中考数学专题练习:特殊三角形 (含答案)
2023年九年级中考数学专题复习:二次函数综合题(特殊三角形问题)含答案
20.如图,抛物线y= x2﹣ x﹣ 与x轴交于点A和点B,与y轴交于点C,经过点C的直线l与抛物线交于另一点E(4,a),抛物线的顶点为点Q,抛物线的对称轴与x轴交于点D.
13.如图,抛物线 经过点A(0,3),B(-1,0).
(1)求抛物线的解析式;
(2)抛物线的顶点为D,对称轴与x轴交于点E,连接BD,求BD的长.
(3)在抛物线上是否存在点P,使△PBD是以BD为直角边的直角三角形,若存在请直接写出点P的坐标,若不存在,请说明理由.
14.如图,抛物线 过点 , , .
(3)如图2,在(2)的条件下,点D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE=2∠ODQ.在y轴上是否存在点F,使得△BEF为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.
7.如图,抛物线y= x2+bx+c与x轴交于A(3,0)、B(-1,0)两点,过点B作直线BC⊥x轴,交直线y=-2x于点C.
(1)求a、b满足的关系式及c的值;
(2)如果 ,点P是直线AB下方抛物线上的一点,过点P作PD垂直于x轴,垂足为点D,交直线AB于点E,使 .
①求点P的坐标;
②若直线PD上是否存在点Q,使 为直角三角形?若存在,求出符合条件的所有点Q的坐标;若不存在,请说明理由.
16.如图,抛物线y=﹣x2+bx+c经过A(4,0),C(﹣1,0)两点,与y轴交于点B,P为第一象限抛物线上的动点,连接AB,BC,PA,PC,PC与AB相交于点Q.
(1)点E的坐标为;
中考数学专题复习27特殊三角形(解析版)
特殊三角形考点1:等腰三角形的性质与判定1.(2021·江苏苏州市)如图.在Rt ABC △中.90C ∠=︒.AF EF =.若72CFE ∠=︒.则B ∠=______.【答案】54°【分析】首先根据等腰三角形的性质得出∠A =∠AEF .再根据三角形的外角和定理得出∠A +∠AEF =∠CFE .求出∠A 的度数.最后根据三角形的内角和定理求出∠B 的度数即可.【详解】∠ AF =EF .∠ ∠A =∠AEF .∠∠A +∠AEF =∠CFE=72°.∠ ∠A =36°.∠ ∠C =90°.∠A +∠B +∠C =180°.∠ ∠B =180°-∠A -∠C =54°.故答案为:54°.2.(2021·江苏南京市·中考真题)如图.在四边形ABCD 中.AB BC BD ==.设ABC α∠=.则ADC ∠=______(用含α的代数式表示).【答案】11802α︒-【分析】由等腰的性质可得:∠ADB =1902ABD ︒-∠.∠BDC =1902CBD ︒-∠.两角相加即可得到结论.【详解】解:在∠ABD 中.AB =BD∠∠A =∠ADB =11(180)9022ABD ABD ︒-∠=︒-∠ 在∠BCD 中.BC =BD∠∠C =∠BDC =11(180)9022CBD CBD ︒-∠=︒-∠ ∠ABC ABD CBD α∠=∠+∠=∠ADC ADB CBD ∠=∠+∠ =11909022ABD CBD ︒-∠+︒-∠ =1180()2ABD CBD ︒-∠+∠ =11802ABC ︒-∠ =11802α︒- 故答案为:11802α︒-.3.(2021·四川资阳市·中考真题)将一张圆形纸片(圆心为点O )沿直径MN 对折后.按图1分成六等份折叠得到图2.将图2沿虚线AB 剪开.再将AOB 展开得到如图3的一个六角星.若75CDE ∠=︒.则OBA ∠的度数为______.【答案】135°【分析】利用折叠的性质.根据等腰三角形的性质及三角形内角和定理解题.【详解】解:连接OC.EO由折叠性质可得:∠EOC=3603012︒=︒.EC=DC.OC平分∠ECD∠∠ECO=11(180275)15 22ECD∠=︒-⨯︒=︒∠∠OEC=180°-∠ECO-∠EOC=135°即OBA∠的度数为135°故答案为:135°4.(2021·山东中考真题)如图.在ABC中.ABC∠的平分线交AC于点D.过点D作//DE BC;交AB于点E.(1)求证:BE DE =;(2)若80,40A C ∠=︒∠=︒.求BDE ∠的度数.【答案】(1)见详解;(2)30BDE ∠=︒【分析】(1)由题意易得,ABD CBD CBD EDB ∠=∠∠=∠.则有ABD EDB ∠=∠.然后问题可求证; (2)由题意易得60ABC ∠=︒.则有30ABD CBD ∠=∠=︒.然后由(1)可求解.【详解】(1)证明:∠BD 平分ABC ∠.∠ABD CBD ∠=∠.∠//DE BC .∠CBD EDB ∠=∠.∠ABD EDB ∠=∠.∠BE DE =;(2)解:∠80,40A C ∠=︒∠=︒.∠18060ABC A C ∠=︒-∠-∠=︒.由(1)可得30ABD CBD BDE ∠=∠=∠=︒.5.(2020•台州)如图.已知AB =AC .AD =AE .BD 和CE 相交于点O .(1)求证:∠ABD ∠∠ACE ;(2)判断∠BOC 的形状.并说明理由.【分析】(1)由“SAS ”可证∠ABD ∠∠ACE ;(2)由全等三角形的性质可得∠ABD =∠ACE .由等腰三角形的性质可得∠ABC =∠ACB .可求∠OBC =∠OCB .可得BO =CO .即可得结论.【解答】证明:(1)∠AB =AC .∠BAD =∠CAE .AD =AE .∠∠ABD∠∠ACE(SAS);(2)∠BOC是等腰三角形.理由如下:∠∠ABD∠∠ACE.∠∠ABD=∠ACE.∠AB=AC.∠∠ABC=∠ACB.∠∠ABC﹣∠ABD=∠ACB﹣∠ACE.∠∠OBC=∠OCB.∠BO=CO.∠∠BOC是等腰三角形.考点2:等边三角形的性质与判定6.(2021·四川凉山彝族自治州·中考真题)如图.等边三角形ABC的边长为4.C的半3P为AB边上一动点.过点P作C的切线PQ.切点为Q.则PQ的最小值为________.【答案】3【分析】连接OC和PC.利用切线的性质得到CQ∠PQ.可得当CP最小时.PQ最小.此时CP∠AB.再求出CP.利用勾股定理求出PQ即可.【详解】解:连接QC和PC.∠PQ和圆C相切.∠CQ∠PQ.即∠CPQ始终为直角三角形.CQ为定值.∠当CP最小时.PQ最小.∠∠ABC是等边三角形.∠当CP∠AB时.CP最小.此时CP∠AB.∠AB=BC=AC=4.∠AP=BP=2.∠CP22-3AC AP∠圆C的半径CQ3∠PQ22-=3.CP CQ故答案为:3.7.(2020•台州)如图.等边三角形纸片ABC的边长为6.E.F是边BC上的三等分点.分别过点E.F沿着平行于BA.CA方向各剪一刀.则剪下的∠DEF的周长是.【分析】根据三等分点的定义可求EF的长.再根据等边三角形的判定与性质即可求解.【解析】∠等边三角形纸片ABC的边长为6.E.F是边BC上的三等分点.∠EF=2.∠DE∠AB.DF∠AC.∠∠DEF是等边三角形.∠剪下的∠DEF的周长是2×3=6.故答案为:6.8.(2020•凉山州)如图.点P、Q分别是等边∠ABC边AB、BC上的动点(端点除外).点P、点Q以相同的速度.同时从点A、点B出发.(1)如图1.连接AQ、CP.求证:∠ABQ∠∠CAP;(2)如图1.当点P、Q分别在AB、BC边上运动时.AQ、CP相交于点M.∠QMC的大小是否变化?若变化.请说明理由;若不变.求出它的度数;(3)如图2.当点P、Q在AB、BC的延长线上运动时.直线AQ、CP相交于M.∠QMC的大小是否变化?若变化.请说明理由;若不变.求出它的度数.【分析】(1)根据等边三角形的性质.利用SAS 证明∠ABQ ∠∠CAP 即可;(2)先判定∠ABQ ∠∠CAP .根据全等三角形的性质可得∠BAQ =∠ACP .从而得到∠QMC =60°;(3)先判定∠ABQ ∠∠CAP .根据全等三角形的性质可得∠BAQ =∠ACP .从而得到∠QMC =120°.【解析】(1)证明:如图1.∠∠ABC 是等边三角形∠∠ABQ =∠CAP =60°.AB =CA .又∠点P 、Q 运动速度相同.∠AP =BQ .在∠ABQ 与∠CAP 中.{AB =CA∠ABQ =∠CPA AP =BQ. ∠∠ABQ ∠∠CAP (SAS );(2)点P 、Q 在AB 、BC 边上运动的过程中.∠QMC 不变.理由:∠∠ABQ ∠∠CAP .∠∠BAQ =∠ACP .∠∠QMC 是∠ACM 的外角.∠∠QMC =∠ACP +∠MAC =∠BAQ +∠MAC =∠BAC∠∠BAC =60°.∠∠QMC =60°;(3)如图2.点P 、Q 在运动到终点后继续在射线AB 、BC 上运动时.∠QMC 不变 理由:同理可得.∠ABQ ∠∠CAP .∠∠BAQ =∠ACP .∠∠QMC 是∠APM 的外角.∠∠QMC =∠BAQ +∠APM .∠∠QMC =∠ACP +∠APM =180°﹣∠P AC =180°﹣60°=120°.即若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动.∠QMC 的度数为120°.考点3:直角三角形的性质9.(2020•衡阳)如图.在∠ABC 中.∠B =∠C .过BC 的中点D 作DE ∠AB .DF ∠AC .垂足分别为点E 、F .(1)求证:DE =DF ;(2)若∠BDE =40°.求∠BAC 的度数.【分析】(1)根据DE ∠AB .DF ∠AC 可得∠BED =∠CFD =90°.由于∠B =∠C .D 是BC 的中点.AAS 求证∠BED ∠∠CFD 即可得出结论.(2)根据直角三角形的性质求出∠B =50°.根据等腰三角形的性质即可求解.【解答】(1)证明:∠DE ∠AB .DF ∠AC .∠∠BED =∠CFD =90°.∠D 是BC 的中点.∠BD =CD .在∠BED 与∠CFD 中.{∠BED =∠CFD∠B =∠CBD =CD. ∠∠BED ∠∠CFD (AAS ).∠DE =DF ;(2)解:∠∠BDE =40°.∠∠B=50°.∠∠C=50°.∠∠BAC=80°.10.(2020•泰安)小明将两个直角三角形纸片如图(1)那样拼放在同一平面上.抽象出如图(2)的平面图形.∠ACB与∠ECD恰好为对顶角.∠ABC=∠CDE=90°.连接BD.AB =BD.点F是线段CE上一点.探究发现:(1)当点F为线段CE的中点时.连接DF(如图(2)).小明经过探究.得到结论:BD∠DF.你认为此结论是否成立?.(填“是”或“否”)拓展延伸:(2)将(1)中的条件与结论互换.即:BD∠DF.则点F为线段CE的中点.请判断此结论是否成立.若成立.请写出证明过程;若不成立.请说明理由.问题解决:(3)若AB=6.CE=9.求AD的长.【分析】(1)证明∠FDC+∠BDC=90°可得结论.(2)结论成立:利用等角的余角相等证明∠E=∠EDF.推出EF=FD.再证明FD=FC 即可解决问题.(3)如图3中.取EC的中点G.连接GD.则GD∠BD.利用(1)中即可以及相似三角形的性质解决问题即可.【解析】(1)如图(2)中.∠∠EDC=90°.EF=CF.∠DF=CF.∠∠FCD=∠FDC.∠∠ABC=90°.∠∠A+∠ACB=90°.∠BA=BD.∠∠A=∠ADB.∠∠ACB=∠FCD=∠FDC.∠∠ADB+∠FDC=90°.∠∠FDB=90°.∠BD∠DF.故答案为是.(2)结论成立:理由:∠BD∠DF.ED∠AD.∠∠BDC+∠CDF=90°.∠EDF+∠CDF=90°.∠∠BDC=∠EDF.∠AB=BD.∠∠A=∠BDC.∠∠A=∠EDF.∠∠A+∠ACB=90°.∠E+∠ECD=90°.∠ACB=∠ECD.∠∠A=∠E.∠∠E=∠EDF.∠EF=FD.∠∠E+∠ECD=90°.∠EDF+∠FDC=90°.∠FD =FC .∠EF =FC .∠点F 是EC 的中点.(3)如图3中.取EC 的中点G .连接GD .则GD ∠BD .∠DG =12EC =92. ∠BD =AB =6.在Rt∠BDG 中.BG =√DG 2+BD 2=√(92)2+62=152. ∠CB =152−92=3.在Rt∠ABC 中.AC =√AB 2+BC 2=√62+32=3√5.∠∠ACB =∠ECD .∠ABC =∠EDC .∠∠ABC ∠∠EDC .∠AC EC =BC CD. ∠3√59=3CD. ∠CD =9√55. ∠AD =AC +CD =3√5+9√55=24√55. 11.(2020•常德)已知D 是Rt∠ABC 斜边AB 的中点.∠ACB =90°.∠ABC =30°.过点D 作Rt∠DEF 使∠DEF =90°.∠DFE =30°.连接CE 并延长CE 到P .使EP =CE .连接BE .FP .BP .设BC 与DE 交于M .PB 与EF 交于N .(1)如图1.当D .B .F 共线时.求证:∠EB =EP ;(2)如图2.当D .B .F 不共线时.连接BF .求证:∠BFD +∠EFP =30°.【分析】(1)∠证明∠CBP 是直角三角形.根据直角三角形斜边中线可得结论; ∠根据同位角相等可得BC ∠EF .由平行线的性质得BP ∠EF .可得EF 是线段BP 的垂直平分线.根据等腰三角形三线合一的性质可得∠PFE =∠BFE =30°;(2)如图2.延长DE 到Q .使EQ =DE .连接CD .PQ .FQ .证明∠QEP ∠∠DEC (SAS ).则PQ =DC =DB .由QE =DE .∠DEF =90°.知EF 是DQ 的垂直平分线.证明∠FQP ∠∠FDB (SAS ).再由EF 是DQ 的垂直平分线.可得结论.【解答】证明(1)∠∠∠ACB =90°.∠ABC =30°.∠∠A =90°﹣30°=60°.同理∠EDF =60°.∠∠A =∠EDF =60°.∠AC ∠DE .∠∠DMB =∠ACB =90°.∠D 是Rt∠ABC 斜边AB 的中点.AC ∠DM .∠BM BC =BD AB =12. 即M 是BC 的中点.∠EP =CE .即E 是PC 的中点.∠ED ∠BP .∠∠CBP =∠DMB =90°.∠∠CBP 是直角三角形.∠BE =12PC =EP ; ∠∠∠ABC =∠DFE =30°.∠BC ∠EF .由∠知:∠CBP =90°.∠BP ∠EF .∠EB=EP.∠EF是线段BP的垂直平分线.∠PF=BF.∠∠PFE=∠BFE=30°;(2)如图2.延长DE到Q.使EQ=DE.连接CD.PQ.FQ.∠EC=EP.∠DEC=∠QEP.∠∠QEP∠∠DEC(SAS).则PQ=DC=DB.∠QE=DE.∠DEF=90°∠EF是DQ的垂直平分线.∠QF=DF.∠CD=AD.∠∠CDA=∠A=60°.∠∠CDB=120°.∠∠FDB=120°﹣∠FDC=120°﹣(60°+∠EDC)=60°﹣∠EDC=60°﹣∠EQP=∠FQP.∠∠FQP∠∠FDB(SAS).∠∠QFP=∠BFD.∠EF是DQ的垂直平分线.∠∠QFE=∠EFD=30°.∠∠QFP+∠EFP=30°.∠∠BFD+∠EFP=30°.考点4:勾股定理及其逆定理12.(2021·四川凉山彝族自治州·中考真题)如图.ABC中.∠=︒==.将ADE沿DE翻折.使点A与点B重合.则CE的长为90,8,6ACB AC BC()A.198B.2C.254D.74【答案】D【分析】先在RtABC中利用勾股定理计算出AB=10.再利用折叠的性质得到AE=BE.AD=BD=5.设AE=x.则CE=AC-AE=8-x.BE=x.在Rt∠BCE中根据勾股定理可得到x2=62+(8-x)2.解得x.可得CE.【详解】解:∠∠ACB=90°.AC=8.BC=6.∠AB22AC BC+∠∠ADE沿DE翻折.使点A与点B重合.∠AE=BE.AD=BD=12AB=5.设AE=x.则CE=AC-AE=8-x.BE=x.在Rt∠BCE中∠BE2=BC2+CE2.∠x2=62+(8-x)2.解得x=25 4.∠CE=2584-=74.故选:D.。
