高中数学专题训练(教师版)—函数的奇偶性和周期性
高中函数周期性问题(含训练题及解析)

f x-【详解】(2由条件可知函数在区间)(252f=函数在区间[0,4C .(sin)(cos )33f f ππ> D .33(sin )(cos )22f f >【答案】B 【解析】因为()()2f x f x =+,所以()f x 周期为2,因为当[]3,4x ∈时, ()2f x x =-单调递增,所以[]()1,0?,x f x 时∈- 单调递增,因为()f x 偶函数,所以[]()0,1,x f x ∈时 单调递减,因为110sin cos 122<<<,1sin1cos10,>>> 1> sin cos 033ππ>>,331sin cos 022>>> 所以11sin cos 22f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭, ()()sin1cos1f f <, sin cos 33f f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭ ,33sin cos 22f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭.6.已知()f x 是在R 上的奇函数,满足()()2f x f x =-,且[]0,1x ∈时,函数()21x f x =-,函数()()log (1)a g x f x x a =->恰有3个零点,则a 的取值范围是( )A .10,9⎛⎫ ⎪⎝⎭B .11,95⎛⎫ ⎪⎝⎭C .()1,5D .()5,9【答案】D【解析】由题得,令()log ah x x =,定义域为0x >,()()log (1)a g x f x x a =->恰有3个零点,即()f x 和()h x 的图像在定义域内有3个交点,()(2)(2)[2(2)](4)(4)f x f x f x f x f x f x =-=--=---=--=-,故函数()f x 的一个周期是4,又[]0,1x ∈时,函数()21x f x =-,且图像关于轴x=1对称,由此可做出函数(),()f x h x 图像如图,若两个函数有3个交点,则有log 51log 91a a <⎧⎨>⎩,解得59a <<,则a 的取值范围是(5,9).7.已知函数()y f x =的定义域为R ,且满足下列三个条件:∵任意[]12,4,8x x ∈,当12x x <时,都有。
高考数学总复习重点知识专题讲解与训练2---函数的奇偶性单调性周期性综合(解析版)

A.-2
B.0
C.2
D.8
【答案】A
【 解 析 】 由 已 知 可 得 f (x + 4) = − f (x + 2) = f (x) ⇒ f ( x) 的 周 期 T = 4 ⇒ f (2015)
= f (3) = − f (1) = −2 ,故选 A.
12 . 已 知 函 数 f ( x) 的 定 义 域 为 R , 当 x < 0 时 , f ( x) = x3 −1 , 当 −1 ≤ x ≤ 1 时 ,
≥
−
8 9
,则
m
的取值范围是
A.
−∞,
9 4
B.
−∞,
7 3
C.
−∞,
5 2
D.
−∞,
8 3
【答案】B 解析:因为 f (x +1) = 2 f (x) ,所以 f (x) = 2 f (x −1) ,
y
O
1
78
33
2
3
x
当
x ∈ (0,1]
时,
f
(x)
=
x(x
− 1)
∈
−
1 4
, 0
,
当
x ∈ (1,
2] 时,
x
−1∈
(0,1] ,
f
(x)
=
2
f
(x
− 1)
=
2(x
− 1)( x
−
2) ∈
−
1 2
, 0
,
当 x ∈(2,3] 时, x −1∈ (1, 2], f (x) = 2 f (x −1) = 4(x − 2)(x − 3) ∈[−1, 0],
高一函数的奇偶性和周期性知识点+例题+练习 含答案

1.函数的奇偶性奇偶性定义图象特点偶函数一般地,设函数y=f(x)的定义域为A如果对于任意的x∈A,都有f(-x)=f(x),那么称函数y=f(x)是偶函数.关于y轴对称奇函数如果对于任意的x∈A,都有f(-x)=-f(x),那么称函数y=f(x)是奇函数.关于原点对称2.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)偶函数图象不一定过原点,奇函数的图象一定过原点.(×)(2)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.(√)(3)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a>0)的周期函数.(√)(4)若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称.