中考数学三角形习题及解析
中考数学真题分类汇编及解析(二十三)全等三角形

(2022•云南中考)如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF.若添加下列条件中的某一个,就能使△DOE≌△FOE.你认为要添加的那个条件是()A.OD=OE B.OE=OF C.∠ODE=∠OED D.∠ODE=∠OFE【解析】选D.因为OB平分∠AOC,所以∠DOE=∠FOE,又OE=OE,若∠ODE=∠OFE,则根据AAS可得△DOE≌△FOE,故选项D符合题意,而增加OD=OE不能得到△DOE≌△FOE,故选项A不符合题意,增加OE=OF不能得到△DOE≌△FOE,故选项B不符合题意,增加∠ODE=∠OED不能得到△DOE≌△FOE,故选项C不符合题意.(2022•金华中考)如图,AC与BD相交于点O,OA=OD,OB=OC,不添加辅助线,判定△ABO≌△DCO的依据是()A.SSS B.SAS C.AAS D.HL【解析】选B.在△AOB和△DOC中,{OA=OD∠ADB=∠DOCOB=OC,所以△AOB≌△DOC(SAS)。
(2022•扬州中考)如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为△ABC,提供下列各组元素的数据,配出来的玻璃不一定符合要求的是()A.AB,BC,CA B.AB,BC,∠B C.AB,AC,∠B D.∠A,∠B,BC【解析】选C.A.利用三角形三边对应相等,两三角形全等,三角形形状确定,故此选项不合题意;B.利用三角形两边、且夹角对应相等,两三角形全等,三角形形状确定,故此选项不合题意;C.AB,AC,∠B,无法确定三角形的形状,故此选项符合题意;(2022•成都中考)如图,在△ABC 和△DEF 中,点A ,E ,B ,D 在同一直线上,AC ∥DF ,AC =DF ,只添加一个条件,能判定△ABC ≌△DEF 的是( )A .BC =DEB .AE =DBC .∠A =∠DEFD .∠ABC =∠D【解析】选B .因为AC ∥DF ,所以∠A =∠D ,因为AC =DF ,所以当添加∠C =∠F 时,可根据“ASA ”判定△ABC ≌△DEF ;当添加∠ABC =∠DEF 时,可根据“AAS ”判定△ABC ≌△DEF ;当添加AB =DE 时,即AE =BD ,可根据“SAS ”判定△ABC ≌△DEF .(2022•黄冈中考)如图,已知AB ∥DE ,AB =DE ,请你添加一个条件 ∠A =∠D ,使△ABC ≌△DEF .【解析】添加条件:∠A =∠D .因为AB ∥DE ,所以∠B =∠DEC ,在△ABC 和△DEF 中,{∠A =∠DAB =DE ∠B =∠DEC,所以△ABC ≌△DEF (ASA ).答案:∠A =∠D .(答案不唯一)(2022•龙东中考)如图,在四边形ABCD 中,对角线AC ,BD 相交于点O ,OA =OC ,请你添加一个条件 OB=OD (答案不唯一) ,使△AOB ≌△COD .【解析】添加的条件是OB =OD ,理由是:在△AOB 和△COD 中,{AO =CO∠AOB =∠COD BO =DO,所以△AOB ≌△COD (SAS ).答案:OB =OD (答案不唯一).因为EF ⊥BC ,所以∠EFB =90°.又∠A =90°,所以 ∠A =∠EFB , ①因为AD ∥BC ,所以 ∠AEB =∠FBE , ②又 BE =EB , ③所以△BAE ≌△EFB (AAS ).同理可得 △EDC ≌△CFE (AAS ), ④所以S △BCE =S △EFB +S △EFC =12S 矩形ABFE +12S 矩形EFCD =12S 矩形ABCD .【解析】由题知,在△BAE 和△EFB 中,因为EF ⊥BC ,所以∠EFB =90°.又∠A =90°,所以∠A =∠EFB ,①因为AD ∥BC ,所以∠AEB =∠FBE ,②又 BE =EB ,③所以△BAE ≌△EFB (AAS ).同理可得△EDC ≌△CFE (AAS ),④所以S △BCE =S △EFB +S △EFC =12S 矩形ABFE +12S 矩形EFCD =12S 矩形ABCD ,答案:①∠A =∠EFB ,②∠AEB =∠FBE ,③BE =EB ,④△EDC ≌△CFE (AAS ).所以∠ADC =90°.因为∠F =90°,所以① ∠ADC =∠F .因为EF ∥BC ,所以② ∠1=∠2 .又因为③ AC =AC ,所以△ADC ≌△CFA (AAS ).同理可得:④ △ADB ≌△BEA (AAS ) .S △ABC =S △ADC +S △ABD =12S 矩形ADCF +12S 矩形AEBD =12S 矩形BCFE =12ah .【解析】证明:因为AD ⊥BC ,所以∠ADC =90°.因为∠F =90°,所以∠ADC =∠F ,因为EF ∥BC ,所以∠1=∠2,因为AC =AC ,在△ADC 与△CFA 中,{AC =AC∠1=∠2∠ADC =∠F,所以△ADC ≌△CFA (AAS ).同理可得:④△ADB ≌△BEA (AAS ),所以S △ABC =S △ADC +S △ABD =12S 矩形ADCF +12S 矩形AEBD =12S 矩形BCFE =12ah .答案:①∠ADC =∠F ,②∠1=∠2,③AC =AC ,④△ADB ≌△BEA (AAS ).【证明】因为AB ∥DE ,所以∠A =∠EDF .在△ABC 和△DEF 中,{∠A =∠EDF∠B =∠EBC =EF,所以△ABC ≌△DEF (AAS ).所以AC =DF ,所以AC ﹣DC =DF ﹣DC ,即:AD =CF .(2022•乐山中考)如图,B 是线段AC 的中点,AD ∥BE ,BD ∥CE .求证:△ABD ≌△BCE .【解析】因为点B 为线段AC 的中点,所以AB =BC ,因为AD ∥BE ,所以∠A =∠EBC ,因为BD ∥CE ,所以∠C =∠DBA ,在△ABD 与△BCE 中{∠A =∠EBCAB =BC ∠DBA =∠C,所以△ABD ≌△BCE .(ASA )(2022•衡阳中考)如图,在△ABC 中,AB =AC ,D 、E 是BC 边上的点,且BD =CE .求证:AD =AE .【解析】:因为AB =AC ,所以∠B =∠C ,在△ABD 和△ACE 中,{AB =AC∠B =∠C BD =CE,所以△ABD ≌△ACE (SAS ),所以AD =AE(2022•陕西中考)如图,在△ABC 中,点D 在边BC 上,CD =AB ,DE ∥AB ,∠DCE =∠A .求证:DE =BC .【解析】:因为DE ∥AB ,所以∠EDC =∠B ,(2022•桂林中考)如图,在▱ABCD中,点E和点F是对角线BD上的两点,且BF=DE.(1)求证:BE=DF;(2)求证:△ABE≌△CDF.【证明】(1)因为BF=DE,BF﹣EF=DE﹣EF,所以BE=DF;(2)因为四边形ABCD为平行四边形,所以AB=CD,且AB∥CD,所以∠ABE=∠CDF,在△ABE和△CDF中,{AB=CD∠ABE=∠CDF BE=DF.所以△ABE≌△CDF(SAS).(2022•玉林中考)问题情境:在数学探究活动中,老师给出了如图的图形及下面三个等式:①AB=AC;②DB =DC;③∠BAD=∠CAD.若以其中两个等式作为已知条件,能否得到余下一个等式成立?解决方案:探究△ABD与△ACD全等.问题解决:(1)当选择①②作为已知条件时,△ABD与△ACD全等吗?全等(填“全等”或“不全等”),理由是三边对应相等的两个三角形全等;(2)当任意选择两个等式作为已知条件时,请用画树状图法或列表法求△ABD≌△ACD的概率.【解析】(1)在△ABD和△ACD中,{AB=ACAD=ADDB=DC,所以△ABD≌△ACD(SSS).答案:全等,三边对应相等的两个三角形全等;(2)树状图:所有可能出现的结果(①②)(①③)(②①)(②③)(③①)(③②)共有六种等可能的情况,符合条件的有(①②)(①③)(②①)(③①)有四种,令△ABD ≌△ACD 为事件A ,则P (A )=23.(2022•福建中考)如图,点B ,F ,C ,E 在同一条直线上,BF =EC ,AB =DE ,∠B =∠E .求证:∠A =∠D .【证明】因为BF =EC ,所以BF +CF =EC +CF ,即BC =EF ,在△ABC 和△DEF 中,{AB =DE ∠B =∠E BC =EF,所以△ABC ≌△DEF (SAS ),所以∠A =∠D . (2022•长沙中考)如图,AC 平分∠BAD ,CB ⊥AB ,CD ⊥AD ,垂足分别为B ,D .(1)求证:△ABC ≌△ADC ;(2)若AB =4,CD =3,求四边形ABCD 的面积.【解析】(1)因为AC 平分∠BAD ,所以∠BAC =∠DAC ,因为CB ⊥AB ,CD ⊥AD ,所以∠B =90°=∠D ,在△ABC 和△ADC 中,{∠B =∠D∠BAC =∠DAC AC =AC,所以△ABC ≌△ADC (AAS );(2)由(1)知:△ABC ≌△ADC ,所以BC =CD =3,S △ABC =S △ADC ,所以S △ABC =12AB •BC =12×4×3=6, 所以S △ADC =6,所以S 四边形ABCD =S △ABC +S △ADC =12.答:四边形ABCD 的面积是12.(2022•吉林中考)如图,AB =AC ,∠BAD =∠CAD .求证:BD =CD .【解析】在△ABD 与△ACD 中,{AB =AC∠BAD =∠CAD AD =AD,。
中考数学专题复习27特殊三角形(解析版)

特殊三角形考点1:等腰三角形的性质与判定1.(2021·江苏苏州市)如图.在Rt ABC △中.90C ∠=︒.AF EF =.若72CFE ∠=︒.则B ∠=______.【答案】54°【分析】首先根据等腰三角形的性质得出∠A =∠AEF .再根据三角形的外角和定理得出∠A +∠AEF =∠CFE .求出∠A 的度数.最后根据三角形的内角和定理求出∠B 的度数即可.【详解】∠ AF =EF .∠ ∠A =∠AEF .∠∠A +∠AEF =∠CFE=72°.∠ ∠A =36°.∠ ∠C =90°.∠A +∠B +∠C =180°.∠ ∠B =180°-∠A -∠C =54°.故答案为:54°.2.(2021·江苏南京市·中考真题)如图.在四边形ABCD 中.AB BC BD ==.设ABC α∠=.则ADC ∠=______(用含α的代数式表示).【答案】11802α︒-【分析】由等腰的性质可得:∠ADB =1902ABD ︒-∠.∠BDC =1902CBD ︒-∠.两角相加即可得到结论.【详解】解:在∠ABD 中.AB =BD∠∠A =∠ADB =11(180)9022ABD ABD ︒-∠=︒-∠ 在∠BCD 中.BC =BD∠∠C =∠BDC =11(180)9022CBD CBD ︒-∠=︒-∠ ∠ABC ABD CBD α∠=∠+∠=∠ADC ADB CBD ∠=∠+∠ =11909022ABD CBD ︒-∠+︒-∠ =1180()2ABD CBD ︒-∠+∠ =11802ABC ︒-∠ =11802α︒- 故答案为:11802α︒-.3.(2021·四川资阳市·中考真题)将一张圆形纸片(圆心为点O )沿直径MN 对折后.按图1分成六等份折叠得到图2.将图2沿虚线AB 剪开.再将AOB 展开得到如图3的一个六角星.若75CDE ∠=︒.则OBA ∠的度数为______.【答案】135°【分析】利用折叠的性质.根据等腰三角形的性质及三角形内角和定理解题.【详解】解:连接OC.EO由折叠性质可得:∠EOC=3603012︒=︒.EC=DC.OC平分∠ECD∠∠ECO=11(180275)15 22ECD∠=︒-⨯︒=︒∠∠OEC=180°-∠ECO-∠EOC=135°即OBA∠的度数为135°故答案为:135°4.(2021·山东中考真题)如图.在ABC中.ABC∠的平分线交AC于点D.过点D作//DE BC;交AB于点E.(1)求证:BE DE =;(2)若80,40A C ∠=︒∠=︒.求BDE ∠的度数.【答案】(1)见详解;(2)30BDE ∠=︒【分析】(1)由题意易得,ABD CBD CBD EDB ∠=∠∠=∠.则有ABD EDB ∠=∠.然后问题可求证; (2)由题意易得60ABC ∠=︒.则有30ABD CBD ∠=∠=︒.然后由(1)可求解.【详解】(1)证明:∠BD 平分ABC ∠.∠ABD CBD ∠=∠.∠//DE BC .∠CBD EDB ∠=∠.∠ABD EDB ∠=∠.∠BE DE =;(2)解:∠80,40A C ∠=︒∠=︒.∠18060ABC A C ∠=︒-∠-∠=︒.由(1)可得30ABD CBD BDE ∠=∠=∠=︒.5.(2020•台州)如图.已知AB =AC .AD =AE .BD 和CE 相交于点O .(1)求证:∠ABD ∠∠ACE ;(2)判断∠BOC 的形状.并说明理由.【分析】(1)由“SAS ”可证∠ABD ∠∠ACE ;(2)由全等三角形的性质可得∠ABD =∠ACE .由等腰三角形的性质可得∠ABC =∠ACB .可求∠OBC =∠OCB .可得BO =CO .即可得结论.【解答】证明:(1)∠AB =AC .∠BAD =∠CAE .AD =AE .∠∠ABD∠∠ACE(SAS);(2)∠BOC是等腰三角形.理由如下:∠∠ABD∠∠ACE.∠∠ABD=∠ACE.∠AB=AC.∠∠ABC=∠ACB.∠∠ABC﹣∠ABD=∠ACB﹣∠ACE.∠∠OBC=∠OCB.∠BO=CO.∠∠BOC是等腰三角形.考点2:等边三角形的性质与判定6.(2021·四川凉山彝族自治州·中考真题)如图.等边三角形ABC的边长为4.C的半3P为AB边上一动点.