中考数学压轴题专项练习:特殊三角形问题(10道)及答案
中考数学压轴题专项练习:特殊三角形问题(10道)及答案题库:二次函数压轴题-特殊三角形问题1.如图,抛物线y =-12x 2+bx +c 与x 轴交于A (-1,0)、B 两点,与y 轴交于点C (0,2),抛物线的对称轴交x 轴于点D.(1)求抛物线的解析式; (2)求sin ∠ABC 的值;(3)在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形,如果存在,直接写出点P 的坐标;如果不存在,请说明理由.第1题图解:(1)将点A (-1,0),C (0,2)代入抛物线y =-12x 2+bx +c 中得,-12-b +c =0c =2,解得b =32c =2,∴抛物线的解析式为y =-12x 2+32x +2; (2)令y =-12x 2+32x +2=0,解得x 1=-1,x 2=4,∴点B 的坐标为(4,0),在Rt △BOC 中,BC =OC 2+OB 2=22+42=25,∴sin ∠ABC =OC BC =225=55;(3)存在,点P 坐标为(32,52)或(32,-52)或(32,4).【解法提示】由抛物线y =-12x 2+32x +2得对称轴为直线x =32,∴点D 的坐标为(32,0).∴CD =OC 2+OD 2=22+(32)2=52.∵点P 在对称轴x =32上,且△PCD 是以CD 为腰的等腰三角形,∴当点D 为顶点时,有DP =CD =52,此时点P 的坐标为(32,52)或(32,-52);当点C 为顶点时,如解图,连接CP ,则CP =CD ,过点C 作CG ⊥DP 于点G ,则DG =PG ,第1题解图∵DG =2,∴PG =2,PD =4,∴点P 的坐标为(32,4).综上,存在点P 使△PCD 是以CD 为腰的等腰三角形,点P 的坐标为(32,52)或(32,-52)或(32,4).2. 如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =-1,且经过A (1,0),C (0,3)两点,与x 轴的另一个交点为B .(1)若直线y =mx +n 经过B ,C 两点,求抛物线和直线BC 的解析式; (2)在抛物线的对称轴x =-1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求点M 的坐标;(3)设点P 为抛物线的对称轴x =-1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.第2题图解:(1)由题意得-b2a =-1a +b +c =0c =3,解得a =-1b =-2c =3,∴抛物线的解析式为y =-x 2-2x +3.∵对称轴为直线x =-1,抛物线经过A (1,0),∴B (-3,0).设直线BC 的解析式y =mx +n ,把B (-3,0),C (0,3)分别代入y =mx +n 得-3m +n =0n =3,解得m =1n =3,∴直线BC 的解析式为y =x +3; (2)如解图,连接MA ,第2题解图∵MA =MB ,∴MA +MC =MB +MC .∴使MA +MC 最小的点M 应为直线BC 与对称轴x =-1的交点.设直线BC 与对称轴x =-1的交点为M ,把x =-1代入直线y =x +3,得y =2.∴M (-1,2);(3)设P (-1,t ),∵B (-3,0),C (0,3),∴BC 2=18, PB 2=(-1+3)2+t 2=4+t 2, PC 2=(-1)2+(t -3)2=t 2-6t +10.①若B 为直角顶点,则BC 2+PB 2=PC 2,即18+4+t 2=t 2-6t +10,解得t=-2;②若C 为直角顶点,则BC 2+PC 2=PB 2,即18+t 2-6t +10=4+t 2,解得t =4;③若P 为直角顶点,则PB 2+PC 2=BC 2,即: 4+t 2+t 2-6t +10=18,解得t 1=3+172,t 2=3-172.综上所述,满足条件的点P 共有四个,分别为:P 1(-1,-2),P 2(-1,4),P 3(-1,3+172),P 4(-1,3-172).3.如图,在平面直角坐标系中,抛物线y =x 2+bx +c 经过点A (0,-6)和点C (6,0).(1)求抛物线的解析式;(2)若抛物线与x 轴的负半轴交于点B ,试判断△ABC 的形状;(钝角三角形、直角三角形、锐角三角形)(3)在抛物线上是否存在点P ,使得△P AC 是以AC 为底的等腰三角形?若存在,请求出所有点P 的坐标;若不存在,请说明理由.第3题图解:(1)将C 、A 两点坐标代入y =x 2+bx +c ,可得36+6b +c =0c =-6,解得b =-5c =-6,∴抛物线的解析式为y =x 2-5x -6; (2)当y =0时,则有:x 2-5x -6=0,即(x +1)(x -6)=0,∴解得x 1=-1,x 2=6(舍),∴B (-1,0).由两点之间的距离公式可得: BC 2=[(-1)-6]2=49, AC 2=(6-0)2+[0-(-6)]2=72,AB 2=(-1-0)2+[0-(-6)]2=37,∵AB 2+BC 2>AC 2,∴△ABC 为锐角三角形.(3)存在满足条件的点P ,使得△P AC 是以AC 为底的等腰三角形理由:如解图,过线段AC 的中点M ,作AC 的垂线交抛物线于点P ,第3题解图直线MP 与抛物线必有两个满足条件的交点P ,∵A (0,-6),C (6,0),∴点M 的坐标为(3,-3),且OA =OC ,∴直线MP 过点O ,设直线MP 的解析式为y =kx ,将点M (3,-3)代入得,k =-1,即直线MP 的解析式为y =-x ,联立y =-x y =x 2-5x -6,解得x 1=2-10y 1=10-2或x 2=2+10y 2=-2-10 ,∴点P 的坐标为(2-10,10-2)或(2+10,-2-10).4. 如图,在平面直角坐标系中,直线y =-2x +10与x 轴,y 轴相交于A ,B 两点,点C 的坐标是(8,4),连接AC ,BC .(1)求过O ,A ,C 三点的抛物线的解析式,并判断△ABC 的形状;(2)动点P 从点O 出发,沿OB 以每秒2个单位长度的速度向点B 运动,同时,动点Q 从点B 出发,沿BC 以每秒1个单位长度的速度向点C 运动,规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t 秒.当t 为何值时,P A =QA?(3)在抛物线的对称轴上,是否存在点M ,使以A ,B ,M 为顶点的三角形是等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由.第4题图解:(1)∵直线y =-2x +10与x 轴、y 轴相交于A 、B 两点,∴A (5,0),B (0,10),设过O 、A 、C 三点的抛物线的解析式为y =ax 2+bx (a ≠0),把点A (5,0)和C (8,4)代入可得25a +5b =064a +8b =4,解得a =16b =-56,∴抛物线的解析式为y =16x 2-56x ;∵A (5,0),B (0,10),C (8,4),∴AB 2=125,AC 2=25,BC 2=100,∵AB 2=AC 2+BC 2,∴△ABC 是直角三角形.(2)如解图,连接AP ,AQ ,当P ,Q 运动t 秒,即OP =2t ,CQ =10-t ,第4题解图在Rt △AOP 和Rt △ACQ 中,AC =OAP A =QA,∴Rt △AOP ≌Rt △ACQ ,∴OP =CQ ,∴2t =10-t ,∴t =103,∵t <5,∴当运动时间为103秒时,P A =QA ; (3)存在.由题可得,抛物线的对称轴直线为x =52,设点M 的坐标为( 52,b ),利用点的坐标可求得 AB 2=102+52=125, MB 2=(52)2+(b -10)2, MA 2=(52)2+b 2,∵△MAB 是等腰三角形,∴可分以下三种情况讨论:①当AB =MA 时,即125=(52)2+b 2,解得b =±5192,即点M 的坐标为(52,5192)或(52,-5192);②当AB =BM 时,即125=(52)2+(b -10)2,解得b =10±5192,即点M 的坐标为(52,10+5192)或(52,10-5192);③当MB =MA 时,即(52)2+(b -10)2=(52)2+b 2,解得b =5,此时点A 、M 、B 共线,故这样的点M 不存在.综上所述,存在点M ,使以点A 、B 、M 为顶点的三角形是等腰三角形,点M 的坐标为(52,5192)或(52,-5192)或(52,10+5192)或(52,10-5192).5. 如图,抛物线y =x 2+bx +c 与x 轴交于A 、B 两点,B 点坐标为(3,0),与y 轴交于点C (0,3).(1)求抛物线的解析式;(2)点P 在x 轴下方的抛物线上,过点P 的直线y =x +m 与直线BC 交于点E ,与y 轴交于点F ,求PE +EF 的最大值;(3)点D 为抛物线对称轴上一点,当△BCD 是以BC 为直角边的直角三角形时,求点D 的坐标.解:(1)由题意得32+3b +c =0c =3,解得b =-4c =3,∴抛物线的解析式为y =x 2-4x +3;(2)如解图①,过点P 作PG ∥CF 交CB 与点G ,第5题解图①由题可知,直线BC 的解析式为y =-x +3,OC =OB =3,∴∠OCB =45°. 同理可知∠OFE =45°,∴△CEF 为等腰直角三角形,∵PG ∥CF ,∴△GPE 为等腰直角三角形,∵F(0,m),C(0,3),∴CF=3-m,∵△CEF∽△GEP∴EF=22CF=22(3-m), PE=22PG,设P(t,t2-4t+3)(1<t<="">2PG=22(-t+3-t-m)=22(-m-2t+3),∵点P是直线y=x+m与抛物线的交点,∴t2-4t+3=t+m,∴PE+EF=22(3-m)+22(-m-2t+3)=22(-2t-2m+6)=-2(t+m-3)=-2(t2-4t)=-2(t-2)2+42,∴当t=2时,PE+EF最大,最大值为42;(3)由(1)知对称轴x=2,设点D(2,n),如解图②.第5题解图②当△BCD是以BC为直角边的直角三角形时,分两种情况讨论:(ⅰ)D在C上方D1位置时,由勾股定理得CD21+BC2=BD21,即(2-0)2+(n -3)2+(32)2=(3-2)2+(0-n)2 ,解得n=5;(ⅱ)D 在C 下方D 2位置时,由勾股定理得BD 22+BC 2=CD 22,即(2-3)2+(n -0)2+(32)2=(2-0)2+(n -3)2 ,解得n =-1,综上所述,当△BCD 是以BC 为直角边的直角三角形时,D 为(2,5)或(2,-1).6.如图,抛物线y =ax 2-2ax +c (a ≠0)与y 轴交于点C (0,4),与x 轴交于点A 、B ,点A 的坐标为(4,0).(1)求该抛物线的解析式;(2)抛物线的顶点为N ,在x 轴上找一点K ,使CK +KN 的值最小,求出此时点K 的坐标;(3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0).问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.第6题图解:(1)∵抛物线经过点C (0,4),A (4,0),∴c=a a c=??-+?41680,解得a=c=?-124,∴抛物线的解析式为y =-12x 2+x +4;</t。
最新九年级中考数学复习:二次函数综合题(特殊三角形问题)
2023年九年级中考数学复习:二次函数综合题(特殊三角形问题)1.抛物线y=ax2+c交x轴于A、B(1,0)两点,且经过(2,3).(1)求抛物线的解析式;(2)如图1,直线y=kx+3交y轴于点G,交抛物线y=ax2+c于点E和F,F在y轴右侧,若△GOF的面积为△GOE面积的2倍,求k值;(3)如图2,点P是第二象限的动点,分别连接P A、PB,并延长交直线y=-2于M、N 两点. 若M、N两点的横坐标分别为m、n,试探究m、n之间的数量关系.2.如图,已知抛物线2=++与直线y=0.5x+3相交于A,B两点,交△轴于C,0.5y x bx cD两点,连接AC,BC,已知A(0,3),C(-3,0).(1)求抛物线的表达式;(2)在抛物线对称轴l上找一点M,使|MB一MD|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上的一动点,连接P A,过点P作PQ△P A交y轴于点Q,是否存在点P,使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.3.如图,抛物线与x轴交于A和B两点(点B位于点A右侧),与y轴交于点C,对称轴是直线x=2,且OA=1,OC=3,连接AC,BC.(1)求此抛物线的函数解析式;(2)设抛物线的顶点为点P,请在x轴上找到一个点D,使以点P、B、D为顶点的三角形与△ABC相似?(3)此抛物线的对称轴和以AC为直径的圆是什么位置关系?如果是相切或相交,请直接写出切点或交点的坐标(不必写演推过程);如果是相离,请简要说明理由.4.如图1,已知抛物线y=ax2+bx+3与x轴分别交于A(−3,0),B(1,0)两点,与y轴交于点C,点D为抛物线的顶点,连接AD、CD、AC、BC.(1)请直接写出抛物线的表达式及顶点D的坐标;(2)求证:△ACD是直角三角形;(3)判断△ACB和△OAD的数量关系,并说明理由;(4)如图2,点F是线段AD上一个动点,以A,F,O为顶点的三角形是否与△ABC相似?若相似,请直接写出点F的坐标;若不相似,请说明理由.5.抛物线y=ax2﹣2x+c经过点A(3,0),点C(0,﹣3),直线y=﹣x+b经过点A,交抛物线于点E.抛物线的对称轴交AE于点B,交x轴于点D,交直线AC于点F.(1)求抛物线的解析式;(2)如图△,点P 为直线AC 下方抛物线上的点,连接P A ,PC ,△BAF 的面积记为S 1,△P AC 的面积记为S 2,当S 2=38S 1时.求点P 的横坐标;(3)如图△,连接CD ,点Q 为平面内直线AE 下方的点,以点Q ,A ,E 为顶点的三角形与△CDF 相似时(AE 与CD 不是对应边),请直接写出符合条件的点Q 的坐标. 6.如图,抛物线23y ax bx =+-与x 轴交于点()1,0A 、()3,0B ,与y 轴交于点C ,联结AC 、BC .(1)求该抛物线的表达式及顶点D 的坐标;(2)如果点P 在抛物线上,CB 平分ACP ∠,求点P 的坐标:(3)如果点Q 在抛物线的对称轴上,DBQ 与ABC 相似.求点Q 的坐标.7.如图1,已知二次函数y =ax2+bx +c (a ≠0)的图象与x 轴交于A (﹣1,0),B (3,0)两点,与y 轴交于点C (0,﹣2),顶点为D ,对称轴交x 轴于点E .(1)求该二次函数的解析式;(2)设M 为该抛物线上直线BC 下方一点,过点M 作x 轴的垂线,交线段BC 于点N ,线段MN 是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;(3)连接CE (如图2),设点P 是位于对称轴右侧该抛物线上一点,过点P 作PQ △x 轴,垂足为Q .连接PE ,请求出当△PQE 与△COE 相似时点P 的横坐标.8.如图,直线y kx b =+与x 轴、y 轴分别交于A ,B 两点,抛物线2y ax bx c =++经过A ,B 两点,点C 的坐标为()1,0-,3AO CO ==,点C 关于点B 的对称点M 刚好落在抛物线上,连接AM .