(√)(5)如果函数f(x),g(x)为定义域相同的偶函数,则F(x)=f(x)+g(x)是偶函数.(√)(6)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.(√)1.(2015·福建改编)下列函数中,①y=x;②y=|sin x|;③y=cos x;④y=e x-e-x为奇函数的是________.(填函数序号)答案 ④解析 对于④,f (x )=e x -e -x 的定义域为R ,f (-x )=e -x -e x =-f (x ),故y =e x -e -x 为奇函数.而y =x 的定义域为{x |x ≥0},不具有对称性,故y =x 为非奇非偶函数.y =|sin x |和y =cos x 为偶函数.2.已知f (x )是定义在R 上的奇函数,f (x +1)是偶函数,则f (1)+f (2)+f (3)+f (4)=________. 答案 0解析 由f (x +1)是偶函数得f (-x +1)=f (x +1),又f (x )是定义在R 上的奇函数,所以f (-x +1)=-f (x -1),即-f (x -1)=f (x +1),所以f (x +2)=-f (x ),即f (x )+f (x +2)=0,所以f (1)+f (3)=0,f (2)+f (4)=0,因此f (1)+f (2)+f (3)+f (4)=0. 3.(2015·天津)已知定义在R 上的函数f (x )=2|x-m |-1(m 为实数)为偶函数,记a =f (log 0.53),b=f (log 25),c =f (2m ),则a ,b ,c 的大小关系为______________. 答案 c <a <b解析 由函数f (x )=2|x -m |-1为偶函数,得m =0, 所以f (x )=2|x |-1,当x >0时,f (x )为增函数, log 0.53=-log 23,所以log 25>|-log 23|>0, 所以b =f (log 25)>a =f (log 0.53)>c =f (2m )=f (0).4.(2014·天津)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2, -1≤x <0,x , 0≤x <1,则f (32)=________.答案 1解析 函数的周期是2, 所以f (32)=f (32-2)=f (-12),根据题意得f (-12)=-4×(-12)2+2=1.5.(教材改编)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x (1+x ),则x <0时,f (x )=________. 答案 x (1-x )解析 当x <0时,则-x >0,∴f (-x )=(-x )(1-x ).又f (x )为奇函数,∴f (-x )=-f (x )=(-x )(1-x ), ∴f (x )=x (1-x ).题型一 判断函数的奇偶性例1 判断下列函数的奇偶性: (1)f (x )=x 3-x ; (2)f (x )=(x +1)1-x1+x; (3)f (x )=⎩⎪⎨⎪⎧x 2+x , x <0,-x 2+x , x >0.解 (1)定义域为R ,关于原点对称, 又f (-x )=(-x )3-(-x )=-x 3+x =-(x 3-x ) =-f (x ), ∴函数为奇函数.(2)由1-x1+x ≥0可得函数的定义域为(-1,1].∵函数定义域不关于原点对称, ∴函数为非奇非偶函数.(3)当x >0时,-x <0,f (x )=-x 2+x , ∴f (-x )=(-x )2-x =x 2-x =-(-x 2+x )=-f (x ); 当x <0时,-x >0,f (x )=x 2+x , ∴f (-x )=-(-x )2-x =-x 2-x =-(x 2+x )=-f (x ).∴对于x ∈(-∞,0)∪(0,+∞), 均有f (-x )=-f (x ).∴函数为奇函数.思维升华 (1)利用定义判断函数奇偶性的步骤:(2)分段函数奇偶性的判断,要注意定义域内x 取值的任意性,应分段讨论,讨论时可依据x 的范围取相应的解析式化简,判断f (x )与f (-x )的关系,得出结论,也可以利用图象作判断.(1)下列四个函数:①f (x )=-x |x |;②f (x )=x 3;③f (x )=sin x ;④f (x )=ln xx,同时满足以下两个条件:①定义域内是减函数;②定义域内是奇函数的是________.(2)函数f (x )=log a (2+x ),g (x )=log a (2-x )(a >0且a ≠1),则函数F (x )=f (x )+g (x ),G (x )=f (x )-g (x )分别是______________(填奇偶性). 