过点P作C的切线PQ.切点为Q.则PQ的最小值为________.【答案】3【分析】连接OC和PC.利用切线的性质得到CQ∠PQ.可得当CP最小时.PQ最小.此时CP∠AB.再求出CP.利用勾股定理求出PQ即可.【详解】解:连接QC和PC.∠PQ和圆C相切.∠CQ∠PQ.即∠CPQ始终为直角三角形.CQ为定值.∠当CP最小时.PQ最小.∠∠ABC是等边三角形.∠当CP∠AB时.CP最小.此时CP∠AB.∠AB=BC=AC=4.∠AP=BP=2.∠CP22-3AC AP∠圆C的半径CQ3∠PQ22-=3.CP CQ故答案为:3.7.(2020•台州)如图.等边三角形纸片ABC的边长为6.E.F是边BC上的三等分点.分别过点E.F沿着平行于BA.CA方向各剪一刀.则剪下的∠DEF的周长是.【分析】根据三等分点的定义可求EF的长.再根据等边三角形的判定与性质即可求解.【解析】∠等边三角形纸片ABC的边长为6.E.F是边BC上的三等分点.∠EF=2.∠DE∠AB.DF∠AC.∠∠DEF是等边三角形.∠剪下的∠DEF的周长是2×3=6.故答案为:6.8.(2020•凉山州)如图.点P、Q分别是等边∠ABC边AB、BC上的动点(端点除外).点P、点Q以相同的速度.同时从点A、点B出发.(1)如图1.连接AQ、CP.求证:∠ABQ∠∠CAP;(2)如图1.当点P、Q分别在AB、BC边上运动时.AQ、CP相交于点M.∠QMC的大小是否变化?若变化.请说明理由;若不变.求出它的度数;(3)如图2.当点P、Q在AB、BC的延长线上运动时.直线AQ、CP相交于M.∠QMC的大小是否变化?若变化.请说明理由;若不变.求出它的度数.【分析】(1)根据等边三角形的性质.利用SAS 证明∠ABQ ∠∠CAP 即可;(2)先判定∠ABQ ∠∠CAP .根据全等三角形的性质可得∠BAQ =∠ACP .从而得到∠QMC =60°;(3)先判定∠ABQ ∠∠CAP .根据全等三角形的性质可得∠BAQ =∠ACP .从而得到∠QMC =120°.【解析】(1)证明:如图1.∠∠ABC 是等边三角形∠∠ABQ =∠CAP =60°.AB =CA .又∠点P 、Q 运动速度相同.∠AP =BQ .在∠ABQ 与∠CAP 中.{AB =CA∠ABQ =∠CPA AP =BQ. ∠∠ABQ ∠∠CAP (SAS );(2)点P 、Q 在AB 、BC 边上运动的过程中.∠QMC 不变.理由:∠∠ABQ ∠∠CAP .∠∠BAQ =∠ACP .∠∠QMC 是∠ACM 的外角.∠∠QMC =∠ACP +∠MAC =∠BAQ +∠MAC =∠BAC∠∠BAC =60°.∠∠QMC =60°;(3)如图2.点P 、Q 在运动到终点后继续在射线AB 、BC 上运动时.∠QMC 不变 理由:同理可得.∠ABQ ∠∠CAP .∠∠BAQ =∠ACP .∠∠QMC 是∠APM 的外角.∠∠QMC =∠BAQ +∠APM .∠∠QMC =∠ACP +∠APM =180°﹣∠P AC =180°﹣60°=120°.即若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动.∠QMC 的度数为120°.考点3:直角三角形的性质9.(2020•衡阳)如图.在∠ABC 中.∠B =∠C .过BC 的中点D 作DE ∠AB .DF ∠AC .垂足分别为点E 、F .(1)求证:DE =DF ;(2)若∠BDE =40°.求∠BAC 的度数.【分析】(1)根据DE ∠AB .DF ∠AC 可得∠BED =∠CFD =90°.由于∠B =∠C .D 是BC 的中点.AAS 求证∠BED ∠∠CFD 即可得出结论.(2)根据直角三角形的性质求出∠B =50°.根据等腰三角形的性质即可求解.【解答】(1)证明:∠DE ∠AB .DF ∠AC .∠∠BED =∠CFD =90°.∠D 是BC 的中点.∠BD =CD .在∠BED 与∠CFD 中.{∠BED =∠CFD∠B =∠CBD =CD. ∠∠BED ∠∠CFD (AAS ).∠DE =DF ;(2)解:∠∠BDE =40°.∠∠B=50°.∠∠C=50°.∠∠BAC=80°.10.(2020•泰安)小明将两个直角三角形纸片如图(1)那样拼放在同一平面上.抽象出如图(2)的平面图形.∠ACB与∠ECD恰好为对顶角.∠ABC=∠CDE=90°.连接BD.AB =BD.点F是线段CE上一点.探究发现:(1)当点F为线段CE的中点时.连接DF(如图(2)).小明经过探究.得到结论:BD∠DF.你认为此结论是否成立?.(填“是”或“否”)拓展延伸:(2)将(1)中的条件与结论互换.即:BD∠DF.则点F为线段CE的中点.请判断此结论是否成立.若成立.请写出证明过程;若不成立.请说明理由.问题解决:(3)若AB=6.CE=9.求AD的长.【分析】(1)证明∠FDC+∠BDC=90°可得结论.(2)结论成立:利用等角的余角相等证明∠E=∠EDF.推出EF=FD.再证明FD=FC 即可解决问题.(3)如图3中.取EC的中点G.连接GD.则GD∠BD.利用(1)中即可以及相似三角形的性质解决问题即可.【解析】(1)如图(2)中.∠∠EDC=90°.EF=CF.∠DF=CF.∠∠FCD=∠FDC.∠∠ABC=90°.∠∠A+∠ACB=90°.∠BA=BD.∠∠A=∠ADB.∠∠ACB=∠FCD=∠FDC.∠∠ADB+∠FDC=90°.∠∠FDB=90°.∠BD∠DF.故答案为是.(2)结论成立:理由:∠BD∠DF.ED∠AD.∠∠BDC+∠CDF=90°.∠EDF+∠CDF=90°.∠∠BDC=∠EDF.∠AB=BD.∠∠A=∠BDC.∠∠A=∠EDF.∠∠A+∠ACB=90°.∠E+∠ECD=90°.∠ACB=∠ECD.∠∠A=∠E.∠∠E=∠EDF.∠EF=FD.∠∠E+∠ECD=90°.∠EDF+∠FDC=90°.∠FD =FC .∠EF =FC .∠点F 是EC 的中点.(3)如图3中.取EC 的中点G .连接GD .则GD ∠BD .∠DG =12EC =92. ∠BD =AB =6.在Rt∠BDG 中.BG =√DG 2+BD 2=√(92)2+62=152. ∠CB =152−92=3.在Rt∠ABC 中.AC =√AB 2+BC 2=√62+32=3√5.∠∠ACB =∠ECD .∠ABC =∠EDC .∠∠ABC ∠∠EDC .∠AC EC =BC CD. ∠3√59=3CD. ∠CD =9√55. ∠AD =AC +CD =3√5+9√55=24√55. 11.(2020•常德)已知D 是Rt∠ABC 斜边AB 的中点.∠ACB =90°.∠ABC =30°.过点D 作Rt∠DEF 使∠DEF =90°.∠DFE =30°.连接CE 并延长CE 到P .使EP =CE .连接BE .FP .BP .设BC 与DE 交于M .PB 与EF 交于N .(1)如图1.当D .B .F 共线时.求证:∠EB =EP ;(2)如图2.当D .B .F 不共线时.连接BF .求证:∠BFD +∠EFP =30°.【分析】(1)∠证明∠CBP 是直角三角形.根据直角三角形斜边中线可得结论; ∠根据同位角相等可得BC ∠EF .由平行线的性质得BP ∠EF .可得EF 是线段BP 的垂直平分线.根据等腰三角形三线合一的性质可得∠PFE =∠BFE =30°;(2)如图2.延长DE 到Q .使EQ =DE .连接CD .PQ .FQ .证明∠QEP ∠∠DEC (SAS ).则PQ =DC =DB .由QE =DE .∠DEF =90°.知EF 是DQ 的垂直平分线.证明∠FQP ∠∠FDB (SAS ).再由EF 是DQ 的垂直平分线.可得结论.【解答】证明(1)∠∠∠ACB =90°.∠ABC =30°.∠∠A =90°﹣30°=60°.同理∠EDF =60°.∠∠A =∠EDF =60°.∠AC ∠DE .∠∠DMB =∠ACB =90°.∠D 是Rt∠ABC 斜边AB 的中点.AC ∠DM .∠BM BC =BD AB =12. 即M 是BC 的中点.∠EP =CE .即E 是PC 的中点.∠ED ∠BP .∠∠CBP =∠DMB =90°.∠∠CBP 是直角三角形.∠BE =12PC =EP ; ∠∠∠ABC =∠DFE =30°.∠BC ∠EF .由∠知:∠CBP =90°.∠BP ∠EF .∠EB=EP.∠EF是线段BP的垂直平分线.∠PF=BF.∠∠PFE=∠BFE=30°;(2)如图2.延长DE到Q.使EQ=DE.连接CD.PQ.FQ.∠EC=EP.∠DEC=∠QEP.∠∠QEP∠∠DEC(SAS).则PQ=DC=DB.∠QE=DE.∠DEF=90°∠EF是DQ的垂直平分线.∠QF=DF.∠CD=AD.∠∠CDA=∠A=60°.∠∠CDB=120°.∠∠FDB=120°﹣∠FDC=120°﹣(60°+∠EDC)=60°﹣∠EDC=60°﹣∠EQP=∠FQP.∠∠FQP∠∠FDB(SAS).∠∠QFP=∠BFD.∠EF是DQ的垂直平分线.∠∠QFE=∠EFD=30°.∠∠QFP+∠EFP=30°.∠∠BFD+∠EFP=30°.考点4:勾股定理及其逆定理12.(2021·四川凉山彝族自治州·中考真题)如图.ABC中.∠=︒==.将ADE沿DE翻折.使点A与点B重合.则CE的长为90,8,6ACB AC BC()A.198B.2C.254D.74【答案】D【分析】先在RtABC中利用勾股定理计算出AB=10.再利用折叠的性质得到AE=BE.AD=BD=5.设AE=x.则CE=AC-AE=8-x.BE=x.在Rt∠BCE中根据勾股定理可得到x2=62+(8-x)2.解得x.可得CE.【详解】解:∠∠ACB=90°.AC=8.BC=6.∠AB22AC BC+∠∠ADE沿DE翻折.使点A与点B重合.∠AE=BE.AD=BD=12AB=5.设AE=x.则CE=AC-AE=8-x.BE=x.在Rt∠BCE中∠BE2=BC2+CE2.∠x2=62+(8-x)2.解得x=25 4.∠CE=2584-=74.故选:D.。
2023年中考数学----三角形的综合知识回顾与专项练习题(含答案解析)

知识回顾2023年中考数学----三角形的综合知识回顾与专项练习题(含答案解析)1. 角平分线的性质:①平分角。
②角平分线上任意一点到角两边的距离相等。
2. 角平分线的判定:角的内部到角两边相等的点一定在角平分线上。
3. 角平分线的尺规作图:具体步骤:①以角的顶点O 为圆心,一定长度为半径画圆弧,圆弧与角的两边分别交于两点M 、N 。
如图①。
②分别以点M 与点N 为圆心,大于MN 长度的一半为半径画圆弧,两圆弧交于点P 。
如图②。
③连接OP ,OP 即为角的平分线。
4. 垂直平分线的性质:①垂直且平分线段。
②垂直平分线上任意一点到这条线段两个端点的距离相等。
5. 垂直平分线的判定:到线段两端点距离相等的点一定在线段的垂直平分线上。
6. 垂直平分线的吃规作图:具体步骤:①以线段两个端点为圆心,大于线段长度的一半为半径画圆弧,两圆弧在线段的两侧别分交于M 、N 。
如图①②连接MN ,过MN 的直线即为线段的垂直平分线。
如图②7.中位线的性质:三角形的中位线平行且等于第三边的一半。
8. 等腰三角形的性质:①等腰三角形的两腰相等。
②等腰三角形的两底角相等。
(简称“等边对等角”)③等腰三角形底边的中线、高线以及顶角平分线相互重合。
(简称底边上三线合一)9. 等腰三角形的判定:①有两条边相等的三角形是等腰三角形。
②有两个底角相等的三角形是等腰三角形。
(等角对等边)③若一个三角形某一边上存在“三线合一”,则三角形是等腰三角形。
10. 等边三角形的性质:①等边三角形的三条边都相等,三个角也相等,且三个角都等于60°。
②等边三角形三条边都存在“三线合一”③等腰三角形是一个轴对称图形,有三条对称轴。
④等腰三角形的面积等于243a (a 为等腰三角形的边长)。
11. 等腰三角形的判定:①三条边都相等的三角形是等边三角形。
②三个角都相等(两个角是60°)的三角形是等腰三角形。
③底和腰相等的等腰三角形是等边三角形。
初二数学 三角形全等中考真题含解析