(1)求点M 的坐标;(2)求抛物线的解析式;(3)过点M 作MD 平行于y 轴交AB 于点D ,若点E 为抛物线上的一点,点F 在x 轴上,连接AE ,AF ,EF .是否存在点F 使得△ADM 与△AEF 相似?若存在,请直接写出点F 的坐标;若不存在,请说明理由.9.如图1,已知在平面直角坐标系xOy 中,四边形OABC 是边长为3的正方形,其中顶点A ,C 分别在x 轴的正半轴和y 轴的正半轴上,抛物线2y x bx c =-++经过A ,C 两点,与x 轴交于另一个点D .(1)△求点A ,B ,C 的坐标;△求b ,c 的值.(2)若点P 是边BC 上的一个动点,连结AP ,过点P 作PM △AP ,交y 轴于点M (如图2所示).当点P 在BC 上运动时,点M 也随之运动.设BP =m ,CM =n ,试用含m 的代数式表示n ,并求出n 的最大值.10.平面直角坐标系中,已知抛物线1C :()21y x m x m =-++-(m 为常数)与x 轴交于点A ,B 两点(点A 在点B 左边),与y 轴交于点C .(1)若4m =,求点A ,B ,C 的坐标;(2)如图1,在(1)的条件下,D 为抛物线x 轴上方一点,连接BD ,若90DBA ACB ∠∠+=︒,求点D 的坐标;(3)如图2,将抛物线1C 向左平移n 个单位长度(0n >)与直线AC 交于M ,N (点M 在点N 右边),若2AM CN =,求m ,n 之间的数量关系.11.如图,直线y x n =-+与x 轴交于点()3,0A ,与y 轴交于点B ,抛物线2y x bx c =-++经过点A ,B .(1)求n 的值及抛物线的解析式;(2)(),0E m 为x 轴上一动点,过点E 作ED x ⊥轴,交直线AB 于点D ,交抛物线于点P ,连接BP .△点E 在线段OA 上运动,若BPD △与ADE 相似,求点E 的坐标;△若抛物线的顶点为Q ,AQ 与CB 的延长线交于点H ,点E 在x 轴的正半轴上运动,若PBD CBO H ∠+∠=∠.请求写出m 的值.12.如图1,平面直角坐标系xOy 中,直线y =-12x -2与x 轴交于点A ,与y 轴交于点C .抛物线y =14x 2+bx +c 经过点A 、点C ,且与x 轴交于另一点B ,连接BC .(1)求抛物线的解析式;(2)点P 是抛物线上一动点.△当点P 在直线AC 下方的抛物线上运动时,如图2,连接AP ,CP .求四边形ABCP 面积的最大值及此时点P 的坐标;△当点P 在x 轴上方的抛物线上运动时,过点P 作PM △x 轴于点M ,连接BP .是否存在点P ,使△PMB 与△AOC 相似?若存在,请直接写出点P 的坐标;若不存在,请说明理由.13.如图,抛物线y 2b c x ++与x 轴交于点A 、B ,点A 、B 分别位于原点的左、右两侧,BO =3AO =3,过点B 的直线与y 轴正半轴和抛物线的交点分别为C 、D ,BC.(1)求b、c的值;(2)求直线BD的直线解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.14.如图,抛物线23(0)y ax bx a=+-≠的顶点E的横坐标为1,与x轴交于A、B两点,与y轴交于点C,直线113y x=-+过点B,与y轴交于点D.(1)求抛物线的解析式;(2)证明:ABD CBE∠=∠;(3)是否存在点1O,使点1O到A,B,C,D的距离都相等,若存在,求出点1O坐标,若不存在,请说明理由.(4)设抛物线与直线DB另一交点为Q,F为线段BQ上一点(不含端点),连接AF,一动点P从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FQ个单位的速度运动到Q后停止,当点F的坐标是多少时,点P在整个运动过程中用时最少?(直接写出答案)15.如图,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A 、B ,与y 轴交于点C ,且OC =2OB =6OA =6,点P 是第一象限内抛物线上的动点.(1)求抛物线的解析式;(2)连接BC 与OP ,交于点D ,当PD :OD 的值最大时,求点P 的坐标;(3)点P 在抛物线上运动,点N 在y 轴上运动,是否存在点P 、点N .使△CPN =90°,且△CPN 与△BOC 相似,若存在,请直接写出点P 的坐标,若不存在,说明理由.16.在平面直角坐标系xOy 中,抛物线y =﹣x 2+bx +c 与x 轴分别交于点A ,点B (3,0),与y 轴交于点C (0,3).(1)求抛物线的解析式;(2)如图1,连接BC ,点D 是直线BC 上方抛物线上一动点,连接AD 交BC 于点E ,若AE =2ED ,求点D 的坐标;(3)直线y =kx ﹣2k +1与抛物线交于M ,N 两点,取点P (2,0),连接PM ,PN ,求△PMN 面积的最小值.17.综合与探究如图,直线3y x =-+与x 轴,y 轴分别交于B ,C 两点,抛物线2y x bx c =-++经过点B ,C ,与x 轴的另一交点为A ,顶点为D .(1)求抛物线的解析式及顶点D的坐标.(2)连接CD,BD,求点D到BC的距离h.(3)P为对称轴上一点,在抛物线上是否存在点Q,使得PDQ与BOC相似?若存在,请直接写出Q点坐标;若不存在,请说明理由.18.如图,已知直线223y x=-与x轴交于点A,与y轴交于点B,抛物线226y x bx=-++经过点A,与x轴的另一个交点为C,交y轴于点D.(1)求抛物线的函数表达式及点D的坐标;(2)点M是y轴上的点,在y轴右侧的抛物线上是否存在点P,使得PMD△与BOC相似,且点M与点O为对应点,若存在,请求出点P的坐标,若不存在,请说明理由.19.如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,与y轴交点C,抛物线y=-2x2+bx+c过A,C两点,与x轴交于另点B.(1)求抛物线的解析式.(2)在直线AC 上方的抛物线上有一动点E ,连接BE ,与直线AC 相交于点F ,当EF =12BF 时,求sin△EBA 的值.(3)点N 是抛物线对称轴上一点,在(2)的条件下,若点E 位于对称轴左侧,在抛物线上是否存在一点M ,使以M ,N ,E ,B 为顶点的四边形是平行四边形?若存在,直接写出点M 的坐标;若不存在,请说明理由.20.如图,一次函数3y x =-+的图象与x 轴和y 轴分别交于点B 和点C ,二次函数2y x bx c =-++的图象经过B ,C 两点,并与x 轴交于点A .点(),0M m 是线段OB 上一个动点(不与点O 、B 重合),过点M 作x 轴的垂线,分别与二次函数图象和直线BC 相交于点D 和点E ,连接CD .(1)求这个二次函数的解析式.(2)△求DE 、CE 的值(用含m 的代数式表示).△当以C ,D ,E 为顶点的三角形与△ABC 相似时,求m 的值.(3)点F 是平面内一点,是否存在以C ,D ,E ,F 为顶点的四边形为菱形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.参考答案:1.(1)21y x =- (2)k =(3) 1.-2.(1)215322y x x =++(3)在点P (1,6)3.(1)y =x 2-4x +3(2)点D 的坐标是(0,0)或(73,0) (3)相交,交点的坐标是(2,1)或(2,2)4.(1)抛物线解析式为y =-x 2-2x +3;顶点D 的坐标为(-1,4);(2)见解析(3)△OAD =△ACB(4)相似,F 点的坐标为(-65,185)或(-2,2).5.(1)y =x 2﹣2x ﹣3(2)P 352(3)Q 点坐标为(﹣7,5)或(﹣12,5)或(3,﹣10)或(3,﹣5)6.(1)2=+43y x x --,(21)D , (2)111639⎛⎫ ⎪⎝⎭,- (3)(2,−2)或12,3⎛⎫ ⎪⎝⎭7.(1)224233y x x =--(2)线段MN 存在最大值,最大值为32(3)点P 的横坐标为5或28.(1)(M(2)2y x x =(3)存在,()()()()()11,0,3,0,,0,5,0,7,0,13,03⎛⎫-- ⎪⎝⎭9.(1)△A (3,0),B (3,3),C (0,3);△23b c =⎧⎨=⎩ (2)2133324n m ⎛⎫=--+ ⎪⎝⎭(0≤m ≤3);3410.(1)A (1,0),B (4,0),C (0,﹣4)(2)D (83,209) (3)93m n =-11.(1)n =3,y =-x 2+2x +3.(2)△(1,0)或(2,0).△m =5或73.12.(1)211242y x x =+- (2)△四边形ABCP 面积的最大值为8,此时点P 为(-2,-2);△存在符合条件的点P ,点P 坐标为(-6,4)或(-12,28)或(4,4)13.(1)132b c ⎧=-⎪⎪⎨⎪=-⎪⎩(2)y=+(3)Q 1(,0)、Q 2(0)、Q 3,0)、Q 4(,0) 14.(1)2 2 3y x x =--(2)见解析(3)存在点()111O -,,使点P 到A ,B ,C ,D 的距离都相等(4)F 的坐标为41,3⎛⎫- ⎪⎝⎭时,点P 在整个运动过程中用时最少15.(1)y =﹣2x 2+4x +6(2)点P 的坐标为315(,)22(3)存在,点P 的坐标分别为(3,0)或(1,8)或939(,)48或755(,)4816.(1)y =﹣x 2+2x +3(2)(1,4)或(2,3)17.(1)223y x x =-++,顶点D (1,4)(2)h =(3)Q (0,3)或(2,3)18.(1)2246y x x =-++;(0,6)D(2)存在,点P 的坐标为755,48⎛⎫ ⎪⎝⎭或939,48⎛⎫ ⎪⎝⎭或(1,8)或(3,0)19.(1)抛物线的解析式为y =-2x 2-4x +6;(2)sin△EBA ; (3)M 的坐标为(2,-10)或(-4,-10)或(0,6).20.(1)223y x x =-++(2)△23DE m m =-,CE ;△m 的值为32或53(3)存在以C ,D ,E ,F 为顶点的四边形为菱形,点M 的坐标为(1,0)或(2,0)或(3,0).。
初二数学特殊三角形部分_练习题(含答案)(K12教育文档)
初二数学特殊三角形部分_练习题(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初二数学特殊三角形部分_练习题(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初二数学特殊三角形部分_练习题(含答案)(word版可编辑修改)的全部内容。
特殊三角形综合练习一、选择题1.下列图形中,不一定是轴对称图形的是()A.线段 B.等腰三角形 C.直角三角形 D.圆2.若等腰三角形的两边长分别为4和9,则周长为( )A.17 B.22 C.13 D.17或223.如果三角形一边上的高平分这条边所对的角,那么此三角形一定是( )A.等腰三角形 B.直角三角形 C.等边三角形 D.等腰直角三角形4.小明将两个全等且有一个角为60°的直角三角板拼成如图所示的图形,其中两条较长直角边在同一直线上,则图中等腰三角形的个数是()A.4 B.3 C.2 D.15.如图,已知在△ABC中,∠ABC=90°,∠A=30°,BD⊥AC,DE⊥BC,D,E为垂足,下列结论正确的是( )1BD D.BC=2BDA.AC=2AB B.AC=8EC C.CE=26.有四个三角形,分别满足下列条件:(1)一个角等于另外两个内角之和;(2)三个内角之比为3:4:5;(3)三边之比为5:12:13;(4)三边长分别为5,24,25.其中直角三角形有() A.1个 B.2个 C.3个 D.4个7.如图,EA⊥AB,BC⊥AB,AB=AE=2BC,D为AB的中点,有以下判断:①DE=AC;②DE⊥AC;③∠CAB=30°;④∠EAF=∠ADE.其中正确结论的个数是( )A.1 B.2 C.3 D.48.如图,以点A和点B为两个顶点作位置不同的等腰直角三角形,一共可以作出 ( )9.如图所示,已知△ABC中,AB=6,AC=9,AD⊥BC于D,M为AD上任一点,则MC2=MB2等于 ( )A.9 B.35 C.45 D.无法计算10.若△ABC是直角三角形,两条直角边分别为5和12,在三角形内有一点D,D到△ABC各边的距离都相等,则这个距离等于()A.2 B.3 C.4 D.5二、填空题11.已知等腰三角形中顶角的度数是底角的3倍,那么底角的度数是________.12.已知等腰△ABC的底边BC=8cm,且|AC-BC|=2cm,那么腰AC的长为__________.13.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径",在花圃内走出了一条小路,他们仅仅少走了_______步路,(假设2步为1m),却踩伤了花革.14.如图,在△ABC中,AB=5cm,BC=12cm,AC=13cm,那么AC边上的中线BD的长为______cm.15.已知,如图,△ABC是等边三角形,BD是中线,延长BC到E,使CE=CD,不添加辅助线,请你写出三个正确结论:(1)____________;(2)_____________;(3)_____________.16.已知,如图,正方形ABCD中,对角线AC和BD相交于点0,E,F分别是边AD,DC上的点,若AE=4cm,FC=3cm,且0E⊥0F,则EF=______cm.三、解答题17.如图,在△ABC中,AB=AC,点D在BC边上,DE⊥AB,DF⊥AC,垂足分别为E,F,添加一个条件,使DE=DF.18.如图,已知∠AOB=30°,0C平分∠AOB,P为OC上一点,PD∥0A交OB于D,PE⊥OA于E,如果OD=4,求PE的长。
中考数学专题复习(有答案) 特殊三角形
第4节特殊三角形A组1.已知,等腰三角形ABC的周长为16 cm,底边BC上的高AD长为4 cm,则三角形ABC的面积为12 cm2.2.如图,AD是等边△ABC底边上的中线,AC的垂直平分线交AC于点E,交AD于点F,若AB=6,则DF长为(C)A.1 B. 2C. 3 D.2第2题图第3题图第4题图3.如图,在△ABC中,∠BAC=90°,AD是△ABC的高,若∠B=30°,AB=4,则DC=233.4.如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠DAC=45°,∠BAC=30°,E是AC的中点,连接BE,BD.则∠DBE的度数为(C)A.10°B.12°C.15°D.18°B组5.如图,在矩形ABCD中,对角线AC,BD交于点O,将△ABC沿直线AC翻折,点B落在点B′处,且AB′∥BD,连接B′D.求证:(1)△ABO是等边三角形;(2)B′D∥AC.证明:(1)∵四边形ABCD是矩形,∴∠BAD=90°,AO=OD,∴∠OAD=∠ADO.∵AB′∥BD,∴∠B′AD=∠ADB.∴∠B ′AD =∠DAC .由折叠性质知∠BAC =∠CAB ′.∴∠DAC =12BAC . ∴∠BAC =60°.∵OA =OB ,∴△ABO 是等边三角形.6.(2020鄂州)如图,在△AOB 和△COD 中,OA =OB ,OC =OD ,OA <OC ,∠AOB =∠COD =36°.连接AC ,BD 交于点M ,连接OM .下列结论:①∠AMB =36°;②AC =BD ;③OM 平分∠AOD ;④MO 平分∠AMD .其中正确的结论个数有( B )A .4个B .3个C .2个D .1个C 组7.如图,在Rt △ABC 中,∠ACB =90°,AB =5 cm ,BC =4 cm.动点D 从点A 出发,以每秒1 cm 的速度沿射线AC 运动,求当t 为何值时,△ABD 为等腰三角形.解:在Rt △ABC 中,∠ACB =90°,AB =5 cm ,BC =4 cm ,由勾股定理,得AC =3 cm. 由运动可知AD =t ,且△ABD 是等腰三角形.有三种情况:①若AB =AD ,则t =5;②若BA =BD ,则AD =2AC ,即t =6;③若DA =DB ,则在Rt △BCD 中,CD =t -3,BC =4,BD =t ,即(t -3)2+42=t 2,解得t =256. 综合上述,符合要求的t 值有3个,分别为5,6,256.。
