 是n 阶方阵A的不同的特征值,
i1 ,i 2 , ,iri 是A对应于i 的线性无关
1 x 2 x
1 2 x 0,
由于1 2 0, 则x 0, 与定义矛盾 .
思考题
设4阶方阵A满足条件 : det3E A 0,
AAT 2E,det A 0,求A的一个特征值.
矩阵的对角化
相似矩阵的定义
定义
矩阵A,B 都是n阶方阵,若有可逆矩阵P,使
3. 是A 的特征值,则
E A 0
4. 的特征向量的全体加 零向量 构成 Rn 的线性
子空间,记 V ,其维数为 n-r(E- A)
E A 0
a11
a21
a12
a22
an1
an2
a1n a2n 0
ann
这是一个n 次方程,称为矩阵A的特征方程
记 f ( ) E A 它是一个n次多项式,
0
p
1
0 1
,
所以k p1(k 0)是对应于 1 2的全部特征值.
当 2 3 1 时 ,由
E A x 0
2 1 0 1 0 1

E
A
4 1
2 0
0 1
~
0 0
1 0
2 0
,
解得 基础解系:
1
p
2
2 1
,
所以k p2 (k 0)是对应于 2 3 1的全部特征值.
一、特征值与特征向量的概念 定义: 设A 是n阶矩阵,如果数 与n维非零列向量 x使得
Ax x
称 为A的一个特征值, x 为对应于特征值 的特征向量。
注:
1. 特征值向量 x 0, 特征值问题是对方阵而言的.
2. n 阶方阵A 的特征值,就是使齐次线性方程组
E A x 0 有非零解的值 ,
征向量.
二、特征值和特征向量的性质
1. 设n 阶方阵A的特征值为:
1 , 2 , , n

(1) 1 2 n a11 a22 ann;
(2) 12 n A .
称为矩阵的迹
2. A 与其转置矩阵AT 有相同的特征值,事实上 有相同的特征多项式。
3. 若 是矩阵A的特征值, x 是A的属于的 特征向量,则
0
0
,
即 xx1 1xx2 200
所得所对应的特征向量为:
p 1.
1 1
当 1 4 时 ,由 4E A x 0
4 3 1
4
1
3
x1 x2
0 0
,
即 1 1
解得 x1 x2 ,
1 1
x1 x2
0 0
,
所以对应的特征向量可 取为
p 1. 2 1
例2 解
求矩阵A
是与之对应的特征向量,如果
1 , 2 , , m
各不相等,证明 p1, p2 , , pm 线性无关。
证明 设有常数 x1, x2 ,, xm 使
x1 p1 x2 p2 xm pm 0.
则 Ax1 p1 x2 p2 xm pm 0,
即 1 x1 p1 2 x2 p2 m xm pm 0,
2. 属于同一特征值的特征向量的非零线性 组合仍是属于这个特征值的特征向量.
3. 矩阵的特征向量总是相对于矩阵的特征值 而言的,一个特征值具有的特征向量不唯一; 一个特征向量不能属于不同的特征值.
3的说明 因为,如果设x同时是A的属于特征值1 ,2的
1 2 的特征向量,即有
Ax 1x, Ax 2 x
相关文档
最新文档