DEF一、选择题1.如图所示, ∠E = ∠F = 90,∠B = ∠C , AE = AF ,结论:① EM = FN ;② CD = DN ;③ ∠FAN = ∠EAM ;④△ACN ≌△ABM .其中正确的有A.1 个 B .2 个 C .3 个 D .4 个【答案】C2.如图 2 所示,AB = AC ,要说明△ADC≌△AEB,需添加的条件不.能.是( )BCA .∠B =∠CB. AD = AEC .∠ADC=∠AEBD. DC = BE【答案】D3.如图 2 所示,在Rt ∆ABC 中, ∠A = 90︒ , BD 平分∠ABC , 交 AC 于点 D ,且AB = 4, BD = 5 ,则点D 到 BC 的距离是:(A )3(B )4(C )5(D )6【答案】A4.如图3,Rt△ABC 中,∠C=90°,∠ABC 的平分线BD交AC 于D,若CD=3cm,则点D 到AB 的距离DE 是A.5cm B.4cm C.3cm D.2cm【答案】C5.如图,△A BC≌△D E F,BE=4,A E=1,则DE的长是()A.5 B.4 C.3 D.2【答案】A二、填空题1.如图,已知AC=FE,BC=DE,点A、D、B、F 在一条直线上,要使△ ABC ≌△ FDE ,还需添加一.个.条件,这个条件可以是.ADCB EF第(13)题【答案】∠C=∠E(答案不惟一,也可以是AB=FD或AD=FB)2.(2010 广西钦州市)如图,在△ABC 和△BAD 中,BC = AD,请你再补充一个条件,使△ABC≌△BAD.你补充的条件是_ ▲ _(只填一个).C DA B第8 题【答案】AC =BD 或∠CBA=∠DAB三、解答题CF1.如图,C 是线段 AB 的中点,CD 平分∠ACE ,CE 平分 ∠BCD ,CD=CE .(1) 求证:△ ACD ≌△ BCE ;(2)若∠D=50°,求∠B 的度数.【答案】2.如图,已知:点 B 、F 、C 、E 在一条直线上,FB =CE ,AC =DF .能否由上面的已知条件证明 AB ∥ED ?如果能,请给出证明;如果不能,请从下列三个条件中选择一.个.合.适.的.条.件.,添加到已知条件中,使 AB ∥ED 成立,并给出证明. 供选择的三个条件(请从其中选择一个):①AB =ED ; ②BC =EF ; ③∠ACB =∠DFE .ABED(第 25 题)FDE ( 第 18 题⎨⎩【答案】解:由上面两条件不能证明AB//ED.有两种添加方法.第一种:FB=CE,AC=DF 添加①AB=ED证明:因为FB=CE,所以BC=EF,又AC=EF,AB=ED,所以ABC≅DEF所以∠ABC=∠DEF 所以AB//ED第二种:FB=CE,AC=DF 添加③∠ACB=∠DFE证明:因为FB=CE,所以BC=EF,又∠ACB=∠DFE AC=EF,所以ABC ≅DEF 所以∠ABC=∠DEF 所以AB//ED3.如图,在△ABC 中,D是BC 边上的点(不与B,C 重合),F,E 分别是AD及其延长线上的点,CF∥BE. 请你添加一个条件,使△B D E≌△C A D F (不再添加其它线段,不再标注或使用其他字母),并给出证明.(1)你添加的条件是:▲; B C(2)证明:【答案】解:(1)BD=DC(或点D是线段BC 的中点),FD=ED,CF=BE中任选一个即可﹒(2)以BD =DC 为例进行证明:∵CF∥BE,∴∠FCD﹦∠EBD.又∵ BD =DC ,∠FDC﹦∠EDB,∴△BDE≌△CDF.4.(1)如图,点B、E、C、F 在一条直线上,BC=EF,AB∥DE,∠A=∠D.求证:△ABC≌△DEF.(第 17(1)题)【答案】证明:∵ AB∥DE.∴ ∠B=∠DEF.在△ABC 和△DEF 中,⎧∠B =∠DEF,⎪∠A =∠D,⎪BC =EF.∴ △ABC ≌△DEF .5.如图,分别过点 C 、B 作△ABC 的 BC 边上的中线 AD 及其延长线的垂线,垂足分 别为 E 、F .求证:BF =CE .【答案】∵CE ⊥AF ,FB ⊥AF ,∴∠DEC =∠DFB =90°又∵AD 为 BC 边上的中线,∴BD =CD , 且∠EDC =∠FDB (对顶角相等) ∴所以△BFD ≌△C D E (AAS ),∴BF =CE . 6.如图,已知 AD 是△A BC 的角平分线,在不添加任何辅助线的前提下,要使△AE D≌△AFD ,需添加一个条件是:,并给予证明.ABD C【答案】解法一:添加条件:AE =AF ,证明:在△AED 与△AFD 中,∵AE=AF ,∠EAD=∠FAD,AD =AD ,∴△AED≌△AFD(SAS ).解法二:添加条件:∠EDA=∠FDA,证明:在△AED 与△AFD 中,∵∠EAD=∠FAD,AD =AD ,∠EDA=∠FDA ∴△AED≌△AFD(ASA ).EF⎨⎩7.如图,B,F,C,E 在同一条直线上,点A,D在直线BE 的两侧,AB∥DE,AC∥DF,BF=CE.求证:AC=DF【答案】证明:∵AB∥DE,∴∠ABC=∠DEF∵AC∥DF,∴∠ABC=∠DEF∵BF=CE,∴BC=EF∴△ABC≌△DEF∴AC=DF8.已知:如图,点C 是线段 AB 的中点,CE=CD,∠ACD=∠BCE,求证:AE=BD.【答案】证明:∵点 C 是线段 AB 的中点,∴AC=BC,∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠BCD,题 20 图⎧AC =BC在△ACE 和△BCD 中,⎪∠ACE =∠BCD ,⎪CE∴△A CE≌△BCD(SAS),∴AE=BD.=CD9.已知:如图,点A、B、C、D在同一条直线上,EA⊥AD,FD⊥AD,AE=DF,AB=DC.求证:∠ACE=∠DBF.⎨⎩EBCD⎨ ⎩【答案】证明:∵AB =DC∴AC =DB∵EA ⊥AD ,FD ⊥AD ∴∠A =∠D =90° 在△EAC 与△FDB 中⎧EA = FD ⎪∠A = ∠D ⎪AC = DB ∴△EAC ≌△FDB ∴∠ACE =∠DBF .10.如图,点 A 、E 、B 、D 在同一条直线上,AE =DB ,AC =DF ,AC ∥DF .请探索 BC 与 EF 有怎样的位置关系?并说明理由.FAD【答案】解:BC ∥EF .理由如下:∵AE =DB ,∴AE +BE =DB +BE ,∴AD =DE .∵AC ∥DF , ∴∠A =∠D ,∵AC =DF , ∴△ACB ≌△DFE ,∴∠FED =∠CBA ,∴BC ∥EF . 11.如图,点 B 、D 、C 、F 在一条直线上,且 BC = FD ,A B = E F .(1) 请你只添加一个条件(不再加辅助线),使△A BC ≌△E FD ,你添加的条件是 ; (2) 添加了条件后,证明△ABC ≌△EFD.ABFE【答案】(1)∠B = ∠F 或 AB ∥EF 或 AC = ED .(2)证明:当∠B = ∠F 时在△ABC 和△EFD 中⎧A B = E⎪∠B = ∠F ⎪BC = FD求证:⑴ △ABC ≌△DEF ;⑵ BE =CF .∴△ABC ≌△EFD (SAS)12.如图 4,已知 AC ∥DF ,且 BE =CF . (1) 请你只添加一.个.条件,使△ ABC ≌△D EF ,你添加的条件是;(2)添加条件后,证明△ ABC ≌△DEF.【答案】(1)添加的条件是 AC =DF (或 AB ∥D E 、∠B =∠D E F 、∠A =∠D )(有一个即可)(2)证明:∵AC ∥DF ,∴∠ACB =∠F ,∵BE=CF ,∴BC =EF ,在△ ABC 和△ DEF 中,⎧BC = EF ⎪⎨∠ACB = ∠F ⎪⎩AC = DF ,∴△ABC ≌△DEF. 13.如图, ∠BAC = ∠ABD .(1) 要使OC = OD ,可以添加的条件为:或 ;(写出 2 个符合题意的条件即可)(2) 请选择(1)中你所添加的一个条件,证明OC = OD .CD【答案】解:(1)答案不唯一. 如∠C = ∠D ,或∠ABC = ∠BAD ,或∠OAD = ∠OBC ,或 AC = BD . ……4 分说明:2 空全填对者,给 4 分;只填 1 空且对者,给 2 分. (2)答案不唯一. 如选 AC = BD 证明 OC=OD.证明: ∵ ∠BAC = ∠ABD ,∴ OA=OB. ……………………6 分 DC又 AC = BD , O∴ AC-OA=BD-OB ,或 AO+OC=BO+OD. AB∴ OC = OD......................................................... 8 分14.已知:点B 、E 、C 、F 在同一直线上,AB =DE ,∠A =∠D ,AC ∥ DF .O AB⎨⎩【答案】证明:(1)∵AC ∥DF∴∠ACB =∠F ...................................................................................................... 2 分 在△ABC 与△DEF 中⎧∠ACB = ∠F ⎪∠A = ∠D ⎪ AB = DE ∴△ABC≌△DEF ................................................... 6 分(2) ∵△ABC≌△DEF∴BC=EF ∴BC–EC=EF –EC即 BE=CF ......................................................... 10 分 15.如图,已知点E ,C 在线段 BF 上, BE = CF ,请在下列四个等式中,①AB =DE ,②∠ACB =∠F ,③∠A =∠D ,④AC =DF .选出两.个.作为条件,推出 △ABC ≌△DEF .并予以证明.(写出一种即可)已知: , . 求证: △ABC≌△DEF .证明:A DBECF【答案】解:已知:①④(或②③、或②④) .........3 分AD证明:若选①④ ∵ BE = CFB EC C ∴ BE + EC = CF + EC ,即BC = EF . .............................. 5 分在△ABC 和△DEF 中AB =DE ,BC =EF ,AC =DF . ..................... 8 分∴ △ABC ≌△DEF . .......................... 9 分 16.八(1)班同学上数学活动课,利用角尺平分一个角(如图).设计了如下方案:⎨⎩(Ⅰ)∠AOB 是一个任意角,将角尺的直角顶点 P 介于射线 OA 、OB 之间,移动角尺使角尺两边相同的刻度与 M 、N 重合,即 PM=PN ,过角尺顶点 P 的射线 OP 就是∠AOB 的平分线. (Ⅱ)∠AOB 是一个任意角,在边 OA 、OB 上分别取 OM=ON ,将角尺的直角顶点 P 介于射线 OA 、OB 之间,移动角尺使角尺两边相同的刻度与 M 、N 重合,即 PM=PN ,过角尺顶点 P 的射线 OP 就是∠AOB 的平分线.(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由. (2) 在方案(Ⅰ)PM=PN 的情况下,继续移动角尺,同时使 PM⊥OA,PN⊥OB.此方案是否可行?请说明理由.【答案】解:(1)方案(Ⅰ)不可行.缺少证明三角形全等的条件. …………………………… 2 分(2)方案(Ⅱ)可行 ...................... 3 分证明:在△OPM 和△OPN 中⎧OM = OP ⎪PM = PN ⎪ OP = OP ∴△OPM≌△OPN(SSS)∴∠AOP=∠BOP(全等三角形对应角相等) ............................................. 5 分(3)当∠AOB 是直角时,此方案可行 ...................... 6 分∵四边形内角和为 360°,又若 PM⊥OA,PN⊥OB, ∠OMP=∠ONP=90°, ∠MPN=90°,∴∠AOB=90° ∵若 PM⊥OA,PN⊥OB, 且 PM=PN∴OP 为∠AOB 的平分线.(到角两边距离相等的点在这个角的角平分线上) 当∠AOB 不为直角时,此方案不可行 .......... 8 分 17.如图,AB 是∠D AC 的平分线,且 AD =AC 。
初三数学13 相似三角形-2024年中考数学真题分项汇编(全国通用)(解析版)

专题13 相似三角形一.选择题1.(2022·黑龙江哈尔滨)如图,,,AB CD AC BD ∥相交于点E ,1,2,3AE EC DE ===,则BD 的长为( )A .32B .4C .92D .6【答案】C【分析】根据相似三角形对应边长成比例可求得BE 的长,即可求得BD 的长.【详解】∵//AB CD ∴ABE CDE ∽ ∴AE BE EC DE= ∵1,2,3AE EC DE ===,∴32BE =∵BD BE ED =+ ∴92BD = 故选:C .【点睛】本题考查了相似三角形的对应边长成比例,解题的关键在于找到对应边长.2.(2022·广西贺州)如图,在ABC 中,25DE BC DE BC ==∥,,,则:ADE ABC S S 的值是( )A .325B .425C .25D .35【答案】B【分析】根据相似三角形的判定定理得到ADE ABC ,根据相似三角形的面积比等于相似比的平方计算,得到答案.【详解】解:25DE BC DE BC ==∥,,∴ADE ABC ,∴2224525ADE ABC S DE S BC ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ,故选:B .【点睛】此题考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.3.(2022·广西梧州)如图,以点O 为位似中心,作四边形ABCD 的位似图形''''A B C D ﹐已知'13OA OA =,若四边形ABCD 的面积是2,则四边形''''A B C D 的面积是( )A .4B .6C .16D .18【答案】D 【分析】两图形位似必相似,再由相似的图形面积比等于相似比的平方即可求解.【详解】解:由题意可知,四边形ABCD 与四边形''''A B C D 相似,由两图形相似面积比等于相似比的平方可知:''''22'1139ABCD A B C D S OA S OA ⎛⎫⎛⎫= ⎪= ⎪= ⎪ ⎪⎝⎭⎝⎭,又四边形ABCD 的面积是2,∴四边形''''A B C D 的面积为18,故选:D .【点睛】本题考察相似多边形的性质,属于基础题,熟练掌握相似图形的性质是解决本题的关键.4.(2022·四川雅安)如图,在△ABC 中,D ,E 分别是AB 和AC 上的点,DE ∥BC ,若AD BD =21,那么DE BC =( )A .49B .12C .13D .23【答案】D【分析】先求解2,3AD AB =再证明,ADE ABC ∽可得2.3DE AD BC AB ==【详解】解: AD BD =21,2,3AD AB ∴= DE ∥BC ,,ADE ABC ∴ ∽ 2,3DE AD BC AB ∴== 故选D 【点睛】本题考查的是相似三角形的判定与性质,证明ADE ABC △△∽是解本题的关键.5.