特殊三角形(直角三角形)人教版(含答案).docx
学生做题前请先回答以下问题问题1:问题2:30。
角所对的直角边是直角三角形斜边上的中线等于BC = -AB问题3:已知:如图,在RtA ABC中,ZC=90°, ZA=30°.求证:2.你是怎么思、考的?特殊三角形(直角三角形)人教版一、单选题(共9道,每道□分)2.如图,在RtA ABC中,ZACB=90°, AB=4, CD是AB边上的中线,则CD的长为(A.lB.2C.3D.8答案:B解题思路:在Rt△九BC中,Z.4C5=90°, CD是九8边上的中线, 可知CD = ^AB f ':AB=4, ;・CD=2・故选B.试题难度:三颗星知识点:直角三角形2.如图是屋架设计图的一部分,其中ZA=30°,点D 是斜梁AB 的中点,BC, DE 垂直于横梁 AC, AB=16m,则 DE 的长为( )答案:B解题思路:•:BC, QE 垂直于横梁川C,・•・乙DEA=/BCA=9y,・・・D 为斜梁九8的中点,九8=16,・•・ ZD = ±13=1x16 = 8, 2 2在 Rt △且DE 中,Z.4=30°, AD=8・•・ Z)£=l.W=-x8 = 4(m)・ 2 2故选B.3.如图,在RtA ABC 中,ZACB=90°, D 是AB 的中点,过点C 作EF 〃AB, 若ZBCF=35°,则ZACD 的度数是()A.65°C.45°D.35°难度:三颗星知识点:直角三角形A.2mB.4mC.6mD.8mB.55°答案:B解题思路:\'EFl)AB f・•・乙B=ZBCFT 乙BCF=3T・・・Z5=35°在RtAACB中,仞是斜边•站上的中线/. CD=BD•I ZBCD=/B=35。
•・• Z-4C5=90°・•・ZACD=ZACB-ZBCD=55O故选B・试题难度:三颗星知识点:直角三角形4.如图,在△ABC44, ZA=60°, BE±AC,垂足为E, CF丄AB,垂足为F, BE, CF交于点M.若CM=4, FM=5,则BE 等于()A.14B.13C.12D.9答案:C解题思路:如图,答案:C 解题思路:\'BE1AC, CF1AB, ・・・ZQFW90。
初中数学特殊三角形(等腰三角形、等边三角形、30°直角三角形)常考题及答案解析
特殊三角形(等腰三角形、等边三角形、30°直角三角形)常考题及答案解析1.(2020秋•喀什地区期末)下列说法错误的是()A.等腰三角形的两个底角相等B.等腰三角形的高、中线、角平分线互相重合C.三角形两边的垂直平分线的交点到三个顶点距离相等D.等腰三角形顶角的外角是其底角的2倍2.(2020秋•顺城区期末)已知等腰三角形的周长为17cm,一边长为4cm,则它的腰长为()A.4cm B.6.5cm C.6.5cm或9cm D.4cm或6.5cm 3.(2017•海南)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3B.4C.5D.6 4.(2019•白银)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.5.(2013•凉山州)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是.6.(2020秋•五常市期末)如图,点D、E在△ABC的边BC上,AD=AE,BD=CE.(1)求证:AB=AC;(2)若∠BAC=108°,∠DAE=36°,直接写出图中除△ABC与△ADE外所有的等腰三角形.7.(2019秋•龙岩期末)如图,AB=AC,AE=EC=CD,∠A=60°,若EF=2,则DF=()A.3B.4C.5D.6 8.(2006•烟台)如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()A.25°B.30°C.45°D.60°9.(2020秋•慈溪市期中)已知:如图,AB=BC,∠A=∠C.求证:AD=CD.10.(2014秋•青山区期中)已知:如图,在等边三角形ABC的三边上,分别取点D,E,F,使AD=BE=CF.求证:△DEF是等边三角形.11.(2018秋•六合区期中)如图,△ABC为等边三角形,BD平分∠ABC交AC于点D,DE ∥BC交AB于点E.(1)求证:△ADE是等边三角形.(2)求证:AE=AB.12.(2017•裕华区校级模拟)已知,如图,△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形.13.(2012秋•姜堰市校级期中)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC =α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)若AO=n2+1,AD=n2﹣1,OD=2n(n为大于1的整数),求α的度数;(3)当α为多少度时,△AOD是等腰三角形?14.(2000•内蒙古)如图,已知△ABC为等边三角形,延长BC到D,延长BA到E,并且使AE=BD,连接CE,DE.求证:EC=ED.15.(2020秋•连山区期末)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,∠A=60°,AD=2,则BD=()A.2B.4C.6D.816.(2020秋•肇州县期末)如图,在△ABC中,∠ACB=90°,∠B=15°,DE垂直平分AB,交BC于点E,AE=6cm,则AC=()A.6cm B.5cm C.4cm D.3cm 17.(2020秋•朝阳县期末)如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC 的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长为()A.4.5B.5C.5.5D.618.(2020秋•抚顺县期末)右图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,∠A=30°,则DE长为.19.(2020秋•宽城区期中)如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AD等于()A.10B.8C.6D.420.(2020秋•无棣县期中)如图,在△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上一动点,连接AP,则AP的长度不可能是()A.4B.4.5C.5D.721.(2020秋•云县期中)如图,点D是AB的中点,DE⊥AC,AB=7.2,∠A=30°,则DE=()A.1.8B.2.4C.3.6D.4.822.(2020秋•北碚区校级期中)如图,已知∠AOB=60°,P在边OA上,OP=8,点M,N在边OB上,PM=PN,若MN=5,则ON的长度是()A.9B.6.5C.6D.5.523.(2020秋•天宁区校级期中)如图,△ABC中,∠ACB=90°,∠CAB=60°,动点P 在斜边AB所在的直线m上运动,连结PC,那点P在直线m上运动时,能使图中出现等腰三角形的点P的位置有()A.6个B.5个C.4个D.3个24.(2020秋•连江县期中)如图,等边△ABC中,AB=4,点P在边AB上,PD⊥BC,DE ⊥AC,垂足分别为D、E,设PA=x,若用含x的式子表示AE的长,正确的是()A.2﹣x B.3﹣x C.1D.2+x 25.(2020秋•赣榆区期中)如图,在△ABC中,AB=AC=6,∠BAC=120°,AD是△ABC 的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长是()A.5B.2C.4D.326.(2019秋•勃利县期末)如图,在△ABC中,∠ACB=90°,D是AB上的点,过点D 作DE⊥AB交BC于点F,交AC的延长线于点E,连接CD,∠DCA=∠DAC,则下列结论正确的有()①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.A.①②③B.①②④C.②③④D.①②③④27.(2019春•秦淮区期末)如图,△ABC是等边三角形,P是三角形内任意一点,D、E、F分别是AC、AB、BC边上的三点,且PF∥AB,PD∥BC,PE∥AC.若PF+PD+PE=a,则△ABC的边长为()A.a B.a C.a D.a28.下列说法中,正确的个数是()①三条边都相等的三角形是等边三角形;②有一个角为60°的等腰三角形是等边三角形;③有两个角为60°的三角形是等边三角形;④底角的角平分线所在的直线是这等腰三角形的对称轴,则这个三角形是等边三角形A.1个B.2个C.3个D.4个29.(2020•和平区三模)如图,在边长为2的等边三角形ABC中,D为边BC上一点,且BD=CD.点E,F分别在边AB,AC上,且∠EDF=90°,M为边EF的中点,连接CM交DF于点N.若DF∥AB,则CM的长为()A.B.C.D.30.(2020秋•天心区期中)下列说法错误的是()A.有一个角是60°的等腰三角形是等边三角形B.如果一个三角形有两个角相等,那么这两个角所对的边相等C.等腰三角形的角平分线,中线,高相互重合D.三个角都相等的三角形是等边三角形.31.(2019春•杏花岭区校级期中)关于等边三角形,下列说法中错误的是()A.等边三角形中,各边都相等B.等腰三角形是特殊的等边三角形C.两个角都等于60°的三角形是等边三角形D.有一个角为60°的等腰三角形是等边三角形32.(2019•城步县模拟)一个六边形的六个内角都是120°(如图),连续四条边的长依次为1,3,3,2,则这个六边形的周长是()A.13B.14C.15D.16 33.(2018•柳州一模)如图,在四边形ABCD中,∠A=∠B=60°,∠D=90°,AB=2,则CD长的取值范围是()A.<CD<B.CD>2C.1<CD<2D.0<CD<34.(2018秋•罗庄区期中)如图,以点O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画出射线OB,则∠AOB=()A.30°B.45°C.60°D.90°参考答案与试题解析1.【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】线段、角、相交线与平行线;三角形;推理能力.【分析】根据等腰三角形的性质即可判断A;根据三角形的高、角平分线、中线的定义和等腰三角形的性质即可判断B;根据角平分线的性质即可判断C;根据三角形的外角性质和等腰三角形的性质即可判断D.【解答】解:A.等腰三角形的两底角相等,故本选项不符合题意;B.等腰三角形的两个底角的高、角平分线和中线不一定互相重合,故本选项符合题意;C.过O作OM⊥AB于M,OQ⊥AC于Q,ON⊥BC于N,∵O是∠ABC和∠ACB的角平分线的交点,∴OM=ON,ON=OQ,∴OM=ON=OQ,即三角形的两边的垂直平分线的交点到三个顶点的距离相等,故本选项不符合题意;D.∵AB=AC,∴∠B=∠C,∵∠EAC=∠B+∠C,∴∠EAC=2∠B,即等腰三角形顶角的外角是其底角的2倍,故本选项不符合题意;故选:B.【点评】本题考查了角平分线的性质,等腰三角形的性质,三角形的外角性质等知识点,能灵活运用知识点进行推理是解此题的关键.2.【考点】三角形三边关系;等腰三角形的性质.【专题】等腰三角形与直角三角形.【分析】分两种情况讨论:当4cm为腰长时,当4cm为底边时,分别判断是否符合三角形三边关系即可.【解答】解:①若4cm是腰长,则底边长为:20﹣4﹣4=12(cm),∵4+4<12,不能组成三角形,舍去;②若4cm是底边长,则腰长为:=6.5(cm).则腰长为6.5cm.故选:B.【点评】此题考查等腰三角形的性质与三角形的三边关系.此题难度不大,注意掌握分类讨论思想的应用是解此题的关键.3.【考点】等腰三角形的判定.【专题】三角形.【分析】根据等腰三角形的性质,利用4作为腰或底边长,得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形(AD,AE,AF,AG分别为分割线).故选:B.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.4.【考点】等腰三角形的性质.【专题】等腰三角形与直角三角形.【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解.【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或【点评】本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知∠A的度数,要分∠A是顶角和底角两种情况,以免造成答案的遗漏.5.【考点】非负数的性质:绝对值;非负数的性质:算术平方根;三角形三边关系;等腰三角形的性质.【专题】压轴题;分类讨论.【分析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.【解答】解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:20.【点评】本题考查了等腰三角形的性质,绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.6.【考点】等腰三角形的判定.【专题】几何图形.【分析】(1)首先过点A作AF⊥BC于点F,由AD=AE,根据三线合一的性质,可得DF=EF,又由BD=CE,可得BF=CF,然后由线段垂直平分线的性质,可证得AB=AC.(2)根据等腰三角形的判定解答即可.【解答】证明:(1)过点A作AF⊥BC于点F,∵AD=AE,∴DF=EF,∵BD=CE,∴BF=CF,∴AB=AC.(2)∵∠B=∠BAD,∠C=∠EAC,∠BAE=∠BEA,∠ADC=∠DAC,∴除△ABC与△ADE外所有的等腰三角形为:△ABD、△AEC、△ABE、△ADC,【点评】此题考查了等腰三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.7.【考点】等边三角形的判定与性质.【专题】数形结合;三角形;等腰三角形与直角三角形;运算能力;推理能力.【分析】过点E作EG⊥BC,交BC于点G,先证明△ABC是等边三角形,再证明∠AFE =90°,然后利用等腰三角形的“三线合一”性质及角平分线的性质定理求得EG的长,随后利用含30度角的直角三角形的性质求得DE的长,最后将EF与DE相加即可.【解答】解:如图,过点E作EG⊥BC,交BC于点G∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∴∠AEF=30°,∴∠AFE=90°,即EF⊥AB,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴EG=EF=2,在Rt△DEG中,DE=2EG=4,∴DF=EF+DE=2+4=6;方法二、∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴∠ABE=∠CBE=30°=∠CDE,∴BE=DE,∠BFD=90°,∴BE=2EF=4=DE,∴DF=DE+EF=6;故选:D.【点评】本题考查了等边三角形的判定与性质、等腰三角形的“三线合一”性质及含30度角的直角三角形的性质,熟练掌握相关性质及定理是解题的关键.8.【考点】等边三角形的判定与性质.【分析】先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE=BE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.【解答】解:△ABC沿CD折叠B与E重合,则BC=CE,∵E为AB中点,△ABC是直角三角形,∴CE=BE=AE,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选:B.【点评】考查直角三角形的性质,等边三角形的判定及图形折叠等知识的综合应用能力及推理能力.9.【考点】等腰三角形的判定与性质.【专题】几何图形.【分析】连接AC,根据等边对等角得到∠BAC=∠BCA,因为∠A=∠C,则可以得到∠CAD=∠ACD,根据等角对等边可得到AD=DC.【解答】证明:连接AC,∵AB=BC,∴∠BAC=∠BCA.∵∠BAD=∠BCD,∴∠CAD=∠ACD.∴AD=CD.【点评】重点考查了等腰三角形的判定方法,即:如果一个三角形有两个角相等,那么这两个角所对的边也相等.10.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题.【分析】由△ABC是等边三角形,AD=BE=CF,易证得△ADF≌△BED,即可得DF=DE,同理可得DF=EF,即可证得:△DEF是等边三角形.【解答】证明:∵△ABC是等边三角形,∴AB=BC=AC,∵AD=BE=CF,∴AF=BD,在△ADF和△BED中,,∴△ADF≌△BED(SAS),∴DF=DE,同理DE=EF,∴DE=DF=EF.∴△DEF是等边三角形.【点评】此题考查了等边三角形的判定与性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.11.【考点】平行线的性质;等腰三角形的判定与性质;等边三角形的判定与性质.【专题】几何图形.【分析】(1)根据等边三角形的性质和平行线的性质证明即可.(2)根据等边三角形的性质解答即可.【解答】证明:(1)∵△ABC为等边三角形,∴∠A=∠ABC=∠C=60°.∵DE∥BC,∴∠AED=∠ABC=60°,∠ADE=∠C=60°.∴△ADE是等边三角形.(2)∵△ABC为等边三角形,∴AB=BC=AC.∵BD平分∠ABC,∴AD=AC.∵△ADE是等边三角形,∴AE=AD.∴AE=AB.【点评】此题考查等边三角形的判定和性质,关键是根据等边三角形的性质和平行线的性质解答.12.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题.【分析】根据等边△ABC中AD=BE=CF,证得△ADE≌△BEF≌△CFD即可得出△DEF 是等边三角形.【解答】解:∵△ABC为等边三角形,且AD=BE=CF,∴AE=BF=CD,又∵∠A=∠B=∠C=60°,∴△ADE≌△BEF≌△CFD(SAS),∴DE=EF=FD,∴△DEF是等边三角形.【点评】本题主要考查了等边三角形的判定与性质和全等三角形判定,根据已知得出△ADE≌△BEF≌△CFD是解答此题的关键.13.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】分类讨论.【分析】(1)根据旋转的性质可得CO=CD,∠OCD=60°,根据有一个角是60°的等腰三角形是等边三角形解答;(2)利用勾股定理逆定理判定△AOD是直角三角形,并且∠ADO=90°,从而求出∠ADC=150°,再根据旋转变换只改变图形的位置不改变图形的形状与大小可得α=∠ADC;(3)根据周角为360°用α表示出∠AOD,再根据旋转的性质表示出∠ADO,然后利用三角形的内角和定理表示出∠DAO,再分∠AOD=∠ADO,∠AOD=∠DAO,∠ADO=∠DAO三种情况讨论求解.【解答】解:(1)△COD是等边三角形.理由如下:∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形;(2)∵AD2+OD2=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2=AO2,∴△AOD是直角三角形,且∠ADO=90°,∵△COD是等边三角形,∴∠CDO=60°,∴∠ADC=∠ADO+∠CDO=90°+60°=150°,根据旋转的性质,α=∠ADC=150;(3)∵α=∠ADC,∠CDO=60°,∴∠ADO=α﹣60°,又∵∠AOD=360°﹣110°﹣α﹣60°=190°﹣α,∴∠DAO=180°﹣(190°﹣α)﹣(α﹣60°)=180°﹣190°+α﹣α+60°=50°,∵△AOD是等腰三角形,∴①∠AOD=∠ADO时,190°﹣α=α﹣60°,解得α=125°,②∠AOD=∠DAO时,190°﹣α=50°,解得α=140°,③∠ADO=∠DAO时,α﹣60°=50°,解得α=110°,综上所述,α为125°或140°或110°时,△AOD是等腰三角形.【点评】本题考查了等边三角形的判定与性质,旋转变换只改变图形的位置不改变图形的形状与大小的性质,勾股定理逆定理,等腰三角形的性质,(3)用α表示出△AOD的各个内角是解题的关键,注意要分情况讨论.14.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【专题】证明题;压轴题.【分析】首先延长BD至F,使DF=BC,连接EF,得出△BEF为等边三角形,进而求出△ECB≌△EDF,从而得出EC=DE.【解答】证明:延长BD至F,使DF=BC,连接EF,∵AE=BD,△ABC为等边三角形,∴BE=BF,∠B=60°,∴△BEF为等边三角形,∴∠F=60°,在△ECB和△EDF中∴△ECB≌△EDF(SAS),∴EC=ED.【点评】此题主要考查了等边三角形的性质与判定以及全等三角形的判定等知识,作出辅助线是解决问题的关键.15.【考点】含30度角的直角三角形.【专题】计算题;等腰三角形与直角三角形;运算能力;推理能力.【分析】根据同角的余角相等求出∠BCD=∠A=60°,再根据30°角所对的直角边等于斜边的一半求出AC、AB的长,然后根据BD=AB﹣AD计算即可得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠BCD+∠ACD=90°,∠A+∠ACD=90°,∴∠BCD=∠A=60°,∴∠ACD=∠B=30°,∵AD=2,∴AC=2AD=4,∴AB=2AC=8,∴BD=AB﹣AD=8﹣2=6.故选:C.【点评】本题主要考查了直角三角形30°角所对的直角边等于斜边的一半的性质,同角的余角相等的性质,熟记性质是解题的关键.16.【考点】线段垂直平分线的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形.【分析】根据线段垂直平分线的性质得到EB=EA,根据等腰三角形的性质得到∠EAB=∠B=15°,根据三角形的外角的性质求出∠AEC=30°,根据直角三角形的性质计算.【解答】解:∵DE垂直平分AB,∴EB=EA,∴∠EAB=∠B=15°,∴∠AEC=30°,∴AC=AE=3(cm),故选:D.【点评】本题考查的是线段垂直平分线的性质,直角三角形的性质,在直角三角形中,30°角所对的直角边等于斜边的一半.17.【考点】等腰三角形的性质;含30度角的直角三角形.【分析】根据等腰三角形三线合一的性质可得到AD⊥BC,∠BAD=∠CAD,从而可得到∠BAD=60°,∠ADB=90°,再根据角平分线的性质即可得到∠DAE=∠EAB=30°,从而可推出AD=DF,根据直角三角形30度角的性质即可求得AD的长,即得到了DF 的长.【解答】解:∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,∠BAD=∠CAD,∵∠BAC=120°,∴∠BAD=60°,∠ADB=90°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=30°.∵DF∥AB,∴∠F=∠BAE=30°.∴∠DAF=∠F=30°,∴AD=DF.∵AB=11,∠B=30°,∴AD=5.5,∴DF=5.5故选:C.【点评】本题考查了含30°角的直角三角形,等腰三角形的判定与性质,平行线的性质等知识点,能求出AD=DF是解此题的关键.18.【考点】含30度角的直角三角形.【专题】推理填空题.【分析】根据直角三角形的性质求出BC,根据三角形中位线定理计算即可.【解答】解:∵∠A=30°,BC⊥AC,∴BC=AB=3.7,∵DE⊥AC,BC⊥AC,∴DE∥BC,∵点D是斜梁AB的中点,∴DE=BC=1.85m,故答案为:1.85m.【点评】本题考查的是直角三角形的性质,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.19.【考点】线段垂直平分线的性质;含30度角的直角三角形.【专题】计算题;等腰三角形与直角三角形;运算能力;推理能力.【分析】先由直角三角形的性质求出∠ABC的度数,由AB的垂直平分线交AC于D,交AB于E,垂足为E,可得BD=AD,由∠A=30°可知∠ABD=30°,故可得出∠DBC =30°,根据CD=2可得出BD的长,进而得出AD的长.【解答】解:连接BD,∵在△ABC中,∠C=90°,∠A=30°,∴∠ABC=60°.∵AB的垂直平分线交AC于D,交AB于E,∴AD=BD,DE⊥AB,∴∠ABD=∠A=30°,∴∠DBC=30°,∵CD=2,∴BD=2CD=4,∴AD=4.故选:D.【点评】此题考查了线段垂直平分线的性质以及含30°角的直角三角形的性质.熟练掌握直角三角形的性质是解题的关键.20.【考点】垂线段最短;含30度角的直角三角形.【专题】解直角三角形及其应用;推理能力.【分析】在Rt△ABC中,利用“在直角三角形中,30°角所对的直角边等于斜边的一半”可求出AB的长,由点P是BC边上一动点结合AC,AB的长,即可得出AP长的取值范围,再对照四个选项即可得出结论.【解答】解:在Rt△ABC中,∠C=90°,∠B=30°,AC=3,∴AB=2AC=6.∵点P是BC边上一动点,∴AC≤AP≤AB,即3≤AP≤6.故选:D.【点评】本题考查了含30度角的直角三角形以及垂线段最短,通过解含30度角的直角三角形,求出AB的长是解题的关键.21.【考点】含30度角的直角三角形.【专题】等腰三角形与直角三角形;运算能力.【分析】求出AD的长,再根据含30°角的直角三角形的性质得出DE=AD,即可求出答案.【解答】解:∵点D是AB的中点,AB=7.2,∴AD=AB=3.6,∵DE⊥AC,∴∠DEA=90°,∵∠A=30°,∴DE=AD=1.8,故选:A.【点评】本题考查了含30°角的直角三角形的性质,能根据含30°角的直角三角形的性质得出DE=AD是解此题的关键.22.【考点】等腰三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】过P作PC⊥MN于C,先由等腰三角形的性质得CM=CN=2.5,再由含30°角的直角三角形的性质求出OC的长,然后由OC+CM求出ON的长即可.【解答】解:过P作PC⊥MN于C,如图所示:∵PM=PN,MN=5,∴CM=NC=MN=2.5,在Rt△OPC中,∠AOB=60°,∴∠OPC=30°,∴OC=OP=4,则ON=OC+CM=4+2.5=6.5,故选:B.【点评】本题考查的是含30°角的直角三角形的性质、等腰三角形的性质等知识;熟练掌握含30°角的直角三角形的性质和等腰三角形的性质是解题的关键.23.【考点】三角形内角和定理;等腰三角形的判定;含30度角的直角三角形.【专题】等腰三角形与直角三角形;几何直观.【分析】根据等腰三角形的判定和含30°的直角三角形的性质解答即可.【解答】解:如图所示:以B为圆心,BC长为半径画弧,交直线m于点P4,P2,以A为圆心,AC长为半径画弧,交直线m于点P1,P3,边AC和BC的垂直平分线都交于点P3位置,因此出现等腰三角形的点P的位置有4个,故选:C.【点评】此题考查等腰三角形的判定,关键是根据等腰三角形的判定和含30°的直角三角形的性质解答.24.【考点】列代数式;等边三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】利用等边三角形的性质可得AB=BC=AC=4,∠B=∠C=60°,再利用含30度角的直角三角形的性质进行计算即可.【解答】解:∵△ABC是等边三角形,∴AB=BC=AC=4,∠B=∠C=60°,∵PD⊥BC,DE⊥AC,∴BD=PB,CE=CD,∵P A=x,∴BP=4﹣x,∴BD=PB=2﹣x,∴CD=4﹣(2﹣x)=2+x,∴CE=1+x,∴AE=4﹣(1+x)=3﹣x,故选:B.【点评】此题主要考查了等边三角形的性质和含30度角的直角三角形的性质,关键是掌握在直角三角形中,30°角所对的直角边等于斜边的一半.25.【考点】平行线的性质;等腰三角形的性质;含30度角的直角三角形.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等腰三角形三线合一的性质可得到AD⊥BC,∠BAD=∠CAD,从而可得到∠BAD=60°,∠ADB=90°,再根据角平分线的性质即可得到∠DAE=∠EAB=30°,从而可推出AD=DF,根据直角三角形30度角的性质即可求得AD的长,即得到了DF 的长.【解答】解:∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,∠BAD=∠CAD,∵∠BAC=120°,∴∠BAD=60°,∠ADB=90°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAF=∠F=30°,∴AD=DF,∵AB=6,∠B=30°,∴AD=AB=3,∴DF=3,故选:D.【点评】本题考查了含30°角的直角三角形,等腰三角形的判定与性质,平行线的性质等知识点,能求出AD=DF是解此题的关键.26.【考点】等边三角形的判定与性质.【专题】等腰三角形与直角三角形.【分析】由在△ABC中,∠ACB=90°,DE⊥AB,易证得∠DCA=∠DAC,继而可得①∠DCB=∠B正确;由①可证得AD=BD=CD,即可得②CD=AB正确;易得③△ADC是等腰三角形,但不能证得△ADC是等边三角形;由若∠E=30°,易求得∠FDC=∠FCD=30°,则可证得DF=CF,继而证得DE=EF+CF.【解答】解:∵在△ABC中,∠ACB=90°,DE⊥AB,∴∠ADE=∠ACB=90°,∴∠A+∠B=90°,∠ACD+∠DCB=90°,∵∠DCA=∠DAC,∴AD=CD,∠DCB=∠B;故①正确;∴CD=BD,∵AD=CD,∴CD=AB;故②正确;∠DCA=∠DAC,∴AD=CD,但不能判定△ADC是等边三角形;故③错误;∵若∠E=30°,∴∠A=60°,∴△ACD是等边三角形,∴∠ADC=60°,∵∠ADE=∠ACB=90°,∴∠EDC=∠BCD=∠B=30°,∴CF=DF,∴DE=EF+DF=EF+CF.故④正确.故选:B.【点评】此题考查了等腰三角形的性质与判定以及直角三角形的性质.注意证得D是AB 的中点是解此题的关键.27.