(2022·内蒙古包头)如图,在边长为1的小正方形组成的网格中,A ,B ,C ,D 四个点均在格点上,AC 与BD 相交于点E ,连接,AB CD ,则ABE △与CDE △的周长比为( )A .1:4B .4:1C .1:2D .2:1【答案】D 【分析】运用网格图中隐藏的条件证明四边形DCBM 为平行四边形,接着证明ABE CDE ∽,最后利相似三角形周长的比等于相似比即可求出.【详解】如图:由题意可知,3DM =,3BC =, ∴DM BC =,而DM BC ∥,∴四边形DCBM 为平行四边形,∴AB DC ∥,∴BAE DCE ∠=∠,ABE CDE ∠=∠,∴ABE CDE ∽,∴21ABE CDE C AB C CD ===△△.故选:D .【点睛】本题考查了平行四边形的判定与性质、相似三角形的判定与性质及勾股定理,熟练掌握相关知识并正确计算是解题关键.6.(2022·黑龙江绥化)如图,在矩形ABCD 中,P 是边AD 上的一个动点,连接BP ,CP ,过点B 作射线,交线段CP 的延长线于点E ,交边AD 于点M ,且使得ABE CBP =∠∠,如果2AB =,5BC =,AP x =,PM y =,其中25x < .则下列结论中,正确的个数为( )(1)y 与x 的关系式为4y x x =-;(2)当4AP =时,ABP DPC ∽;(3)当4AP =时,3tan 5EBP ∠=.A .0个B .1个C .2个D .3个【答案】C 【分析】(1)证明ABM APB ∽,得AB AM AP AB=,将2AB =,AP x =,PM y =代入,即可得y 与x 的关系式;(2)利用两组对应边成比例且夹角相等,判定ABP DPC ∽;(3)过点M 作MF BP ⊥垂足为F ,在Rt APB △中,由勾股定理得BP 的长,证明FPM APB ∽,求出MF ,PF ,BF 的长,在Rt BMF △中,求出tan EBP ∠的值即可.【详解】解:(1)∵在矩形ABCD 中,∴AD BC ∥,90A D ∠=∠=︒,5BC AD ==,2AB DC ==,∴APB CBP ∠=∠,∵ABE CBP =∠∠,∴ABE APB ∠=∠,∴ABM APB ∽,∴AB AM AP AB=,∵2AB =,AP x =,PM y =,∴22x y x -=,解得:4y x x=-,故(1)正确;(2)当4AP =时,541DP AD AP =-=-=,∴12DC DP AP AB ==,又∵90A D ∠=∠=︒,∴ABP DPC ∽,故(2)正确;(3)过点M 作MF BP ⊥垂足为F ,∴90A MFP MFB ∠=∠=∠=︒,∵当4AP =时,此时4x =,4413y x x =-=-=,∴3PM =,在Rt APB 中,由勾股定理得:222BP AP AB =+,∴BP ===,∵FPM APB ∠=∠,∴FPM APB ∽,∴MF PF PM AB AP PB ==,∴24MF PF ==∴MF =PF =∴BF BP PF =-=∴3tan 4MF EBP BF ∠===故(3)不正确;故选:C .【点睛】本题主要考查相似三角形的判定和性质,勾股定理的应用,矩形的性质,正确找出相似三角形是解答本题的关键.7.(2022·湖北鄂州)如图,定直线MN ∥PQ ,点B 、C 分别为MN 、PQ 上的动点,且BC =12,BC 在两直线间运动过程中始终有∠BCQ =60°.点A 是MN 上方一定点,点D 是PQ 下方一定点,且AE ∥BC ∥DF ,AE =4,DF =8,ADBC 在平移过程中,AB +CD 的最小值为()A .B .C .D .【答案】C 【分析】如图所示,过点F 作FH CD ∥交BC 于H ,连接EH ,可证明四边形CDFH 是平行四边形,得到CH =DF =8,CD =FH ,则BH =4,从而可证四边形ABHE 是平行四边形,得到AB =HE ,即可推出当E 、F 、H 三点共线时,EH +HF 有最小值EF 即AB +CD 有最小值EF ,延长AE 交PQ 于G ,过点E 作ET ⊥PQ 于T ,过点A 作AL ⊥PQ 于L ,过点D 作DK ⊥PQ 于K ,证明四边形BEGC 是平行四边形,∠EGT =∠BCQ =60°,得到EG =BC =12,然后通过勾股定理和解直角三角形求出ET 和TF 的长即可得到答案.【详解】解:如图所示,过点F 作FH CD ∥交BC 于H ,连接EH ,∵BC DF FH CD ∥∥,,∴四边形CDFH 是平行四边形,∴CH =DF =8,CD =FH ,∴BH =4,∴BH =AE =4,又∵AE BC ∥,∴四边形ABHE 是平行四边形,∴AB =HE ,∵EH FH EF +≥,∴当E 、F 、H 三点共线时,EH +HF 有最小值EF 即AB +CD 有最小值EF ,延长AE 交PQ 于G ,过点E 作ET ⊥PQ 于T ,过点A 作AL ⊥PQ 于L ,过点D 作DK ⊥PQ 于K ,∵MN PQ BC AE ∥∥,,∴四边形BEGC 是平行四边形,∠EGT =∠BCQ =60°,∴EG =BC =12,∴=cos =6=sin GT GE EGT ET GE EGT ⋅⋅∠,∠,同理可求得8GL AL ==,,4KF DK ==,,∴2TL =,∵AL ⊥PQ ,DK ⊥PQ ,∴AL DK ∥,∴△ALO ∽△DKO ,∴2AL AO DK DO==,∴2133AO AD DO AD ====∴24OL OK ===,,∴42TF TL OL OK KF =+++=,∴EF ==故选C .【点睛】本题主要考查了平行四边形的性质与判定,相似三角形的性质与判定,勾股定理,解直角三角形,正确作出辅助线推出当E 、F 、H 三点共线时,EH +HF 有最小值EF 即AB +CD 有最小值EF 是解题的关键.8.(2022·广西贵港)如图,在边长为1的菱形ABCD 中,60ABC ∠=︒,动点E 在AB 边上(与点A 、B 均不重合),点F 在对角线AC 上,CE 与BF 相交于点G ,连接,AG DF ,若AF BE =,则下列结论错误的是( )A .DF CE =B .120BGC ∠=︒C .2AF EG EC =⋅D .AG【答案】D【分析】先证明△BAF ≌△DAF ≌CBE ,△ABC 是等边三角形,得DF =CE ,判断A 项答案正确,由∠GCB +∠GBC =60゜,得∠BGC =120゜,判断B 项答案正确,证△BEG ∽△CEB 得BE CE GE BE= ,即可判断C 项答案正确,由120BGC ∠=︒,BC =1,得点G 在以线段BC 为弦的弧BC 上,易得当点G 在等边△ABC 的内心处时,AG 取最小值,由勾股定理求得AG D 项错误.【详解】解:∵四边形ABCD 是菱形,60ABC ∠=︒,∴AB =AD =BC =CD ,∠BAC =∠DAC =12∠BAD =12(180)ABC ⨯︒-∠=60ABC ︒=∠,∴△BAF ≌△DAF ≌CBE ,△ABC 是等边三角形,∴DF =CE ,故A 项答案正确,∠ABF =∠BCE ,∵∠ABC =∠ABF +∠CBF =60゜,∴∠GCB +∠GBC =60゜,∴∠BGC =180゜-60゜=180゜-(∠GCB +∠GBC )=120゜,故B 项答案正确,∵∠ABF =∠BCE ,∠BEG =∠CEB ,∴△BEG ∽△CEB ,∴BE CE GE BE = ,∴2BE GE CE = ,∵AF BE =,∴2AF GE CE = ,故C 项答案正确,∵120BGC ∠=︒,BC =1,点G 在以线段BC 为弦的弧BC 上,∴当点G 在等边△ABC 的内心处时,AG 取最小值,如下图,∵△ABC 是等边三角形,BC =1,∴BF AC ⊥,AF =12AC =12,∠GAF =30゜,∴AG =2GF ,AG 2=GF 2+AF 2,∴2221122AG AG ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭, 解得AG D 项错误,故应选:D【点睛】本题主要考查了菱形的基本性质、等边三角形的判定及性质、圆周角定理,熟练掌握菱形的性质是解题的关键.9.(2022·贵州贵阳)如图,在ABC 中,D 是AB 边上的点,B ACD ∠=∠,:1:2AC AB =,则ADC 与ACB △的周长比是( )A .B .1:2C .1:3D .1:4【答案】B 【分析】先证明△ACD ∽△ABC ,即有12AC AD CD AB AC BC ===,则可得12AC AD CD AB AC BC ++=++,问题得解.【详解】∵∠B =∠ACD ,∠A =∠A ,∴△ACD ∽△ABC ,∴AC AD CD AB AC BC ==,∵12AC AB =,∴12AC AD CD AB AC BC ===,∴12AC AD CD AC AD CD AB AC BC AB AC BC ++====++,∴△ADC 与△ACB 的周长比1:2,故选:B .【点睛】本题主要考查了相似三角形的判定与性质,证明△ACD ∽△ABC 是解答本题的关键.10.(2022·广西)已知△ABC 与△A 1B 1C 1是位似图形,位似比是1:3,则△ABC 与△A 1B 1C 1的面积比( )A .1 :3B .1:6C .1:9D .3:1【答案】C【分析】根据位似图形的面积比等于位似比的平方,即可得到答案.【详解】∵△ABC 与△A 1B 1C 1是位似图形,位似比是1:3,∴△ABC 与△A 1B 1C 1的面积比为1:9,故选:C .【点睛】本题考查位似图形的性质,熟练掌握位似图形的面积比等于位似比的平方是解题的关键.11.(2022·山东临沂)如图,在ABC 中,∥DE BC ,23AD DB =,若6AC =,则EC =( )A .65B .125C .185D .245【答案】C【分析】由∥DE BC ,23AD DB =,可得2,3AD AE DB EC ==再建立方程即可.【详解】解: ∥DE BC ,23AD DB =,2,3AD AE DB EC ∴== 6AC =,62,3CE CE -∴= 解得:18.5CE =经检验符合题意故选C 【点睛】本题考查的是平行线分线段成比例,证明“23AD AE DB EC ==”是解本题的关键.12.(2022·山东威海)由12个有公共顶点O 的直角三角形拼成如图所示的图形,∠AOB =∠BOC =∠COD =…=∠LOM =30°.若S △AOB =1,则图中与△AOB 位似的三角形的面积为( )A .(43)3B .(43)7C .(43)6D .(34)6【答案】C【分析】根据题意得出A 、O 、G 在同一直线上,B 、O 、H 在同一直线上,确定与△AOB 位似的三角形为△GOH ,利用锐角三角函数找出相应规律得出OG=6x ,再由相似三角形的性质求解即可.【详解】解:∵∠AOB =∠BOC =∠COD =…=∠LOM =30°∴∠AOG =180°,∠BOH =180°,∴A 、O 、G 在同一直线上,B 、O 、H 在同一直线上,∴与△AOB 位似的三角形为△GOH ,设OA =x ,则OB=1cos30OA x ==︒,∴OC=24cos303OB x x ==︒,∴OD=3cos30OC x ==︒,…∴OG=6x ,∴6OG OA =,∴12643GOH AOB S S ⎛⎫== ⎪⎝⎭ ,∵1AOB S = ,∴643GOH S ⎛⎫= ⎪⎝⎭ ,故选:C .【点睛】题目主要考查利用锐角三角函数解三角形,找规律问题,相似三角形的性质等,理解题意,找出相应边的比值规律是解题关键.二.填空题13.(2022·贵州黔东南)如图,折叠边长为4cm 的正方形纸片ABCD ,折痕是DM ,点C 落在点E 处,分别延长ME 、DE 交AB 于点F 、G ,若点M 是BC 边的中点,则FG =______cm.【答案】53【分析】根据折叠的性质可得DE =DC =4,EM =CM =2,连接DF ,设FE =x ,由勾股定理得BF ,DF ,从而求出x 的值,得出FB ,再证明FEG FBM ∆∆ ,利用相似三角形对应边成比例可求出FG .【详解】解:连接,DF 如图,∵四边形ABCD 是正方形,∴4,90.AB BC CD DA A B C CDA ︒====∠=∠=∠=∠=∵点M 为BC 的中点,∴114222BM CM BC ===⨯=由折叠得,2,4,ME CM DE DC ====∠90,DEM C ︒=∠=∴∠90DEF ︒=,90,FEG ∠=︒设,FE x =则有222DF DE EF =+∴2224DF x =+又在Rt FMB ∆中,2,2FM x BM =+=,∵222FM FB BM =+∴FB ==∴4AF AB FB =-=在Rt DAF ∆中,222,DA AF DF +=∴2224(44,x +=+解得,124,83x x ==-(舍去)∴4,3FE =∴410233FM FE ME =+=+=∴83FB ==∵∠90DEM ︒=∴∠90FEG ︒=∴∠,FEG B =∠又∠.GFE MFB =∠∴△FEG FBM∆ ∴,FG FE FM FB=即4310833FG =∴5,3FG =故答案为:53【点睛】本题主要考查了正方形的性质,折叠的性质,勾股定理,相似三角形的判定与性质,正确作出辅助线是解答本题的关键.14.(2022·上海)如图,在△ABC 中,∠A =30°,∠B =90°,D 为AB 中点,E 在线段AC 上,AD DE AB BC=,则AE AC =_____.【答案】12或14【分析】由题意可求出12DE BC =,取AC 中点E 1,连接DE 1,则DE 1是△ABC 的中位线,满足112DE BC =,进而可求此时112AE AC =,然后在AC 上取一点E 2,使得DE 1=DE 2,则212DE BC =,证明△DE1E2是等边三角形,求出E1E2=14AC ,即可得到214AE AC =,问题得解.