【考点】平行线的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;多边形与平行四边形.【分析】延长EP交BC于点G,延长FP交AC于点H,证出四边形AEPH、四边形PDCG 均为平行四边形,得出PE=AH,PG=CD.证出△FGP和△HPD也是等边三角形,得出PF=PG=CD,PD=DH,得出PE+PD+PF=AH+DH+CD=AC即可.【解答】解:延长EP交BC于点G,延长FP交AC于点H,如图所示:∵PF∥AB,PD∥BC,PE∥AC,∴四边形AEPH、四边形PDCG均为平行四边形,∴PE=AH,PG=CD.又∵△ABC为等边三角形,∴△FGP和△HPD也是等边三角形,∴PF=PG=CD,PD=DH,∴PE+PD+PF=AH+DH+CD=AC,∴AC=a;故选:D.【点评】本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.28.【考点】等腰三角形的判定与性质;等边三角形的判定与性质.【专题】三角形.【分析】根据等边三角形的判定、轴对称的性质即可判断;【解答】解:①三条边都相等的三角形是等边三角形;正确.②有一个角为60°的等腰三角形是等边三角形;正确.③有两个角为60°的三角形是等边三角形;正确.④底角的角平分线所在的直线是这等腰三角形的对称轴,则这个三角形是等边三角形;正确.故选:D.【点评】本题考查等边三角形的判定和性质、等腰三角形的判定和性质、轴对称等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.29.【考点】平行线的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等边三角形边长为2,在Rt△BDE中求得DE的长,再根据CM垂直平分DF,在Rt△CDN中求得CN,最后根据线段和可得CM的长.【解答】解:∵等边三角形边长为2,BD=CD,∴BD=,CD=,∵等边三角形ABC中,DF∥AB,∴∠FDC=∠B=60°,∵∠EDF=90°,∴∠BDE=30°,∴DE⊥BE,∴BE=BD=,DE=,如图,连接DM,则Rt△DEF中,DM=EF=FM,∵∠FDC=∠FCD=60°,∴△CDF是等边三角形,∴CD=CF=,∴CM垂直平分DF,∴∠DCN=30°,DN=FN,∴Rt△CDN中,DN=,CN=,∵M为EF的中点,∴MN=DE=,∴CM=CN+MN=+=,故选:C.【点评】本题主要考查了三角形的综合应用,解决问题的关键是掌握等边三角形的性质、平行线的性质、线段垂直平分线的判定等.熟练掌握这些性质是解题的关键.30.【考点】等腰三角形的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.【分析】根据等腰三角形的性质和等边三角形的性质和判定逐个进行分析判断,即可得到答案.【解答】解:A.有一个角为60°的等腰三角形是等边三角形,故本选项不合题意;B.如果一个三角形有两个角相等,那么这两个角所对的边相等,故本选项不合题意;C.等腰三角形顶角的角平分线,底边的中线,高相互重合,说法错误,故本选项符合题意;D.三个角都相等的三角形是等边三角形,故本选项不合题意;故选:C.【点评】本题考查了等边三角形的判定和性质,等腰三角形的性质,熟练掌握等边三角形的判定和性质定理是解题的关键.31.【考点】等腰三角形的性质;等边三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.。
中考复习 特殊三角形(含答案)-
特殊三角形◆考点链接1.等腰(等边)三角形的判定定理与性质定理.2.直角三角形的判定与性质.3.勾股定理的应用.◆典例精析【例题1】判断题:(正确的画“∨”,错误的画“×”)(1)若三角形中最大的内角是60°,那么这个三角形是等边三角形;()(2)等腰三角形一腰上的中线把这个等腰三角形分成两个等腰三角形;()(3)等腰三角形两腰上的高相等;()(4)等边三角形的三条高相等;()(5)等腰三角形的角平分线垂直且平分对边;()(6)顶角相等的两个等腰三角形全等.()评析:本题主要考查等腰三角形的性质与判定.(1)三角形有一角为60°时,另两角和是120°,若其中之一小于60°,必有另一个大于60°,与最大角为60°相矛盾.(2)等腰三角形一腰上的中线不一定等于腰长的一半.(3)(4)应用等腰(等边)三角形的性质,通过三角形面积的不同表示方法可证明.(5)当等腰三角形腰和底不相等时,底角的平分线不垂直平分对边.(6)•和等腰三角形底边平行的直线截得的等腰三角形与原三角形顶角相等,但不全等.答案:(1)∨ (2)× (3)∨ (4)∨ (5)× (6)×评析:有一个角是60°的等腰三角形是等边三角形,等腰三角形的“三线合一”在等边三角形中就都成立,这是因为在等边三角形中,每个顶点都可以视作等腰三角形的顶点.【例题2】(1)已知:a、b、c为△ABC三边,且满足a2+b2+c2+50=60a+8b+10c,试判断△ABC的形状.(2)如图,△ABC中,CD⊥AB,垂中为D点,且CD2=AD·BD,求证:△ABC 为直角三角形.解题思路:由三角形的三边的数量关系来判断三角形是否是直角三角形,或用于构造直角三角形证明两直线垂直,一般与勾股定理和代数式、方程相结合,综合运用.特别是由一个等式求三角形的三边长时,往往把等式化为A2+B2+C2=0的形式,再由A=0,B=0,C=0,求得三角形三边的长,再用于计算或判断.(1)解:∵a2+b2+c2+50=6a+8b+10c,∴a2-6a+9+b2-8b+16+c2-10c+25=0,∴(a-3)2+(b-4)2+(c-5)2=0,∴a-3=0,b-4=0,c-5=0,∴a=3,b=4,c=5,∴a2+b2=c2,∴△ABC为直角三角形.(2)证明:∵CD⊥AB,∴AD2+DC2=AC2,DB2+DC2=BC2.∴AC2+BC2=AD2+DB2+2DC2,∵DC2=AD·DB,∴AC2+BC2=AD2+DB2+2AD·DB=(AD+DB)2=AB2.∴△ABC为直角三角形.评析:(1)对于原等式关键处是化为A2+B2+C2=0的形式,对常数项拆项的依据是一次项系数的一半的平方.(2)本题的解答在于反复应用勾股定理及其逆定理,•先分别在Rt△ACD和Rt△BCD中使用勾股定理,再依据已知条件,进而求得A C2+BC2=AB2,•利用勾股定理的逆定理判定△ABC为直角三角形.【例题3】(北京)如图,一根长2a的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,设木棍的中点为P,若木棍A端沿墙下滑,且B端沿地面向右滑行.(1)请判断木棍滑动的过程中,点P到点O的距离是否变化,并简述理由.(2)在木棍滑动的过程中,当滑动到什么位置时,△AOB的面积最大?简述理由,并求出面积的最大值.解题思路:(1)木棍在滑动过程中,OP始终是Rt△AOB斜边中线,故为斜边AB•的一半,而AB的长为定长,所以OP不变.(2)木棍在滑动的过程中,斜边上的高在发生变化,因为AB为定值,当高最大时,△AOB的面积为最大,所以当OP⊥AB(即OA=OB)•时,•△AOB面积最大.解:(1)不变.理由:在直角三角形中,因为斜边AB•的长不变,•由性质有斜边中线OP长不变.(2)当△AOB的斜边AB上的高h等于中线OP时,△AOB的面积最大,如图,若h与OP 不相等,则总有h ,故根据三角形面积公式,有 h 与 OP 相等时,△ AOB 的面积最大.此时,S△AOB=AB·h=×2a·a=a2.所以△AOB的面积最大值为a2.评析:(1)在变化过程中,要抓住不变量,建立起所求量与不变量的关系.(2)要求面积的最大值转化为三角形底不变,高是变量,即找出高的变化的最大值即得.◆探究实践【问题1】已知△ABC的两边AB、AC长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5.(1)k为何值时,△ABC是以BC为斜边的直角三角形;(2)k为何值时,△ABC是等腰三角形,并求△ABC的周长.解题思路:(1)用根与系数的关系、勾股定理建立方程求解,•再用判别式和根与系数的关系检验.(2)用求根公式和等腰三角形的性质求解.解:(1)根据一元二次方程根与系数的关系和勾股定理,可列方程组:∵AC2+AB2=(AC+AB)2-2AC·AB.∴25=(2k+3)2-2(k2+3k+2),∴k1=-5,k2=2.当k=-5时,方程的两根为负值,不合题意,舍去.∴k=2,△ABC是以BC为斜边的直角三角形.(2)∵△=(2k+3)2-4(k2+3k+2)=1>0,方程有两个不相等的实数根,∴AC≠AB.当AB=BC或AC=BC时,将x=5代入方程x2-(2k+3)x+k2+3k+2=0,k=3,k=4.k=3时,方程为x2-9x+20=0,x1=4,x2=5.△ABC的周长为14.k=4时,方程为x2-11x+30=0,x1=5,x2=6.△ABC的周长为16.评析:这是一道综合题,涉及知识较多,一元二次方程的解法,一元二次方程根与系数关系,根的判别式,勾股定理,因为没指明等腰三角形的底和腰,不要漏解.另外,求解以后要检验,如三角形的边不能为负值,那么方程的解为负值即不合题意舍去,再如,求出的三边是否满足三角形三边之间的关系定理,不满足的也要舍去.【问题2】如下左图,图①是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边的长为c.图②是以c为直角边的等腰直角三角形,•请你开动脑筋将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图,写出它是什么图形;(1、用单纯形法求解,并回答下列问题。
2024年中考数学复习 三角形中的特殊模型-平分平行(射影)构等腰、角平分线第二定理模型(原卷+答案
三角形中的特殊模型-平分平行(射影)构等腰、角平分线第二定理模型角平分线在中考数学中都占据着重要的地位,角平分线常作为压轴题中的常考知识点,需要掌握其各大模型及相应的辅助线作法,且辅助线是大部分学生学习几何内容中的弱点,,本专题就角平分线的非全等类模型作相应的总结,需学生反复掌握。
平分平行(射影)构等腰模型、角平行线第二定理模型(内角平分线定理和外角平分线定理模型)平分平行(射影)构等腰1)角平分线加平行线必出等腰三角形.模型分析:由平行线得到内错角相等,由角平分线得到相等的角,等量代换进行解题.平行线、角平分线及等腰,任意由其中两个条件都可以得出第三个。
(简称:“知二求一”,在以后还会遇到很多类似总结)。
平行四边形中的翻折问题就常出现该类模型。
图1图2图3条件:如图1,OO'平分∠MON,过OO'的一点P作PQ⎳ON. 结论:△OPQ是等腰三角形。
条件:如图2,△ABC中,BD是∠ABC的角平分线,DE∥BC。
结论:△BDE是等腰三角形。
条件:如图3,在△ABC中,BO平分∠ABC,CO平分∠ACB,过点O作BC的平行线与AB,AC分别相交于点M,N.结论:△BOM、△CON都是等腰三角形。
2)角平分线加射影模型必出等腰三角形.→图4条件:如图4,BE平分∠CBA,∠ACB=∠CDA=90°. 结论:三角形CEF是等腰三角形。
1(2023·浙江·八年级假期作业)如图,已知∠AOB,以点O为圆心,以任意长为半径画弧,与OA、OB分别于点C、D,再分别以点C、D为圆心,以大于12CD为半径画弧,两弧相交于点E,过OE上一点M作MN∥OA,与OB相交于点N,∠MOB=50°,则∠AOM=.2(2023·浙江·八年级期中)如图,已知△ABC的两边AB=5,AC=8,BO、CO分别平分∠ABC、∠ACB,过点O作DE∥BC,则△ADE的周长等于.3(2023·广东·八年级期末)如图,▱ABCD中,AB=3cm,BC=5cm,BE平分∠ABC交AD于E点,CF 平分∠BCD交AD于F点,则EF的长为cm.4(2023.江苏八年级期中)如图,已知:在△ABC中,∠BAC=90°,AD⊥BC于D,∠BCA的角平分线交AD与F,交AB于E,FG⎳BC交AB于G.AE=4cm,AB=12cm,则BG=,GE=.角平行线第二定理(内角平分线定理和外角平分线定理)模型1)内角平分线定理图1图2图3条件:如图1,在△ABC中,若AD是∠BAC的平分线。
2023年九年级数学中考专题:二次函数综合压轴题(特殊三角形问题)(含简单答案)
(1)点A的坐标为;
(2)若射线 平分 ,求二次函数的表达式;
(3)在(2)的条件下,如果点 是线段 (含A、B)上一个动点,过点D作x轴的垂线,分别交直线 和抛物线于E、F两点,当m为何值时, 为直角三角形?
②在①的条件下,点N在抛物线对称轴上,当∠MNC=45°时,求出满足条件的所有点N的坐标.
14.如图1,抛物线y=ax2+bx+3过点A(﹣1,0),点B(3,0),与y轴交于点C.M是抛物线任意一点,过点M作直线l⊥x轴,交x轴于点E,设M的横坐标为m(0<m<3).
(1)求抛物线的解析式及tan∠OBC的值;
(2)当m=1时,P是直线l上的点且在第一象限内,若△ACP是直角三角形时,求点P的坐标;
(3)如图2,连接BC,连接AM交y轴于点N,交BC于点D,连接BM,设△BDM的面积为S1,△CDN的面积为S2,求S1﹣S2的最大值.
15.如图,抛物线 与 轴交于 , 两点,与 轴交于点 ,已知抛物线的对称轴是直线 , . 为抛物线上的一个动点,过点 作 轴于点 ,交直线 于点 .
(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求直线 的解析式.
6.已知抛物线 经过 、 两点,O为坐标原点,抛物线交正方形 的边 于点E,点M为射线 上一动点,连接 ,交 于点F.
(1)求b和c的值及点C的坐标;
(2)求证∶
(3)是否存在点M,使 为等腰三角形?若不存在,请说明理由;若存在,求ME的长.
(1)求 , 的长(结果均用含 的代数式表示).
2023年九年级数学中考专题:二次函数综合压轴题(特殊三角形问题)(含简略答案)
(1)求直线 的解析式;
(2)如图1,点 是直线 下方抛物线上的一点,连接 ,当 的面积最大时,连接 ,设 分别是线段 上的点,且 ,求四边形 的面积;
(3)如图2,点 是线段 的中点,将抛物线 沿 轴正方向平移得到新抛物线 , 经过点 , 的顶点为 ,在新抛物线 的对称轴上,是否存在点 ,使得 为等腰三角形?若存在,写出点 的坐标;若不存在,请说明理由.
(3)若点Q是上述抛物线上一点,且满足∠ABQ=2∠ABC,求满足条件的点Q的坐标.
11.如图,在平面直角坐标系中,已知抛物线 与直线 相交于 , 两点,其中 , .
(1)求该抛物线的函数表达式;
(2)点 为直线 下方抛物线上的任意一点,连接 , ,求 面积的最大值;
(3)在抛物线对称轴上找一点 ,使点 , , 三点构成的图形是直角三角形,求点 的坐标.
(2)当△PBC的面积最大时,求P点的坐标.
(3)在X轴上是否存在点N,使△NBC是等腰三角形,若存在直接写出所有符合条件的点N的坐标,若不存在说明理由
8.如图,直线 交 轴于点 ,交 轴于点B,抛物线 的顶点为 ,且经过点 .
(1)求该抛物线所对应的函数表达式;
(2)点 是抛物线上的点, 是以 为直角边的直角三角形,请直接写出点 的坐标.
13.如图,抛物线 经过 , 两点,且与 轴交于点 ,点 是抛物线的顶点,抛物线的对称轴 交 轴于点 ,连接 .
(1)求经过 三点的抛物线的函数表达式;
(2)点 在该抛物线的对称轴上,若 是以 为直角边的直角三角形,求点 的坐标;
(3)若 为 的中点,过点 作 轴于点 , 为抛物线上一动点, 为 轴上一动点, 为直线 上一动点,当以 、 、 、 为顶点的四边形是正方形时,请求出点 的坐标.
中考数学总复习知识点讲解、练习:28特殊三角形(B)及答案
中考总复习:特殊三角形—知识讲解(提高)【考纲要求】【高清课堂:等腰三角形与直角三角形考纲要求】1.了解等腰三角形、等边三角形、直角三角形的概念,会识别这三种图形;理解等腰三角形、等边三角形、直角三角形的性质和判定.2. 能用等腰三角形、等边三角形、直角三角形的性质和判定解决简单问题.3. 会运用等腰三角形、等边三角形、直角三角形的知识解决有关问题.【知识网络】【考点梳理】考点一、等腰三角形1.等腰三角形:有两条边相等的三角形叫做等腰三角形.2.性质:(1)具有三角形的一切性质;(2)两底角相等(等边对等角);(3)顶角的平分线,底边中线,底边上的高互相重合(三线合一);(4)等边三角形的各角都相等,且都等于60°.要点诠释:等边三角形中高线,中线,角平分线三线合一,共有三条.3.判定:(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);(2)三个角都相等的三角形是等边三角形;(3)有一个角为60°的等腰三角形是等边三角形.要点诠释:(1)腰、底、顶角、底角是等腰三角形特有的概念;(2)等边三角形是特殊的等腰三角形.考点二、直角三角形1.直角三角形:有一个角是直角的三角形叫做直角三角形.2.性质:(1)直角三角形中两锐角互余;(2)直角三角形中,30°锐角所对的直角边等于斜边的一半;(3)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°;(4)勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方;(5)勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形;(6)直角三角形中,斜边上的中线等于斜边的一半.要点诠释:(1)直角三角形中,S Rt△ABC=ch=ab,其中a、b为两直角边,c为斜边,h为斜边上的高;(2)圆内接三角形,当一条边为直径时,该三角形是直角三角形.3.判定:(1)两内角互余的三角形是直角三角形;(2)一条边上的中线等于该边的一半,则这条边所对的角是直角,这个三角形是直角三角形;(3)如果三角形两边的平方和等于第三边的平方,则这个三角形是直角三角形,第三边为斜边.【典型例题】类型一、等腰三角形1.六边形ABCDEF的每个内角都为120°,且AB=1,BC=9,CD=6,DE=8.求六边形ABCDEF 的周长.【思路点拨】考虑到每个内角为120°,则每个外角均为60°,可通过构造等边三角形来求边长及面积.【答案与解析】延长BC、ED交于M,DE、AF交于N,F A、CB交于P.∵∠EDC=∠DCB=120°∴∠DCM=∠CDM=60°,∴△MDC为等边三角形∠M=60°,同理△BAP,△EFN均为等边三角形.∠M=∠N=60°∴△MNP为等边三角形,MD=MC=6,PB=P A=1,NE=NF=EF,MP=6+9+1=16=MN=NP,EF=NF=NE=MN-ME=16-(6+8)=2.F A=NP-NF-P A=16-1-2=13,∴周长为1+9+6+8+2+13=39.【总结升华】考点是多边形外角和内角的关系.举一反三:【变式】把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是________.【答案】.2.已知: 如图, 菱形ABCD中, E、F分别是CB、CD上的点,BE=DF.(1)求证:AE=AF.(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.【思路点拨】菱形的定义和性质.【答案与解析】(1)∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,又∵BE=DF,∴≌.∴AE=AF.(2)连接AC, ∵AE垂直平分BC,AF垂直平分CD,∴AB=AC=AD,∵AB=BC=CD=DA ,∴△ABC和△ACD都是等边三角形.∴, .∴.又∵AE=AF∴是等边三角形.【总结升华】此题涉及到三角形全等的判定与性质,等边三角形的判定与性质.举一反三:【高清课堂:等腰三角形与直角三角形例4】【变式】如图,△ABC为等边三角形,延长BC到D,延长BA到E,使AE=BD,连接CE、DE. 求证:CE=DE.【答案】延长BD到F,使DF=BC,连接EF,∵等边△ABC,∴AB=BC=AC,∠B=60.∵BF=BD+DF,BE=AB+AE,AE=BD,BC=DF,∴BF=BE,∴等边△BEF,∴EF=BE,∠F=∠B,∴△BCE≌△FDE(SAS).∴CE=DE.类型二、直角三角形3.△ABC和△ECD都是等腰直角三角形,,D为AB边上一点.求证:(1)△ACE≌△BCD;(2).【思路点拨】判定两个三角形全等时,首先要根据条件判断运用哪个判定定理.【答案与解析】(1) ∵,∴,即.∵,∴△BCD≌△ACE.(2) ∵,∴.∵△BCD≌△ACE,∴,∴.∴.【总结升华】该题涉及到的知识点有全等三角形的判定及勾股定理.4.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE,AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.【思路点拨】△ACD和△BCE都是等腰直角三角形,为证明全等提供了等线段的条件.【答案与解析】猜测AE=BD,AE⊥BD.理由如下:∵∠ACD=∠BCE=90°,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB.∵△ACD和△BCE都是等腰直角三角形,∴AC=CD,CE=CB.∴△ACE≌△DCB(SAS).∴AE=BD,∠CAE=∠CDB.∵∠AFC=∠DFH,∴∠DHF=∠ACD=90°,∴AE⊥BD.【总结升华】两条线段的关系包括数量关系和位置关系两种.举一反三:【变式】.以等腰三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,……,如此作下去,若OA=OB=1,则第n个等腰直角三角形的面积S n=________.【答案】.类型三、综合运用5 .(2019•牡丹江)如图①,△ABC 中.AB =AC ,P 为底边BC 上一点,PE ⊥AB ,PF ⊥AC ,CH ⊥AB ,垂足分别为E 、F 、H .易证PE +PF =CH .证明过程如下:如图①,连接AP .∵PE ⊥AB ,PF ⊥AC ,CH ⊥AB , ∴ABP S △=12AB •PE ,ACP S △=12AC •PF ,ABC S △=12AB •CH . 又∵ABP ACP ABC S S S +=△△△, ∴12AB •PE +12AC •PF =12AB •CH .∵AB =AC ,∴PE +PF =CH . (1)如图②,P 为BC 延长线上的点时,其它条件不变,PE 、PF 、CH 又有怎样的数量关系?请写出你的猜想,并加以证明: (2)填空:若∠A =30°,△ABC 的面积为49,点P 在直线BC 上,且P 到直线AC 的距离为PF ,当PF =3时,则AB 边上的高CH =______.点P 到AB 边的距离PE =________.【思路点拨】运用面积证明可使问题简便,(2)中分情况讨论是解题的关键. 【答案与解析】(1)如图②,PE =PF +CH .证明如下: ∵PE ⊥AB ,PF ⊥AC ,CH ⊥AB ,∴ABP S △=12AB •PE ,ACP S △=12AC •PF ,ABC S △=12AB •CH , ∵ABP S △=ACP S △+ABC S △, ∴12AB •PE =12AC •PF +12AB •CH , 又∵AB =AC , ∴PE =PF +CH ;(2)∵在△ACH 中,∠A =30°,∴AC =2CH .∵ABC S △=12AB •CH ,AB =AC , ∴12×2CH •CH =49, ∴CH =7. 分两种情况:①P 为底边BC 上一点,如图①. ∵PE +PF =CH ,∴PE =CH -PF =7-3=4;②P 为BC 延长线上的点时,如图②. ∵PE =PF +CH , ∴PE =3+7=10.故答案为7;4或10.【总结升华】本题考查了等腰三角形的性质与三角形的面积,难度适中.6.在△ABC中,AC =BC ,,点D 为AC 的中点.(1)如图1,E 为线段DC 上任意一点,将线段DE 绕点D 逆时针旋转90°得到线段DF ,连结CF ,过点F 作 ,交直线AB 于点H .判断FH 与FC 的数量关系并加以证明. (2)如图2,若E 为线段DC 的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.【思路点拨】根据条件判断FH =FC ,要证FH =FC 一般就要证三角形全等.【答案与解析】(1)FH 与FC 的数量关系是:.延长交于点G ,由题意,知 ∠EDF =∠ACB =90°,DE =DF . ∴DG ∥CB .∵点D 为AC 的中点, ∴点G 为AB 的中点,且.∴DG 为的中位线. ∴.∵AC =BC , ∴DC =DG .∴DC - DE =DG - DF . 即EC =FG . ∵∠EDF =90°,, ∴∠1+∠CFD =90°,∠2+∠CFD =90°. ∴∠1 =∠2. ∵与都是等腰直角三角形, ∴∠DEF =∠DGA = 45°. ∴∠CEF =∠FGH = 135°. ∴△CEF ≌△FGH . ∴ FH =FC .(2)FH 与FC 仍然相等.【总结升华】对于特殊三角形的判定及性质要记住并能灵活运用,注重积累解题思路和运用数学思想和方法解决问题的能力和培养. 举一反三:【高清课堂:等腰三角形与直角三角形 例7】【变式】如图, △ABC 和△CDE 均为等腰直角三角形,点B ,C ,D 在一条直线上,点M 是AE 的中点,下列结论:①tan ∠AEC =; ②S ⊿ABC +S ⊿CDE ≥S ⊿ACE ; ③BM ⊥DM ;④BM =DM .正确结论的个数是( )A .1个 B .2个 C .3个 D .4个CDBC【答案】D.中考总复习:全等三角形—巩固练习(提高)【巩固练习】一、选择题1.已知等边△ABC的边长为a,则它的面积是()A.a2B.a2 C.a2D.a22.在四边形ABCD中,对角线AC与BD相交于点E,若AC平分∠DAB,AB=AE,AC=AD.那么在下列四个结论中:(1)AC⊥BD;(2)BC=DE;(3)∠DBC=12∠DAB;(4)△ABE是正三角形,其中正确的是()A.(1)和(2)B.(2)和(3)C.(3)和(4)D.(1)和(4)3.如图,等腰三角形ABC中,∠BAC=90°,在底边BC上截取BD=AB,过D作DE⊥BC交AC于E,连接AD,则图中等腰三角形的个数是()A.1 B.2 C.3 D.44.如图,三角形纸片ABC中,∠B=2∠C,把三角形纸片沿直线AD折叠,点B落在AC边上的E处,那么下列等式成立的是()A.AC=AD+BD B.AC=AB+BD C.AC=AD+CD D.AC=AB+ CD5.(2019•镇江)边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为()A.511()32a⨯B.511()23a⨯C.611()32a⨯D. 611()23a⨯6. 用含30°角的两块同样大小的直角三角板拼图形,下列四种图形:①平行四边形,②菱形,③矩形,④直角梯形,其中可以被拼成的图形是()A.①②B.①③C.③④D.①②③二、填空题MEDCBA7.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的有______________(把你认为正确的序号都填上).8.如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点在小量角器上对应的度数为,那么在大量角器上对应的度数为_____(只需写出~的角度).9. 若直角三角形两直角边的和为3,则斜边的长为.10.如图,已知正方形ABCD的边长为2,△BPC是等边三角形,则△CDP的面积是_________;△BPD 的面积是_________.11.如图,P是正三角形ABC内的一点,且P A=6,PB=8,PC=10.若将△P AC绕点A逆时针旋转后,得到△P′AB,则点P与点P′ 之间的距离为_________,∠APB=_________.12..以等腰三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,……,如此作下去,若OA=OB=1,则第n个等腰直角三角形的面积S n=________.三、解答题13. 已知:在△ABC中,∠ABC=90°,点E在直线AB上,ED与直线AC垂直,垂足为D,且点M为EC中点,连接BM,DM.(1)如图1,若点E在线段AB上,探究线段BM与DM及∠BMD与∠BCD所满足的数量关系,并直接写出你得到的结论;(2)如图2,若点E在BA延长线上,你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明;(3)若点E在AB延长线上,请你根据条件画出相应的图形,并直接写出线段BM与DM及∠BMD 与∠BCD所满足的数量关系.14. (1) 如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°.求证:BE=CF.图1(2) 如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°, EF=4.求GH的长.图2(3) 已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4.直接写出下列两题的答案:①如图3,矩形ABCD由2个全等的正方形组成,求GH的长;②如图4,矩形ABCD由n个全等的正方形组成,求GH的长(用n的代数式表示).图3图415.①如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.证明:在边AB上截取AE=MC,连ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠MAB=∠MAE.(下面请你完成余下的证明过程)②若将①中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.③若将①中的“正方形ABCD”改为“正边形ABCD…X”,请你做出猜想:当∠AMN=_____________°时,结论AM=MN仍然成立.(直接写出答案,不需要证明)16.如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.⑴求证:△AMB≌△ENB;⑵①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;⑶当AM+BM+CM的最小值为时,求正方形的边长.【答案与解析】一、选择题1.【答案】D .2.【答案】B .【解析】此题采取排除法做.(1)AB =AE ,所以△ABE 是等腰的,等腰三角形底角∠AEB 不可能90°,所以AC ⊥BD 不成立.排除A ,D ;(2)∵AC 平分∠DAB ,AB =AE ,AC =AD .∴△DAE ≌△CAB ,∴BC =DE 成立,排除C .3.【答案】D .【解析】三角形ABC 是等腰三角形,且∠BAC =90°,所以∠B =∠C =45°,又DE ⊥BC ,所以∠DEC =∠C =45°,所以△EDC 是等腰三角形,BD =AB ,所以△ABD 是等腰三角形,∠BAD =∠BDA ,而∠EAD =90°-∠BAD ,∠EDA =90°-∠BDA ,所以∠EAD =∠EDA ,所以△EAD 是等腰三角形,因此图中等腰三角形共4个.4.【答案】B .【解析】根据题意证得AB =AE ,BD =DE ,DE =EC .据此可以对以下选项进行一一判定.选B .5.【答案】A .6.【答案】B .【解析】 当把完全重合的含有30°角的两块三角板拼成的图形有三种情况:(1)当把60度角对的边重合,且两个直角的顶角也重合时,所成的图形是等边三角形;(2)当把30度角对的边重合,且两个直角的顶角也重合时,所成的图形是等腰三角形;(3)当斜边重合,且一个三角形的30度角的顶点与另一个三角形60度角的顶点重合时,所成的图形是矩形,矩形也是平行四边形.选B二、填空题 7.【答案】①②③⑤.【解析】提示:证△ACD ≌△BCE , △ACP ≌△BCQ .8.【答案】50°.9.【解析】设直角边为a ,b ,斜边为c ,则a +b =3,222a b c +=,1122ab c =⨯.10.【答案】1,.【解析】∵△BPC 是等边三角形,∴∠PCD =30°做PE ⊥CD ,得PE =1,即△CDP 的面积是=12×2×1=1; 根据即可推得BCD BPD BPC PCD S S S S +=+V V V V .11.【答案】6 ,150°.12.【答案】. 三、解答题13.【答案与解析】∴∠BEC=∠EBM,∠MCD=∠MDC,∴∠BEM+∠MCD=∠BAC=90°-∠BCD,∴∠BMD=180°-(∠BMC+∠DME),=180°-2(∠BEM+∠MCD)=180°-2(90°-∠BCD)=2∠BCD,即∠BMD=2∠BCD.(3)所画图形如图所示:图1中有BM=DM,∠BMD=2∠BCD;图2中∠BCD不存在,有BM=DM;图3中有BM=DM,∠BMD=360°-2∠BCD.解法同(2).14.【答案与解析】(1) 证明:如图1,∵四边形ABCD为正方形,∴AB=BC,∠ABC=∠BCD=90°,∴∠EAB+∠AEB=90°.∵∠EOB=∠AOF=90°,∴∠FBC+∠AEB=90°,∴∠EAB=∠FBC,∴△ABE≌△BCF,∴BE=CF.(2) 解:如图2,过点A作AM//GH交BC于M,过点B作BN//EF交CD于N,AM与BN交于点O/,则四边形AMHG和四边形BNFE均为平行四边形,∴EF=BN,GH=AM,∵∠FOH=90°, AM//GH,EF//BN, ∴∠NO/A=90°,故由(1)得, △ABM≌△BCN,∴AM=BN,∴GH=EF=4.(3) ① 8.② 4n.15.【答案与解析】(1)∵AE=MC,∴BE=BM, ∴∠BEM=∠EMB=45°,∴∠AEM=1355°,∵CN平分∠DCP,∴∠PCN=45°,∴∠AEM=∠MCN=135°在△AEM和△MCN中:∵∴△AEM≌△MCN,∴AM=MN(2)仍然成立.在边AB上截取AE=MC,连接ME∵△ABC是等边三角形,∴AB=BC,∠B=∠ACB=60°,∴∠ACP=120°.∵AE=MC,∴BE=BM∴∠BEM=∠EMB=60°∴∠AEM=120°.∵CN平分∠ACP,∴∠PCN=60°,∴∠AEM=∠MCN=120°∵∠CMN=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠BAM∴△AEM≌△MCN,∴AM=MN(3)16.【答案与解析】⑴∵△ABE是等边三角形,∴BA=BE,∠ABE=60°.∵∠MBN=60°,∴∠MBN-∠ABN=∠ABE-∠ABN.即∠BMA=∠NBE.又∵MB=NB,∴△AMB≌△ENB(SAS).⑵①当M点落在BD的中点时,AM+CM的值最小.②如图,连接CE,当M点位于BD与CE的交点处时,AM+BM+CM的值最小.理由如下:连接MN.由⑴知,△AMB≌△ENB,∴AM=EN.∵∠MBN=60°,MB=NB,∴△BMN是等边三角形.∴BM=MN.∴AM+BM+CM=EN+MN+CM.根据“两点之间线段最短”,得EN+MN+CM=EC最短∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长.⑶过E点作EF⊥BC交CB的延长线于F,∴∠EBF=90°-60°=30°.设正方形的边长为x,则BF=x,EF=.在Rt△EFC中,∵EF2+FC2=EC2,∴()2+(x+x)2=. 解得,x=(舍去负值).∴正方形的边长为.。
第17讲中考数学总复习(练习题) 特殊三角形
∴∠EAB=180°-40°-60°-60°=20°.
导航
2.(2021·广西)如图,☉O的半径OB为4,OC⊥AB于点D,∠BAC
=30°,则OD的长是( C )
A.