【详解】解:∵D 为AB中点,∴12AD DE AB BC ==,即12DE BC =,取AC 中点E 1,连接DE 1,则DE 1是△ABC 的中位线,此时DE 1∥BC ,112DE BC =,∴112AE AD AC AB ==,在AC 上取一点E 2,使得DE 1=DE 2,则212DE BC =,∵∠A =30°,∠B =90°,∴∠C =60°,BC =12AC ,∵DE 1∥BC ,∴∠DE1E2=60°,∴△DE1E2是等边三角形,∴DE 1=DE 2=E1E2=12BC ,∴E1E2=14AC ,∵112AE AC =,∴214AE AC =,即214AE AC =,综上,AE AC 的值为:12或14,故答案为:12或14.【点睛】本题考查了三角形中位线的性质,平行线分线段成比例,等边三角形的判定和性质以及含30°角的直角三角形的性质等,根据12DE BC =进行分情况求解是解题的关键.15.(2022·北京)如图,在矩形ABCD 中,若13,5,4AF AB AC FC ===,则AE 的长为_______.【答案】1【分析】根据勾股定理求出BC ,以及平行线分线段成比例进行解答即可.【详解】解:在矩形ABCD 中:AD BC ∥,90ABC ∠=︒,∴14AE AF BC FC ==,4BC =,∴144AE =,∴1AE =,故答案为:1.【点睛】此题考查了勾股定理以及平行线分线段成比例,掌握平行线分线段成比例是解题的关键.16.(2022·江苏常州)如图,在Rt ABC △中,90C ∠=︒,9AC =,12BC =.在Rt DEF 中,90F ∠=︒,3DF =,4EF =.用一条始终绷直的弹性染色线连接CF ,Rt DEF 从起始位置(点D 与点B 重合)平移至终止位置(点E 与点A 重合),且斜边DE 始终在线段AB 上,则Rt ABC △的外部被染色的区域面积是______.【答案】28【分析】过点F 作AB 的垂线交于G ,同时在图上标出,,M N F '如图,需要知道的是Rt ABC 的被染色的区域面积是MNF F S '梯形,所以需要利用勾股定理,相似三角形、平行四边形的判定及性质,求出相应边长,即可求解.【详解】解:过点F 作AB 的垂线交于G ,同时在图上标出,,M N F '如下图:90C ∠=︒ ,9AC =,12BC =,15AB ∴==,在Rt DEF 中,90F ∠=︒,3DF =,4EF =.5DE ∴==,15510AE AB DE =-=-= ,//,EF AF EF AF ''= ,∴四边形AEFF '为平行四边形,10AE FF '∴==,11622DEF S DF EF DE GF =⋅=⋅= ,解得:125GF =, //DF AC ,,DFM ACM FDM CAM ∴∠=∠∠=∠,DFM ACM ∴ ∽,13DM DF AM AC ∴==,1115344DM AM AB ∴===,//BC AF ' ,同理可证:ANF DNC ' ∽,13AF AN BC DN '∴==,345344DN AN AB ∴===,451530444MN DN DM ∴=-=-=,Rt ABC 的外部被染色的区域面积为130121028245MNF F S '⎛⎫=⨯+⨯= ⎪⎝⎭梯形,故答案为:28.【点睛】本题考查了直角三角形,相似三角形的判定及性质、勾股定理、平行四边形的判定及性质,解题的关键是把问题转化为求梯形的面积.17.(2022·广西)数学兴趣小组通过测量旗杆的影长来求旗杆的高度,他们在某一时刻测得高为2米的标杆影长为1.2米,此时旗杆影长为7.2米,则旗杆的高度为______米.【答案】12【分析】根据同时、同地物高和影长的比不变,构造相似三角形,然后根据相似三角形的性质解答.【详解】解:设旗杆为AB ,如图所示:根据题意得:ABC DEF ∆∆ ,∴DE EF AB BC= ∵2DE =米, 1.2EF =米,7.2BC =米,∴2 1.2=7.2AB 解得:AB =12米.故答案为:12.【点睛】本题考查了中心投影、相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.18.(2022·广东深圳)已知ABC 是直角三角形,90,3,5,B AB BC AE ∠=︒===连接CE 以CE 为底作直角三角形CDE 且,CD DE =F 是AE 边上的一点,连接BD 和,BF BD 且45,FBD ∠=︒则AF 长为______.【分析】将线段BD 绕点D 顺时针旋转90︒,得到线段HD ,连接BH ,HE ,利用SAS 证明EDH CDB ∆≅∆,得5EH CB ==,90HED BCD ∠=∠=︒,从而得出////HE DC AB ,则ABF EHF ∆∆∽,即可解决问题.【详解】解:将线段BD 绕点D 顺时针旋转90︒,得到线段HD ,连接BH ,HE ,BDH ∴∆是等腰直角三角形,又EDC ∆ 是等腰直角三角形,HD BD ∴=,EDH CDB ∠=∠,ED CD =,()EDH CDB SAS ∴∆≅∆,5EH CB ∴==,90HED BCD ∠=∠=︒,90EDC ∠=︒ ,90ABC ∠=︒,////HE DC AB ∴,,ABF EHF BAF HEF ∴∠=∠∠=∠,ABF EHF ∴∆∆∽,∴==-AB AF AF EH EF AE AF ,AE =∴35=AF ∴=,【点睛】本题主要考查了等腰直角三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质等知识,解题的关键是作辅助线构造全等三角形.19.(2022·广西河池)如图,把边长为1:2的矩形ABCD 沿长边BC ,AD 的中点E ,F 对折,得到四边形ABEF ,点G ,H 分别在BE ,EF 上,且BG =EH =25BE =2,AG 与BH 交于点O ,N 为AF 的中点,连接ON ,作OM ⊥ON 交AB 于点M ,连接MN ,则tan ∠AMN =_____.【答案】58##0.625【分析】先判断出四边形ABEF 是正方形,进而判断出△ABG ≌△BEH ,得出∠BAG =∠EBH ,进而求出∠AOB =90°,再判断出△AOB ~△ABG ,求出OA OB ==△OBM ~△OAN ,求出BM =1,即可求出答案.【详解】解:∵点E ,F 分别是BC ,AD 的中点,∴11,22AF AD BE BC ==,∵四边形ABCD 是矩形,∴∠A =90°,AD ∥BC ,AD =BC ,∴12AF BE AD ==,∴四边形ABEF 是矩形,由题意知,AD =2AB ,∴AF =AB ,∴矩形ABEF 是正方形,∴AB =BE ,∠ABE =∠BEF =90°,∵BG =EH ,∴△ABG≌△BEH(SAS),∴∠BAG=∠EBH,∴∠BAG+∠ABO=∠EBH+∠ABO=∠ABG=90°,∴∠AOB=90°,∵BG=EH=25BE=2,∴BE=5,∴AF=5,∴AG==∵∠OAB=∠BAG,∠AOB=∠ABG,∴△AOB∽△ABG,∴OA OB ABAB BG AG==,即52OA OB==∴OA OB==∵OM⊥ON,∴∠MON=90°=∠AOB,∴∠BOM=∠AON,∵∠BAG+∠FAG=90°,∠ABO+∠EBH=90°,∠BAG=∠EBH,∴∠OBM=∠OAN,∴△OBM~△OAN,∴OB BM OA AN=,∵点N是AF的中点,∴1522AN AF==,52BM=,解得:BM=1,∴AM=AB-BM=4,∴552tan48ANAMNAM∠===.故答案为:5 8【点睛】此题主要考查了矩形性质,正方形性质和判定,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,求出BM 是解本题的关键.20.(2022·内蒙古赤峰)如图,为了测量校园内旗杆AB 的高度,九年级数学应用实践小组,根据光的反射定律,利用镜子、皮尺和测角仪等工具,按以下方式进行测量:把镜子放在点O 处,然后观测者沿着水平直线BO 后退到点D ,这时恰好能在镜子里看到旗杆顶点A ,此时测得观测者观看镜子的俯角α=60°,观测者眼睛与地面距离CD =1.7m ,BD =11m ,则旗杆AB 的高度约为_________m . 1.7≈)【答案】17【分析】如图容易知道CD ⊥BD ,AB ⊥BD ,即∠CDO =∠ABO =90°.由光的反射原理可知∠COD =∠AOB =60°,这样可以得到△COD ∽△AOB ,然后利用对应边成比例就可以求出AB .【详解】解:由题意知∠COD =∠AOB =60°,∠CDE =∠ABE =90°,∵CD =1.7m ,∴OD =60CD tan =︒≈1(m),∴OB =11-1=10(m),∴△COD ∽△AOB .∴CD OD AB OB =,即1.7110AB =,∴AB =17(m),答:旗杆AB 的高度约为17m .故答案为:17.【点睛】本题考查了解直角三角形的应用,相似三角形的应用,本题只要是把实际问题抽象到相似三角形中,利用相似三角形的性质就可以求出结果.21.(2022·湖北鄂州)如图,在边长为6的等边△ABC 中,D 、E 分别为边BC 、AC 上的点,AD 与BE 相交于点P ,若BD =CE =2,则△ABP 的周长为 _____.【答案】6+【分析】如图所示,过点E 作EF ⊥AB 于F ,先解直角三角形求出AF ,EF ,从而求出BF ,利用勾股定理求出BE 的长,证明△ABD ≌△BCE 得到∠BAD =∠CBE ,AD =BE ,再证明△BDP ∽△ADB ,得到62BP PD==,即可求出BP ,PD ,从而求出AP ,由此即可得到答案.【详解】解:如图所示,过点E 作EF ⊥AB 于F ,∵△ABC 是等边三角形,∴AB =BC ,∠ABD =∠BAC =∠BCE =60°,∵CE =BD =2,AB =AC =6,∴AE =4,∴cos 2sin AF AE EAF EF AE EAF =⋅∠==⋅∠=,,∴BF =4,∴BE =又∵BD =CE ,∴△ABD ≌△BCE (SAS ),∴∠BAD =∠CBE ,AD =BE ,又∵∠BDP =∠ADB ,∴△BDP ∽△ADB ,∴BD BP DP AD AB BD==,62BP PD==,∴BP PD =∴AP AD AP =-=,∴△ABP 的周长=6AB BP AP ++=故答案为:6+【点睛】本题主要考查了等边三角形的性质,解直角三角形,勾股定理,相似三角形的性质与判定,全等三角形的性质与判定,正确作出辅助线是解题的关键.22.(2022·山东潍坊)《墨子·天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD 的面积为4,以它的对角线的交点为位似中心,作它的位似图形A B C D '''',若:2:1A B AB ='',则四边形A B C D ''''的外接圆的周长为___________.【答案】【分析】根据正方形ABCD 的面积为4,求出2AB =,根据位似比求出4A B ''=,周长即可得出;【详解】解: 正方形ABCD 的面积为4,∴2AB =,:2:1A B AB ''=,∴4A B ''=,∴A C ''==所求周长=;故答案为:.【点睛】本题考查位似图形,涉及知识点:正方形的面积,正方形的对角线,圆的周长,解题关键求出正方形ABCD 的边长.23.(2022·内蒙古包头)如图,在Rt ABC 中,90ACB ∠=︒,3AC BC ==,D 为AB 边上一点,且BD BC =,连接CD ,以点D 为圆心,DC 的长为半径作弧,交BC 于点E (异于点C ),连接DE ,则BE的长为___________.【答案】3##3-+【分析】过点D 作DF ⊥BC 于点F ,根据题意得出DC DE =,根据等腰三角形性质得出CF EF =,根据90ACB ∠=︒,3AC BC ==,得出AB =CF x =,则3BF x =-,证明DF AC ,得出BF BDCF AD=,列出关于x 的方程,解方程得出x 的值,即可得出3BE =.【详解】解:过点D 作DF ⊥BC 于点F ,如图所示:根据作图可知,DC DE =,∵DF ⊥BC ,∴CF EF =,∵90ACB ∠=︒,3AC BC ==,∴AB ===∵3BD BC ==,∴3AD =,设CF x =,则3BF x =-,∵90ACB ∠=︒,∴AC BC ⊥,∵DF BC ⊥,∴DF AC ,∴BF BDCF AD =,即3x x -=,解得:x =,∴226CE x ===-,∴3363BE CE =-=-+=.故答案为:3.【点睛】本题主要考查了等腰三角形的性质和判定,勾股定理,平行线分线段成比例定理,平行线的判定,作出辅助线,根据题意求出CF 的长,是解题的关键.24.(2022·江苏泰州)如图上,Δ,90,8,6,ABC C AC BC ∠=== 中O 为内心,过点O 的直线分别与AC 、AB 相交于D 、E ,若DE=CD+BE ,则线段CD 的长为__________.【答案】2或12##12或2【分析】分析判断出符合题意的DE 的情况,并求解即可;【详解】解:①如图,作//DE BC ,OF BC OG AB ⊥⊥,,连接OB ,则OD ⊥AC ,∵//DE BC ,∴OBF BOE ∠=∠∵O 为ABC ∆的内心,∴OBF OBE ∠=∠,∴BOE OBE ∠=∠∴BE OE =,同理,CD OD =,∴DE=CD+BE ,10AB ===∵O 为ABC ∆的内心,∴OF OD OG CD ===,∴BF BG AD AG==,∴6810AB BG AG BC CD AC CD CD CD =+=-+-=-+-=∴2CD =②如图,作DE AB ⊥,由①知,4BE =,6AE =,∵ACB AED CAB EAD ∠=∠∠=∠,∴ABC ADE ∆∆ ∴AB ADAC AE=∴1061582AB AE AD AC ⋅⨯===∴151822CD AC AD =-=-=∵92DE ===∴19422DE BE CD =+=+=∴12CD =故答案为:2或12.【点睛】本题主要考查三角形内心的性质、勾股定理、三角形的相似,根据题意正确分析出符合题意的情况并应用性质定理进行求解是解题的关键.25.(2022·黑龙江绥化)如图,60AOB ∠=︒,点1P 在射线OA 上,且11OP =,过点1P 作11PK OA ⊥交射线OB 于1K ,在射线OA 上截取12PP ,使1211PPPK =;过点2P 作22P K OA ⊥交射线OB 于2K ,在射线OA 上截取23P P ,使2322P P P K =.按照此规律,线段20232023P K 的长为________.20221【分析】解直角三角形分别求得11PK ,22P K ,33P K ,……,探究出规律,利用规律即可解决问题.【详解】解:11PK OA ⊥ ,11OPK ∴△是直角三角形,在11Rt OPK 中,60AOB ∠=︒,11OP =,12111tan 60PP PK OP ∴==⋅︒=11PK OA ⊥ ,22P K OA ⊥,1122PK P K ∴∥,2211OP K OPK ∴△∽△,222111P K OP PK OP ∴=,=221P K ∴,同理可得:2331P K =+,3441P K =,……,11n n n P K -∴=,2022202320231P K ∴=,20221.【点睛】本题考查了图形的规律,解直角三角形,平行线的判定,相似三角形的判定与性质,解题的关键是学会探究规律的方法.26.(2022·黑龙江)如图,在平面直角坐标系中,点1A ,2A ,3A ,4A ……在x 轴上且11OA =,212OA OA =,322OA OA =,432OA OA =……按此规律,过点1A ,2A ,3A ,4A ……作x轴的垂线分别与直线y =交于点1B ,2B ,3B ,4B ……记11OA B ,22OA B △,33 OA B ,44 OA B ……的面积分别为1S ,2S ,3S ,4S ……,则2022S =______.【答案】2【分析】先求出11A B =,可得11OA B S =112233n n A B A B A B A B ⋯⋯∥∥∥∥,从而得到11OA B ∽22OA B △∽33 OA B ∽44 OA B ∽……∽n n OA B △,再利用相似三角形的性质,可得11OA B S ∶22OA B S ∶33OA B S ∶44OA B S ∶……∶n n OA B S =()()()2222231:2:2:2::2n ,即可求解.【详解】解:当x =1时,y =,∴点(1B ,∴11A B =∴11112OA B S =⨯= ,∵根据题意得:112233n n A B A B A B A B ⋯⋯∥∥∥∥,∴11OA B ∽22OA B △∽33 OA B ∽44 OA B ∽……∽n n OA B △,∴11OA B S ∶22OA B S ∶33OA B S ∶44OA B S :……∶n n OA B S = OA 12∶OA 22∶OA 32∶……∶OAn 2,∵11OA =,212OA OA =,322OA OA =,432OA OA =,……,∴22OA =,2342OA ==,3482OA ==,……,12n n OA -=,∴11OA B S ∶22OA B S ∶33OA B S ∶44OA B S ∶……∶n n OA B S =()()()2222231246221:2:2:2::21:2:2:2::2n n --= ,∴11222n n n OA B OA B S S -= ,∴220222202222S ⨯-==故答案为:2【点睛】本题主要考查了图形与坐标的规律题,相似三角形的判定和性质,明确题意,准确得到规律,是解题的关键.27.(2022·广西)如图,在正方形ABCD 中,AB =,对角线,AC BD 相交于点O .点E 是对角线AC 上一点,连接BE ,过点E 作EF BE ⊥,分别交,CD BD 于点F 、G ,连接BF ,交AC 于点H ,将EFH △沿EF 翻折,点H 的对应点H '恰好落在BD 上,得到EFH '△若点F 为CD 的中点,则EGH '△的周长是_________.【答案】5+【分析】过点E 作PQ //AD 交AB 于点P ,交DC 于点Q ,得到BP =CQ ,从而证得BPE ≌EQF △,得到BE =EF ,再利用BC =F 为中点,求得BF ==BE EF ===,再求出2EO ==,再利用AB //FC ,求出ABH CFH △∽△21AH CH ==,求得216833AH =⨯=,18833CH =⨯=,从而得到EH =AH -AE =1610233-=,再求得EOB GOE △∽△得到21242OG ===,求得EG OG =1, 过点F 作FM ⊥AC 于点M ,作FN ⊥OD 于点N ,求得FM =2,MH =23,FN =2,证得Rt FH N '△≌Rt FMH 得到23H N MH '==,从而得到ON =2,NG =1,25133GH '=+=,从而得到答案.【详解】解:过点E 作PQ //AD 交AB 于点P ,交DC 于点Q ,∵AD //PQ ,∴AP =DQ ,BPQ CQE ∠=∠,∴BP =CQ ,∵45ACD ∠=︒,∴BP =CQ =EQ ,∵EF ⊥BE ,∴90PEB FEQ ∠+∠=︒∵90PBE PEB ∠+∠=︒∴PBE FEQ ∠=∠,在BPE 与EQF △中BPQ FQE PB EQPBE FEQ ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BPE ≌EQF △,∴BE =EF ,又∵BC AB ==F 为中点,∴CF =∴BF ==∴BE EF ===,又∵4BO ==,∴2EO ==,∴AE =AO -EO =4-2=2,∵AB //FC ,∴ABH CFH △∽△,∴AB AH CF CH=,21AH CH ==,∵8AC ==, ∴216833AH =⨯=,18833CH =⨯=,∴EH =AH -AE =1610233-=,∵90BEO FEO ∠+∠=︒,+90BEO EBO ∠∠=︒,∴FEO EBO ∠=∠,又∵90EOB EOG ∠=∠=︒,∴EOB GOE△∽△∴EG OG OE BE OE OB==,21242OG ===,∴EG OG =1,过点F 作FM ⊥AC 于点M ,∴FM=MC 2=,∴MH =CH -MC =82233-=, 作FN ⊥OD 于点N ,2,FN ==,在Rt FH N '△与Rt FMH 中FH FH FN FM'=⎧⎨=⎩∴Rt FH N '△≌Rt FHM∴23H N MH '==,∴ON =2,NG =1,∴25133GH '=+=,∴10533EGH C EH EG GH EH EG GH '''=++=++=△,故答案为:【点睛】本题考查了正方形的性质应用,重点是与三角形相似和三角形全等的结合,熟练掌握做辅助线是解题的关键.28.(2022·辽宁)如图,在正方形ABCD 中,E 为AD 的中点,连接BE 交AC 于点F .若6AB =,则AEF 的面积为___________.【答案】3【分析】由正方形的性质可知1113222AE AD AB BC ====,//AD BC ,则有AEF CBF ∽△△,然后可得12EF AE BF BC ==,进而问题可求解.【详解】解:∵四边形ABCD 是正方形,6AB =,∴6AD BC AB ===,//AD BC ,∴AEF CBF ∽△△,∴EF AE BF BC=,∵E 为AD 的中点,∴1113222AE AD AB BC ====,∴12EF AE BF BC ==,192ABE S AE AB =⋅= ,∴13EF BE =,∴133AEF ABE S S == ;故答案为3.【点睛】本题主要考查正方形的性质及相似三角形的性质与判定,熟练掌握正方形的性质及相似三角形的性质与判定是解题的关键.29.(2022·贵州贵阳)如图,在四边形ABCD 中,对角线AC ,BD 相交于点E ,6cm AC BC ==,90ACB ADB ∠=∠=︒.若2BE AD =,则ABE △的面积是_______2cm ,AEB ∠=_______度.【答案】 36-36- 112.5【分析】通过证明ADE BCE ,利用相似三角形的性质求出23m AE =,263m CE =-,再利用勾股定理求出其长度,即可求三角形ABE 的面积,过点E 作EF ⊥AB ,垂足为F ,证明AEF 是等腰直角三角形,再求出AE CE =,继而证明()Rt BCE Rt BFE HL ≅ ,可知122.52EBF EBC ABC ∠=∠=∠=︒,利用外角的性质即可求解.【详解】90,ACB ADB AED BEC ∠=∠=︒∠=∠ ,ADE BCE ∴ ,AD AE BC BE∴=,6,2BC AC BE AD === ,设,2AD m BE m ==,62m AE m∴=,23m AE ∴=,263m CE ∴=-,在Rt BCE 中,由勾股定理得222BC CE BE +=,22226(6)(2)2m m ∴+-=,解得236m =-或236m =+ 对角线AC ,BD 相交于点E ,236m ∴=-,12AE ∴=-,6CE ∴=,∴(2111263622ABE S AE BC =⋅⋅=⨯-⨯=- ,过点E 作EF ⊥AB ,垂足为F ,90,ACB AC BC ∠=︒= ,45BAC ABC AEF ∴∠=∠=︒=∠,6AE AF AE CE ∴====,BE BE = ,()Rt BCE Rt BFE HL ∴≅ ,122.52EBF EBC ABC ∴∠=∠=∠=︒,112.5AEB ACB EBC ∴∠=∠+∠=︒,故答案为:36-,112.5.【点睛】本题考查了相似三角形的判定和性质,勾股定理,等腰直角三角形的判定和性质,全等三角形的判定和性质及三角形外角的性质,熟练掌握知识点是解题的关键.三.解答题30.(2022·河北)如图,某水渠的横断面是以AB 为直径的半圆O ,其中水面截线MN AB ∥.嘉琪在A 处测得垂直站立于B 处的爸爸头顶C 的仰角为14°,点M 的俯角为7°.已知爸爸的身高为1.7m .(1)求∠C 的大小及AB 的长;(2)请在图中画出线段DH ,用其长度表示最大水深(不说理由),并求最大水深约为多少米(结果保留小数点后一位).(参考数据:tan 76︒取4 4.1)【答案】(1)=76C ∠︒, 6.8(m)AB =(2)见详解,约6.0米【分析】(1)由水面截线MN AB ∥可得BC AB ⊥,从而可求得76C ∠=︒,利用锐角三角形的正切值即可求解.(2)过点O 作O H M N ⊥,交MN 于D 点,交半圆于H 点,连接OM ,过点M 作MG ⊥OB 于G ,水面截线MN AB ∥,即可得DH 即为所求,由圆周角定理可得14BOM ∠=︒,进而可得ABC OGM ,利用相似三角形的性质可得4OG GM =,利用勾股定理即可求得GM 的值,从而可求解.(1)解:∵水面截线MN AB∥BC AB ∴⊥,90ABC ∴∠=︒,90=76C CAB ∴∠=︒-∠︒,在t R ABC 中,90ABC ∠=︒, 1.7BC =,tan 76 1.7AB AB BC ∴︒==,解得 6.8(m)AB ≈.(2)过点O 作O H M N ⊥,交MN 于D 点,交半圆于H 点,连接OM ,过点M 作MG ⊥OB 于G ,如图所示:水面截线MN AB ∥,OH AB ⊥,DH MN ∴⊥,GM OD =,DH ∴为最大水深,7BAM ∠=︒ ,214BOM BAM ∴∠=∠=︒,90ABC OGM ∠=∠=︒ ,且14BAC ∠=︒,ABC OGM ∴ ,OG MG AB CB ∴=,即6.8 1.7OG MG =,即4OG GM =,在Rt OGM △中,90OGM ∠=︒, 3.42AB OM =≈,222OG GM OM ∴+=,即2224(3.4)GM GM +=(),解得0.8GM ≈,= 6.80.86DH OH OD ∴-=-≈,∴最大水深约为6.0米.【点睛】本题考查了解直角三角形,主要考查了锐角三角函数的正切值、圆周角定理、相似三角形的判定及性质、平行线的性质和勾股定理,熟练掌握解直角三角形的相关知识是解题的关键.31.(2022·吉林)下面是王倩同学的作业及自主探究笔记,请认真阅读并补充完整.【作业】如图①,直线12l l ∥,ABC 与DBC △的面积相等吗?为什么?解:相等.理由如下:设1l 与2l 之间的距离为h ,则12ABC S BC h =⋅ ,12DBC S BC h =⋅△.∴ABC DBC S S = .【探究】(1)如图②,当点D 在1l ,2l 之间时,设点A ,D 到直线2l 的距离分别为h ,h ',则ABC DBC S h S h ='△△.证明:∵ABC S(2)如图③,当点D 在1l ,2l 之间时,连接AD 并延长交2l 于点M ,则ABC DBC S AM S DM =△△.证明:过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,则90AEM DFM ∠=∠=︒,∴AE ∥ .∴AEM △∽ .∴AE AM DF DM =.由【探究】(1)可知ABC DBC S S =△△ ,∴ABC DBC S AM S DM =△△.(3)如图④,当点D 在2l 下方时,连接AD 交2l 于点E .若点A ,E ,D 所对应的刻度值分别为5,1.5,0,ABC DBC S S △△的值为 .