C.2
B.
D.3
导航
解析:如图,连接OA.
∵OC⊥AB,∠BAC=30°,
1
1
∴S△
= AC×PF,S△
= AB×PE,
ACP 2
ABP 2
又∵S△
=1,AB=AC=2,
ABC
1
1
∴1=2AC×PF+2AB×PE,
1
1
即 1= ×2×PF+ ×2×PE,∴PE+PF=1.
2
2
ACP
+S△
,
ABP
导航
能 力 提 升
8.(2021·温州)如图,BE是△ABC的角平分
线,在AB上取点D,使DB=DE.
∵∠C=90°,∴∠CBD=30°,
∵CD=1,∴BD=2CD=2,∴AD=2.
导航
7.(2021·娄底)如图,△ABC中,AB=AC=2,P是BC上任意一点,
PE⊥AB于点E,PF⊥AC于点F,若 △ =1,则PE+PF= 1
.
导航
解析:如图所示,连接 AP,则S△
ABC
=S△
∵PE⊥AB 于点 E,PF⊥AC 于点 F,
∴∠ACO=90°-30°=60°,
∵OA=OC,
∴△AOC为等边三角形,
∵OC⊥AB,
∴OD= OC=2.
导航
3.(2021·新疆)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,
最新九年级中考数学专题: 二次函数综合题(特殊三角形问题)含答案
2023年九年级中考数学专题:二次函数综合题(特殊三角形问题)1.如图,抛物线y=ax2+bx+2经过A(﹣1,0),B(4,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)在y轴上是否存在点P使得∠OBP+∠OBC=45°,若存在,求出点P的坐标,若不存在,请说明理由;(3)点M是BC为直径的圆上的动点,将点M绕原点O顺时针旋转90°得点N,连接NA,求NA的取值范围.2.已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点,过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E.(1)求抛物线解析式;(2)当点P运动到什么位置时,DP的长最大?(3)是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.3.如图,抛物线y=ax2+bx﹣3经过A、B、C三点,点A(﹣3,0)、C(1,0),点B在y轴上.点P是直线AB下方的抛物线上一动点(不与A、B重合).(1)求此抛物线的解析式;(2)过点P作x轴的垂线,垂足为D,交直线AB于点E,动点P在什么位置时,PE最大,求出此时P点的坐标;(3)点Q是抛物线对称轴上一动点,是否存在点Q,使以点A、B、Q为顶点的三角形为直角三角形?若存在,请求出点Q坐标;若不存在,请说明理由.4.如图,在平面直角坐标系xOy中,△ABC是等腰直角三角形,△BAC=90°,A(1,0),B(0,2),二次函数y=x2+bx﹣2的图象经过C点.(1)求二次函数的解析式;(2)若点P是抛物线的一个动点且在x轴的下方,则当点P运动至何处时,恰好使△PBC的面积等于△ABC的面积的两倍.(3)若点Q是抛物线上的一个动点,则当点Q运动至何处时,恰好使△QAC=45°?请你求出此时的Q点坐标.5.如图,抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.(1)求该抛物线的解析式;(2)点D的坐标为(﹣1,0),点P为第二象限内抛物线上的一个动点,求四边形ADCP面积的最大值;(3)抛物线对称轴上是否存在点M,使△MAB是以AB为斜边的直角三角形,若存在,请直接写出点M 的坐标;若不存在,并说明理由;(4)在对称轴上是否存在点N,使△BCN为直角三角形,若存在,直接写出N点坐标,若不存在,说明理由.6.抛物线2y x bx c=++经过A、B(1,0)、C(0,-3)三点.点D为抛物线的顶点,连接AD、AC、BC、DC.(1)求抛物线的解析式;(2)在抛物线的对称轴上找一点P,使PB+PC最小,求出P点坐标;(3)在线段AC上找一点M,使AOM△ABC,请你直接写出点M的坐标;(4)在y轴上是否存在一点E,使ADE为直角三角形?若存在,请你直接写出点E的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c与直线AB相交于A,B两点,其中A(﹣3,﹣4),B(0,﹣1).(1)求该抛物线的函数表达式.(2)点P为直线AB下方抛物线上的任意一点,连接P A,PB,求△P AB面积的最大值.(3)在二次函数的对称轴上找一点C,使得△ABC是等腰三角形,求满足条件的点C的坐标.8.如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A,B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在点Q,且点Q在第一象限,使△BDQ中BD Q 的坐标;若不存在,请说明理由.9.如图,已知点A的坐标为(-2,0),直线y=-34x+3与x轴,y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c,过A,B,C三点.(1)求抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标;(3)设点M是线段BC上的一动点,过点M作MN△AB,交AC于点N.点Q从点B出发,以每秒1个单位长度的速度沿线段BA向点A运动,运动时间为t(秒).当以MN为直角边的△QMN是等腰直角三角形时,直接写出此时t的取值.10.如图,在平面直角坐标系中,抛物线2=++与x轴交于A,B两点,与y轴交于点C,已知y x bx cB(3,0),C(0,3-),连接BC,点P是抛物线上的一个动点,点N是对称轴上的一个动点.(1)求该抛物线的解析式;(2)抛物线的对称轴上是否存在点M,使得MBC为等腰三角形,若存在,求M的坐标;(3)若点P在直线BC的下方,当点P到直线BC的距离最大时,在抛物线上是否存在点Q,使得以点P,C,N,Q为顶点的四边形是平行四边形?若存在,求出点Q的坐标;若不存在,请说明理由.11.如图,抛物线2y x bx c=++经过A(-1,0)、B(5,6)两点,点E是线段AB上一动点,过点E作x轴的垂线,交抛物线于点F.(1)求抛物线的解析式;(2)求线段EF的最大值;(3)在抛物线的对称轴上是否存在一个动点P,使得ABP∆是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B、C和点12.如图,直线y=﹣12A(﹣1,0).(1)求B、C两点的坐标;(2)求该二次函数的解析式;(3)若抛物线的对称轴与x轴交于点D,则在抛物线的对称轴上是否存在一点N,使NCD为等腰三角形?若存在,求点N的坐标;若不存在,请说明理由.13.如图,直线y =﹣x +3与x 轴、y 轴分别交于B 、C 两点,抛物线y =﹣x 2+bx +c 经过B 、C 两点,与x 轴另一交点为A ,顶点为D .(1)求抛物线的解析式.(2)如果一个圆经过点O 、点B 、点C 三点,并交于抛物线AC 段于点E ,求△OEB 的度数.(3)在抛物线的对称轴上是否存在点P ,使△PCD 为等腰三角形,如果存在,求出点P 的坐标,如果不存在,请说明理由.14.如图,抛物线2y ax bx =+过(4,0)A ,()1,3B 两点,点C 、B 关于抛物线的对称轴对称,过点B 作直线BH x ⊥轴,交x 轴于点H .(1)求抛物线的表达式;(2)直接写出点C 的坐标,并求出ABC ∆的面积;(3)若点M 在直线BH 上运动,点N 在x 轴上运动,是否存在以点C 、M 、N 为顶点的三角形为等腰直角三角形?若存在,求出其值;若不存在,请说明理由.15.如图,已知抛物线224233y x x =-++的图象与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的对称轴与x 轴交于点D .点M 从O 点出发,以每秒1个单位长度的速度向B 运动,过M 作x 轴的垂线,交抛物线于点P ,交BC 于Q .(1)求点B 和点C 的坐标;(2)设当点M 运动了x (秒)时,四边形OBPC 的面积为S ,求S 与x 的函数关系式,并指出自变量x 的取值范围;(3)在线段BC 上是否存在点Q ,使得DBQ ∆成为以BQ 为一腰的等腰三角形?若存在,求出点Q 的坐标,若不存在,说明理由.16.如图,已知一条直线过点(0,4)且与抛物线y =14x 2交于A ,B 两点,其中点B 的横坐标是8. (1)求这条直线AB 的函数关系式及点A 的坐标;(2)在x 轴上是否存在点C ,使得△ABC 是直角三角形?若存在,写出点C 的坐标,若不存在,请说明理由.(3)过线段AB 上一点P ,作PM △x 轴,交抛物线于点M ,点M 在第一象限,点N (0,1),当点M 的横坐标为何值时,MN +3MP 的长度最大?最大值是多少?17.如图,已知抛物线()()62y a x x =+-过点()0,2C ,交x 轴于点A 和点B (点A 在点B 的左侧),抛物线的顶点为D ,对称轴DE 交x 轴于点E ,连接EC .(1)直接写出a 的值,点A 的坐标和抛物线对称轴的表达式.(2)若点M 是抛物线对称轴DE 上的点,当MCE 是等腰三角形时,求点M 的坐标.(3)点P 是抛物线上的动点,连接PC ,PE ,将PCE 沿CE 所在的直线对折,点P 落在坐标平面内的点P '处.求当点P '恰好落在直线AD 上时点P 的横坐标.18.如图,直线y x n =-+与x 轴交于点()3,0A ,与y 轴交于点B ,抛物线2y x bx c =-++经过点A ,B .(1)求抛物线的解析式;(2)(),0E m 为x 轴上一动点,过点E 作ED x ⊥轴,交直线AB 于点D ,交抛物线于点P ,连接BP . △点E 在线段OA 上运动,若BPD △直角三角形,求点E 的坐标;△点E 在x 轴的正半轴上运动,若45PBD ABO ∠+∠=︒,请直接写出m 的值.19.如图,抛物线2y x bx c =-++的图象交x 轴于,A B 两点,交y 轴于点C ,直线3y x =-+经过,B C 两点.(1)求抛物线的解析式;PC PB,求PBC面积的最大值,并求出此时点P的坐(2)点P为抛物线第一象限上的一动点,连接,标;(3)在抛物线的对称轴上是否存在点M,使得BCM为直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.20.如图,抛物线y=ax2+bx+6(a≠0)与x轴交于点A(2,0)和点B(﹣6,0),与y轴交于点C.(1)求抛物线的解析式;(2)在抛物线上是否存在一点P,使△P AB的面积与△ABC的面积相等,若存在,求出点P的坐标;若不存在,请说明理由.(3)设抛物线的对称轴与x轴交于点M,在对称轴上存在点Q,使△CMQ是以MC为腰的等腰三角形,请直接写出所有符合条件的点Q的坐标.答案1.(1)y =﹣12x 2+32x +2 (2)存在,(0,﹣43)或(0,43)NA ≤2.(1)y =﹣x 2﹣2x +3(2)点P 的坐标为315,24⎛⎫- ⎪⎝⎭(3)存在,点P 坐标为(﹣2,33.(1)y =x 2+2x ﹣3; (2)(﹣32,154-)(3)(-1,2)或(-1,﹣4)或(-1-14.(1)222y x x -=-;(2)当点P 运动至坐标为()2,2-时,恰好使△PBC 的面积等于△ABC 的面积的两倍; (3)Q ⎝⎭或.Q ⎝⎭ 5.(1)y =﹣23x 2﹣43x +2;(2)174;(3)存在,M 点坐标为(﹣1,﹣2)或(﹣1,2);(4)存在,N 的坐标为(﹣1,32)或(﹣1,﹣1) 6.(1)223y x x =+-;(2)P (-1,-2);(3)(34-,94-);(4)存在,E 1(0,-3)或E 2(0,-1)或E 3(0,72-)或E 4(0,32)7.(1)y =x 2+4x ﹣1;(2)278;(3)C 点坐标为1(2,1C --,2(2,1C --,3(2,4C --,4(2,4C --,57(2,)3C -- 8.(1)抛物线解析式为y =﹣x 2+2x +3,直线BD 解析式为y =﹣x +3;(2)94;(3)存在,(1,4)或(2,3)9.(1)y =-38x 2+34x +3;D (1,278);(2)P (3,158);(3)83或14310.(1)223y x x =--;(2)存在,M 的坐标为(1,1-)或(1或(1,或(1,3-+或(1,3-;(3)存在,Q 的坐标为(52,74-)或(12-,74-)或(12,154-)11.(1)y =x 2-3x -4;(2)9;(3)存在,点P 的坐标为3(2,3(2 ,35(,)22-,319(,)22 12.(1)B (4,0),C (0,2);(2)213222y x x =-++;(3)存在,123435353325(,),(,),(,4),(,),22222216N N N N - 13.(1)抛物线解析式y =﹣x 2+2x +3;(2)△OEB =45°;(3)存在,点P (1,2)、(1,3)、(1,4)、(1,、(1,4△PCD 为等腰三角形14.(1)24y x x =-+;(2)3(3)C ,,3;(3)N 点坐标为(2,0)或(4,0)-或(2,0)-或(4,0),15.(1)(3,0)B ,(0,2)C ;(2)2321()(03)24S x x =--+;(3)存在,Q 的坐标为2(2)3,或(3, 16.(1)y =32x +4,A 点的坐标为(﹣2,1);(2)存在,点C 的坐标为(﹣12,0),(0,0),(6,0),(32,0);(3)当M 的横坐标为6时,MN +3PM 的长度的最大值是1817.(1)a =−16;对称轴为直线x =−2;A (−6,0);(2)(−2,2)或(−2,4)或(−2,)或(−2,;(3 18.(1)2y x 2x 3=-++;(2)△E (1,0)或(2,0);△5m =或73.19.(1)2y x 2x 3=-++;(2)315(,)24P ;(3)1234,,(1,2),(1,4)M M M M ⎛⎛- ⎝⎭⎝⎭. 20.(1)y =26122x x -+﹣(2)存在,点P 的坐标为:(﹣6)或(﹣2,﹣6)或(﹣4,6)(3)点Q 的坐标为1Q (﹣2,)或2Q (﹣2,﹣3Q (﹣2,12)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学专题练习:特殊三角形(含答案)
1.(·柳州)如图,图中直角三角形共有( )
A.1个B.2个C.3个D.4个
2.如图,在△ABC中,AB=AC=5,BC=6,点D在BC上,且AD平分∠BAC,则AD的长为( )
A.6 B.5 C.4 D.3
3.在直角三角形中,如果有一个角是30°,那么下列各比值中,最有可能是这个直角三角形的三边之比的是( )
A.3∶4∶5 B.1∶1∶ 2
C.5∶12∶13 D.1∶3∶2
4.(·扬州)在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,CE平分∠ACD交AB于点E,则下列结论一定成立的是( )
A.BC=EC
B.EC=BE
C.BC=BE
D.AE=EC
5.(·海南)已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )条
A.3 B.4 C.5 D.6
6.(·宿迁)若实数m、n满足等式|m-2|+n-4=0,且m,n恰好是等腰△ABC的两条边的边长,则△ABC的周长是( )
A.12 B.10 C.8 D.6
7.等腰三角形的一个内角为40°,则它的顶角的度数为_______________.
8.(·安顺)三角形三边长分别为3,4,5,那么最长边上的中线长等于__________.9.(·淄博)在边长为4的等边三角形ABC中,D为BC边上的任意一点,过点D分别作DE⊥AB,DF⊥AC,垂足分别为E,F,则DE+DF=______.
10.(·内江)如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.
证明:∴△BDE是等腰三角形.
参考答案
1.C 2.C 3.D 4.C 5.B 6.B
7.100°或40°8.2.5 9.2 3
10.证明:如解图,∵DE∥AC,∴∠1=∠3.
∵AD平分∠BAC,∴∠1=∠2,
∴∠2=∠3.
∵AD⊥BD,
∴∠2+∠B=90°,∠3+∠BDE=90°,
∴∠B=∠BDE,即BE=DE,
∴△BDE是等腰三角形.。