【答案】(1)证明见解析(2)证明见解析(3)73【分析】(1)根据三角形的面积公式可得11,22ABC DBC S S BC h BC h '=⋅=⋅ ,由此即可得证;(2)过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,先根据平行线的判定可得AE DF ,再根据相似三角形的判定可证AEM DFM ~ ,根据相似三角形的性质可得AE AM DF DM=,然后结合【探究】(1)的结论即可得证;(3)过点A 作AM BC ⊥于点M ,过点D 作DN BC ⊥于点N ,先根据相似三角形的判定证出AME DNE ~ ,再根据相似三角形的性质可得73AM AE DN DE ==,然后根据三角形的面积公式可得12ABC S BC AM =⋅ ,12DBC S BC DN =⋅ ,由此即可得出答案.(1)证明:12ABC S BC h =⋅ ,12DBC BC h S '=⋅ ,ABC DBC S h S h ∴='.(2)证明:过点A 作AE BM ⊥,垂足为E ,过点D 作DF BM ⊥,垂足为F ,则90AEM DFM ∠=∠=︒,AE DF ∴∥.AEM DFM ~∴ .AE AM DF DM∴=.由【探究】(1)可知ABC DBC S AE S DF= ,ABC DBC S AM S DM ∴= .(3)解:过点A 作AM BC ⊥于点M ,过点D 作DN BC ⊥于点N ,则90AME DNE ∠=∠=︒,AM DN ∴ ,AME DNE ∴~ ,AM AE DN DE∴=, 点,,A E D 所对应的刻度值分别为5,1.5,0,5 1.5 3.5AE ∴=-=, 1.5DE =,3.571.53AM DN ∴==,又12ABC S BC AM =⋅ ,12DBC S BC DN =⋅ ,73ABCDBC S AM S DN =∴= ,故答案为:73.【点睛】本题考查了相似三角形的判定与性质、平行线的判定、三角形的面积等知识点,熟练掌握相似三角形的判定与性质是解题关键.32.(2022·山东青岛)如图,在Rt ABC △中,90,5cm,3cm ACB AB BC ∠=︒==,将ABC 绕点A 按逆时针方向旋转90︒得到ADE ,连接CD .点P 从点B 出发,沿BA 方向匀速运动,速度为1cm/s ;同时,点Q 从点A 出发,沿AD 方向匀速运动,速度为1cm/s .PQ 交AC 于点F ,连接,CP EQ .设运动时间为(s)(05)t t <<.解答下列问题:(1)当EQ AD ⊥时,求t 的值;(2)设四边形PCDQ 的面积为()2cm S ,求S 与t 之间的函数关系式;(3)是否存在某一时刻t ,使PQ CD ∥?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)16s 5(2)213714210S t t =-+(3)存在,65s 29t =【分析】(1)利用AQE AED △∽△得AQ AE AE AD =,即445t =,进而求解;(2)分别过点C ,P 作,CM AD PN BC ⊥⊥,垂足分别为M ,N ,证ABC CAM △∽△得,AB BC AC CA AM CM ==,求得121655AM CM ==,再证BPN BAC △∽△得BP PN BA AC=,得出45PN t =,根据ABC ACD APQ BPC PCDQ S S S S S S ==+-- 四边形即可求出表达式;(3)当PQ CD ∥时AQP ADC ∠=∠,易证APQ MCD △∽△,得出AP AQ MC MD =,则5161355t t -=,进而求出t 值.(1)解:在Rt ABC △中,由勾股定理得,4AC ===∵ABC 绕点A 按逆时针方向旋转90︒得到ADE。
2023年中考数学专题测试卷:三角形相关综合附答案解析

第1页共7页2023年中考数学专题测试卷:三角形相关综合
一、选择题
1.如图,直线a ∥b ,∠1=85°,∠2=35°,则∠3=(
)A .85°B .60°C .50°D .35°
2.若等腰三角形的腰长为10,底边长为12,则底边上的高为()
A.6
B.7
C.8
D.9
3.如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2m ,梯子的顶端B 到地面的距离为7m ,现将梯子的底端A 向外移动到A ′,使梯子的底端A ′到墙根O 的距离等于3m ,同时梯子的顶端B 下降至B ′,则BB ′()
A .小于1m
B .大于1m
C .等于1m
D .小于或等于1m
4.如图所示,线段AC 的垂直平分线交线段AB 于点D ,︒=∠50A ,则BDC ∠=()
A.︒50
B.︒100
C.︒120
D.︒
1305.如图,在△ABC 和△DEC 中,已知AB=DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是()
A .BC=EC ,∠B=∠E
B .BC=E
C ,AC=DC
C .BC=DC ,∠A=∠
D D .∠B=∠
E ,∠A=∠
D。
中考数学专题复习卷 三角形(含解析)-人教版初中九年级全册数学试题

三角形一、选择题1.在直角三角形中,若勾为3,股为4,则弦为()A. 5B. 6C. 7D. 8【答案】A【解析】:∵在直角三角形中,勾为3,股为4,∴弦为故答案为:A.【分析】根据在直角三角形中,勾是最短的直角边,股是长的直角边,弦是斜边,知道勾和股利用勾股定理,即可得出答案。
2.在▱ABCD中,对角线AC,BD相交于点O,AC=8,BD=10,那么BC的取值X围是()A.8<BC<10B.2<BC<18C.1<BC<8D.1<BC<9【答案】D【解析】:如图∵▱ABCD,AC=8,BD=10,∴OB=BD=5,OC=AC=4∴5-4<BC<5+4,即1<BC<9故答案为:D【分析】根据平行四边形的性质求出OB、OC的长,再根据三角形三边关系定理,建立不等式组,求解即可。
3.如图所示,∠A=50°,∠B=20°,∠D=30°,则∠BCD的度数为()A. 80°B. 100°C. 120°D. 140°【答案】B【解析】如图,延长BC交AD于点E,∵∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,∴∠BCD=∠A+∠B+∠D,∵∠A=50°,∠B=20°,∠D=30°,∴∠BCD=50°+20°+30°=100°,故答案为:B.【分析】延长BC交AD 于点E,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,所以∠BCD=∠A+∠B+∠D,由已知可得∠BCD=50°+20°+30°=100°。
4.如图,BE∥AF,点D是AB上一点,且DC⊥BE于点C,若∠A=35°,则∠ADC的度数()A. 105°B. 115°C. 125°D. 135°【答案】C【解析】:∵BE∥AF,∴∠B=∠A=35°.∵DC⊥BE,∴∠DCB=90°,∴∠ADC=90°+35°=125°.故答案为:C.【分析】由平行线的性质可得∠B=∠A=35°,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠ADC=90°+35°=125°。
2023年中考数学----全等三角形的判定与性质知识回顾与专项练习题(含答案解析)

2023年中考数学----全等三角形的判定与性质知识回顾与专项练习题(含答案解析)知识回顾1.三角形的三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。
三角形的三边一旦确定,这三角形就固定了,这是三角形具有稳定性。
2.三角形的内角和定理:三角形的三个内角之和等于180°。
3.三角形的外角定理:三角形的一个外角等于它不相邻的两个内角之和。
大于它不相邻的任意一个内角。
4.全等三角形的性质:若两个三角形全等,则他们的对应边相等;对应角相等;对应边上的中线相等,高线相等,角平分线也相等;且这两个三角形的周长和面积均相等。
5.全等三角形的判定:①边边边(SSS):三条边分别对应性相等的两个三角形全等。
②边角边(SAS):两边及其这两边的夹角对应相等的两个三角形全等。
③角边角(ASA):两角及其这两角的夹边对应相等的两个三角形全等。
④角角边(AAS):两角及其其中一角的对边对应相等的两个三角形全等。
⑤直角三角形判定(HL):直角三角形中斜边与其中任意一直角边分别对应相等的两个直角三角形全等。
全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件。
在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形。
专项练习题(含答案解析)1.已知:如图,∠1=∠2,∠3=∠4.求证:AB=AD.【分析】根据邻补角的定义得出∠ACB=∠ACD,利用ASA证明△ACB≌△ACD,根据全等三角形的性质即可得解.【解答】证明:∵∠3=∠4,∴∠ACB=∠ACD,在△ACB和△ACD中,,∴△ACB≌△ACD(ASA),∴AB=AD.2.如图,△ABC是等腰三角形,点D,E分别在腰AC,AB上,且BE=CD,连接BD,CE.求证:BD=CE.【分析】根据等腰三角形的性质得出∠EBC=∠DCB,进而利用SAS证明△EBC与△DCB全等,再利用全等三角形的性质解答即可.【解答】证明:∵△ABC∴∠EBC=∠DCB,在△EBC与△DCB中,,∴△EBC≌△DCB(SAS),∴BD=CE.3.如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠BAD=∠EAC,∠C=50°,求∠D的大小.【分析】由∠BAD=∠EAC可得∠BAC=∠EAD,根据SAS可证△BAC≌△EAD,再根据全等三角形的性质即可求解.【解答】解:∵∠BAD=∠EAC,∴∠BAD+∠CAD=∠EAC+∠CAD,即∠BAC=∠EAD,在△BAC与△EAD中,,∴△BAC≌△EAD(SAS),∴∠D=∠C=50°.4.如图,AC平分∠BAD,CB⊥AB,CD⊥AD,垂足分别为B,D.(1)求证:△ABC≌△ADC;(2)若AB=4,CD=3,求四边形的面积.【分析】(1)由AC平分∠BAD,得∠BAC=∠DAC,根据CB⊥AB,CD⊥AD,得∠B=90°=∠D,用AAS 可得△ABC≌△ADC;(2)由(1)△ABC≌△ADC,得BC=CD=3,S△ABC=S△ADC,求出S△ABC=AB•BC=6,即可得四边形ABCD的面积是12.【解答】(1)证明:∵AC平分∠BAD,∴∠BAC=∠DAC,∵CB⊥AB,CD⊥AD,∴∠B=90°=∠D,在△ABC和△ADC中,,∴△ABC≌△ADC(AAS);(2)解:由(1)知:△ABC≌△ADC,∴BC=CD=3,S△ABC=S△ADC,∴S△ABC=AB•BC=×4×3=6,∴S△ADC=6,∴S四边形ABCD=S△ABC+S△ADC=12,答:四边形ABCD的面积是12.5.如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.【分析】利用平行线的性质得∠EDC=∠B,再利用ASA证明△CDE≌△ABC,可得结论.【解答】证明:∵DE∥AB,∴∠EDC=∠B,在△CDE和△ABC中,,∴△CDE≌△ABC(ASA),∴DE=BC.6.如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.(1)求证:MP=NP;(2)若AB=a,求线段PH的长(结果用含a的代数式表示).【分析】(1)过点M作MQ∥BC,交AC于点Q,根据等边三角形的性质以及平行线的性质可得∠AMQ=∠AQM=∠A=60°,可得△AMQ是等边三角形,易证△QMP≌△CNP(AAS),即可得证;(2)根据等边三角形的性质可知AH=HQ,根据全等三角形的性质可知QP=PC,即可表示出HP的长.【解答】(1)证明:过点M作MQ∥BC,交AC于点Q,如图所示:在等边△ABC中,∠A=∠B=∠ACB=60°,∵MQ∥BC,∴∠AMQ=∠B=60°,∠AQM=∠ACB=60°,∠QMP=∠N,∴△AMQ是等边三角形,∴AM=QM,∵AM=CN,∴QM=CN,在△QMP和△CNP中,,∴△QMP≌△CNP(AAS),∴MP=NP;(2)解:∵△AMQ是等边三角形,且MH⊥AC,∴AH=HQ,∵△QMP≌△CNP,∴QP=CP,∴PH=HQ+QP=AC,∵AB=a,AB=AC,∴PH=a.7.如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠ABC =∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.【分析】(1)根据SSS ABC≌△DEF,即可解决问题;(2)根据全等三角形的性质可得∠A=∠EDF,再根据平行线的判定即可解决问题.【解答】(1)解:在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴在上述三个条件中选取一个条件,使得△ABC≌△DEF,选取的条件为①,判定△ABC≌△DEF的依据是SSS.故答案为:①,SSS;(答案不唯一).(2)证明:∵△ABC≌△DEF.∴∠A=∠EDF,∴AB∥DE.8.在△ABC中,∠ACB=90°,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2.若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.【分析】(1)证明△BCD≌△FCE(SAS),由全等三角形的性质得出∠DBC=∠EFC,证出BD∥EF,则可得出结论;(2)由题意画出图形,延长BC到F,使CF=BC,连接AF,EF,由(1)可知BD∥EF,BD=EF,证出∠AEF=90°,得出∠DHE=90°,由直角三角形的性质可得出结论.【解答】(1)证明:在△BCD和△FCE中,,∴△BCD≌△FCE(SAS),∴∠DBC=∠EFC,∴BD∥EF,∵AF⊥EF,∴BD⊥AF;(2)解:由题意补全图形如下:CD=CH.证明:延长BC到F,使CF=BC,连接AF,EF,∵AC⊥BF,BC=CF,∴AB=AF,由(1)可知BD∥EF,BD=EF,∵AB2=AE2+BD2,∴AF2=AE2+EF2,∴∠AEF=90°,∴AE⊥EF,∴BD⊥AE,∴∠DHE=90°,又∵CD=CE,∴CH=CD=CE.9.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,且点D在线段BC上,连CE.(1)求证:△ABD≌△ACE;(2)若∠EAC=60°,求∠CED的度数.【分析】(1)可利用SAS证明结论;(2)由全等三角形的性质可得∠ACE=∠ABD,利用等腰直角三角形的性质可求得∠ACE=∠ABD=∠AED =45°,再根据三角形的内角和定理可求解∠AEC的度数,进而可求可求解【解答】(1)证明:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵△ABD≌△ACE,∴∠ACE=∠ABD,∵△ABC和△ADE都是等腰直角三角形,∴∠ACE=∠ABD=∠AED=45°,∵∠EAC=60°,∴∠AEC=180°﹣∠ACE﹣∠EAC=180°﹣45°﹣60°=75°,∴∠CED=∠AEC﹣∠AED=75°﹣45°=30°.10.如图,在△ABC中(AB<BC),过点C作CD∥AB,在CD上截取CD=CB,CB上截取CE=AB,连接DE、DB.(1)求证:△ABC≌△ECD;(2)若∠A=90°,AB=3,BD=2,求△BCD的面积.【分析】(1)由CD∥AB得∠ABC=∠ECD,而CD=CB,CE=AB,即可根据全等三角形的判定定理“SAS”证明△ABC≌△ECD;(2))由∠A=90°,根据全等三角形的对应角相等证明∠BED=∠CED=∠A=90°,设BE=x,由BD2﹣BE2=CD2﹣EC2=DE2,列方程(2)2﹣x2=(3+x)2﹣32,解方程求得符合题意的x的值为2,则BC =5,再根据勾股定理求出DE的长,即可求出△BCD的面积.【解答】(1)证明:∵CD∥AB,CD=CB,CE=AB,∴∠ABC=∠ECD,在△ABC和△ECD中,,∴△ABC≌△ECD(SAS).(2)解:∵∠A=90°,∴∠CED=∠A=90°,∴∠BED=180°﹣∠CED=90°,设BE=x,∵EC=AB=3,BD=2,∴CD=BC=3+x,∵BD2﹣BE2=CD2﹣EC2=DE2,∴(2)2﹣x2=(3+x)2﹣32,整理得x2+3x﹣10=0,解得x1=2,x2=﹣5(不符合题意,舍去),∴BE=2,BC=3+2=5,∴DE===4,∴S△BCD=BC•DE=×5×4=10,∴△BCD的面积为10.11.如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt △ADE,其中∠DAE=90°,连接CE.(1)求证:△ABD≌△ACE;(2)若∠BAD=22.5°时,求BD的长.【分析】(1)由“SAS”可证△ACE;(2)由等腰三角形三角形的性质可得BC的长,由角度关系可求∠ADC=67.5°=∠CAD,可得AC=CD =1,即可求解.【解答】(1)证明:∵∠BAC=90°=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵∠BAC=90°,AB=AC=1,∴BC=,∠B=∠ACB=45°,∵∠BAD=22.5°,∴∠ADC=67.5°=∠CAD,∴AC=CD=1,∴BD=﹣1.12.如图,已知矩形ABCD中,AB=8,BC=x(0<x<8),将△ACB沿AC对折到△ACE的位置,AE和CD交于点F.(1)求证:△CEF≌△ADF;(2)求tan∠DAF的值(用含x的式子表示).【分析】(1)根据矩形的性质得到∠B=∠D=90°,BC=AD,根据折叠的性质得到BC=CE,∠E=∠B =90°,等量代换得到∠E=∠D=90°,AD=CE,根据AAS证明三角形全等即可;(2)设DF=a,则CF=8﹣a,根据矩形的性质和折叠的性质证明AF=CF=8﹣a,在Rt△ADF中,根据勾股定理表示出DF的长,根据正切的定义即可得出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,BC=AD,根据折叠的性质得:BC=CE,∠E=∠B=90°,∴∠E=∠D=90°,AD=CE,在△CEF与△ADF中,,∴△CEF≌△ADF(AAS);(2)解:设DF=a,则CF=8﹣a,∵四边形ABCD是矩形,∴AB∥CD,AD=BC=x,∴∠DCA=∠BAC,根据折叠的性质得:∠EAC=∠BAC,∴∠DCA=∠EAC,∴AF=CF=8﹣a,在Rt△ADF中,∵AD2+DF2=AF2,∴x2+a2=(8﹣a)2,∴a=,∴tan∠DAF==.13.如图,△ABC和△DEF,点E,F在直线BC上,AB=DF,∠A=∠D,∠B=∠F.如图①,易证:BC+BE =BF.请解答下列问题:(1)如图②,如图③,请猜想BC,BE,BF之间的数量关系,并直接写出猜想结论;(2)请选择(1)中任意一种结论进行证明;(3)若AB=6,CE=2,∠F=60°,S△ABC=123,则BC=,BF=.【分析】(1)根据图形分别得出答案;(2)利用AAS证明△ABC≌△DFE,得BC=EF,再根据图形可得结论;(3)首先利用含30°角的直角三角形的性质求出BH和AH的长,从而得出BC,再对点E的位置进行分类即可.【解答】解:(1)图②:BC+BE=BF,图③:BE﹣BC=BF;(2)图②:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BC+CE,∴BC+BE=EF+BC+CE=BF;图③:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BF+EF,∴BE﹣BC=BF+EF﹣BC=BF+BC﹣BC=BF;(3)当点E在BC上时,如图,作AH⊥BC于H,∵∠B=∠F=60°,∴∠BAH=30°,∴BH=3,∴AH=3,∵S△ABC=12,∴=12,∴BC=8,∵CE=2,∴BF=BE+EF=8﹣2+8=14;同理,当点E在BC延长线上时,如图②,BF=BC+BE=8+10=18,故答案为:8,14或18.14.△ABC和△ADE都是等边三角形.(1)将△ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有P A+PB =PC(或P A+PC=PB)成立(不需证明);(2)将△ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC 之间有怎样的数量关系?并加以证明;(3)将△ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC 之间有怎样的数量关系?直接写出结论,不需要证明.【分析】(2)证明△ABD≌△ACE(SAS)和△BAF≌△CAP(SAS),得AF=AP,∠BAF=∠CAP,再证明△AFP是等边三角形,最后由线段的和可得结论;(3)如图③,在PC上截取CM=PB,连接AM,同理可得结论.【解答】解:(2)PB=P A+PC,理由如下:如图②,在BP上截取BF=PC,连接AF,∵△ABC、△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC+∠CAD=∠CAD+∠DAE,即∠DAB=∠EAC,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,BF=CP,∴△BAF≌△CAP(SAS),∴AF=AP,∠BAF=∠CAP,∴∠BAC=∠P AF=60°,∴△AFP是等边三角形,∴PF=P A,∴PB=BF+PF=PC+P A;(3)PC=P A+PB,理由如下:如图③,在PC上截取CM=PB,连接AM,同理得:△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,PB=CM,∴△AMC≌△APB(SAS),∴AM=AP,∠BAP=∠CAM,∴∠BAC=∠P AM=60°,∴△AMP是等边三角形,∴PM=P A,∴PC=PM+CM=P A+PB.15.【情境再现】甲、乙两个含45°角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O处.将甲绕点O 顺时针旋转一个锐角到图②位置.按图②作出示意图,并连接AG,BH,如图③所示,AB交HO于E,AC 交OG于F,通过证明△OBE≌△OAF,可得OE=OF.请你证明:AG=BH.【迁移应用】延长GA分别交HO,HB所在直线于点P,D,如图④,猜想并证明DG与BH的位置关系.【拓展延伸】小亮将图②中的甲、乙换成含30°角的直角三角尺如图⑤,按图⑤作出示意图,并连接HB,AG,如图⑥所示,其他条件不变,请你猜想并证明AG与BH的数量关系.【分析】【情境再现】由△OBE≌△OAF,得BE=AF,OE=OF,∠BEO=∠AFO,可证明△BHE≌△AGF (SAS),得BH=AG;【迁移应用】由△BHE≌△AGF,得∠BHE=∠AGF,可得∠AGF+∠GPO=90°,从而∠BHE+∠HPD=90°,∠HDP=90°,故DG⊥BH;【拓展延伸】设AB交OH于T,OG交AC于K,根据△ABC,△HOG是含30°角的直角三角形,AO⊥BC,可得OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,即得△BOT∽△AOK,有===,∠BTO=∠AKO,又OH=GO,可得==,故△BTH∽△AKG,即得==,BH=AG.【解答】【情境再现】证明:由阅读材料知△OBE≌△OAF,∴BE=AF,OE=OF,∠BEO=∠AFO,∴∠BEH=∠AFG,∵OH=OG,∴OH﹣OE=OG﹣OF,即EH=GF,在△BHE和△AGF中,,∴△BHE≌△AGF(SAS),∴BH=AG;【迁移应用】解:猜想:DG⊥BH;证明如下:由【情境再现】知:△BHE≌△AGF,∴∠BHE=∠AGF,∵∠HOG=90°,∴∠AGF+∠GPO=90°,∴∠BHE+∠GPO=90°,∵∠GPO=∠HPD,∴∠BHE+∠HPD=90°,∴∠HDP=90°,∴DG⊥BH;【拓展延伸】解:猜想:BH=AG,证明如下:设AB交OH于T,OG交AC于K,如图:由已知得:△ABC,△HOG是含30°角的直角三角形,AO⊥BC,∴∠AOB=90°,∴OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,∴△BOT∽△AOK,∴===,∠BTO=∠AKO,∴OT=OK,BT=AK,∠BTH=∠AKG,∵OH=GO,∴HT=OH﹣OT=GO﹣OK=(GO﹣OK)=KG,∴==,∴△BTH∽△AKG,∴==,∴BH=AG19。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学三角形习题及
解析
Document number:WTWYT-WYWY-BTGTT-YTTYU-
三角形题目与解析
例1、有5根木条,其中2根完全相同,它们的长为8cm,另外3根分别长4cm,10cm和12cm,用其中的3根组成一个三角形,问:可组成多少个三角形
解:将这5根木条从短到长依次排列为4,8,8,10,12(单位:cm)
∵要组成一个三角形的三条边必须满足任意的两条边之和大于第三边长,∴运用枚举法可知,能组成一个三角形的三条木条为(4,8,8),(4,8,10),(4,8,12),(8,8,10),(8,8,12),和(8,10,12)共六种情况,∴可组成六个不同的三角形。
例2、如图的△ABC中,∠A=96°,延长BC到D,∠ABC与∠ACD的平分线相交于点A1,∠A1BC与∠A1CD 的平分线交于点A2,……,依次类推,设∠A4BC与∠A4CD的平分线交于点A5,求∠A5的大小。
解:从特殊到一般地去思考,去寻找规律。
∵A1B,A1C分别平分∠ABC与∠ACD
∴∠A=∠ACD-∠ABC=2(∠A1CD-∠A1BC)=2∠A1
∴∠A1=2
1
∠A
同理,可证得,作
4
5
2
3
1
2
A
2
1
A
A
2
1
A
A
2
1
A∠
=
∠
∴
∠
=
∠
∠
=
∠,
,
∴∠A5
︒
=
︒
⨯
=
∠
⋅
⎪
⎭
⎫
⎝
⎛
=3
96
32
1
A
´
2
15
例3、△ABC中,高线AD与BE相交于点H,且BH=AC
求∠ABC的度数。
解:本例没有给出图形,解题时应先根据题意画出相应的图。
注意到三角形中高线可在三角形内,边上或三角形外,∴应该分类讨论求解。
但根据题意,本例的图形只有两种情况。
(1)若△ABC为锐角三角形(如图所示)
∵AD⊥BC,BE⊥AC
∴∠ADB=∠AEH=90°
∴∠1=∠2
又AC=BD
∴Rt△ADC
BDH
Rt∆
≅
∴AD=BD
∴∠ABC=45°
(2)若△ABC为钝角三角形(如图所示)
由已知可证得△ACD≌△BHD
∴AD=BD ∴∠DBA=45°
∴∠ABC=135°
∴由①、②可知,∠ABC=45°或∠
ABC=135°
°,连接
证明:本例可考虑用旋转的方法求解。
连接AC,将△ABC绕点A旋转120°,到△AEF
A
B
C D
E
F
(2)
2
BE
AB
AE
3
6
60
tan
BE
CE=
-
=
=
︒
=,
21
14
3
AC
CE
BAC
sin
7
4
2
)3
6(
CE
AE
AC2
2
2
2
=
=
∠
∴
=
+
=
+
=
∴。