答案 (1)① (2)偶函数,奇函数解析 (1)①中,f (x )=⎩⎪⎨⎪⎧-x 2,x >0,x 2,x ≤0,由函数性质可知符合题中条件,故①正确;②中,对于比较熟悉的函数f (x )=x 3可知不符合题意,故②不正确;③中,f (x )=sin x 在定义域内不具有单调性,故②不正确;④中,定义域关于原点不对称,故④不正确. (2)F (x ),G (x )定义域均为(-2,2),由已知F (-x )=f (-x )+g (-x )=log a (2-x )+log a (2+x )=F (x ), G (-x )=f (-x )-g (-x )=log a (2-x )-log a (2+x ) =-G (x ),∴F (x )是偶函数,G (x )是奇函数.题型二 函数的周期性例2 (1)设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2≤x ≤0,x ,0<x <1,则f ⎝⎛⎭⎫52=________. (2)已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=______.答案 (1)-1 (2)2.5解析 (1)因为f (x )是周期为3的周期函数, 所以f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫-12+3=f ⎝⎛⎭⎫-12 =4×⎝⎛⎭⎫-122-2=-1. (2)由已知,可得f (x +4)=f [(x +2)+2] =-1f (x +2)=-1-1f (x )=f (x ).故函数的周期为4.∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5). ∵2≤2.5≤3,由题意,得f (2.5)=2.5. ∴f (105.5)=2.5.思维升华 (1)函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值. (2)函数周期性的三个常用结论: ①若f (x +a )=-f (x ),则T =2a , ②若f (x +a )=1f (x ),则T =2a ,③若f (x +a )=-1f (x ),则T =2a (a >0).设函数f (x )(x ∈R )满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=____________. 答案 12解析 ∵f (x +2π)=f (x +π)+sin(x +π)=f (x )+sin x -sin x =f (x ),∴f (x )的周期T =2π, 又∵当0≤x <π时,f (x )=0,∴f ⎝⎛⎭⎫5π6=0, 即f ⎝⎛⎭⎫-π6+π=f ⎝⎛⎭⎫-π6+sin ⎝⎛⎭⎫-π6=0, ∴f ⎝⎛⎭⎫-π6=12,∴f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫4π-π6=f ⎝⎛⎭⎫-π6=12.题型三 函数性质的综合应用命题点1 函数奇偶性的应用例3 (1)已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=x 3+x 2+1,则f (1)+g (1)=________.(2)(2015·课标全国Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 答案 (1)1 (2)1解析 (1)因为f (x )是偶函数,g (x )是奇函数,所以f (1)+g (1)=f (-1)-g (-1)=(-1)3+(-1)2+1=1.(2)f (x )为偶函数,则ln(x +a +x 2)为奇函数,所以ln(x +a +x 2)+ln(-x +a +x 2)=0,即ln(a +x 2-x 2)=0,∴a =1.命题点2 单调性与奇偶性、周期性结合例4 (1)已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a的取值范围为________.(2)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则f (-25),f (11),f (80)的大小关系是__________________. 答案 (1)(-1,4) (2)f (-25)<f (80)<f (11)解析 (1)∵f (x )是定义在R 上的周期为3的偶函数, ∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1,∴2a -3a +1<1,即a -4a +1<0,解得-1<a <4.(2)∵f (x )满足f (x -4)=-f (x ),∴f (x -8)=f (x ),∴函数f (x )是以8为周期的周期函数,则f (-25)=f (-1), f (80)=f (0),f (11)=f (3). 由f (x )是定义在R 上的奇函数, 且满足f (x -4)=-f (x ), 得f (11)=f (3)=-f (-1)=f (1).∵f (x )在区间[0,2]上是增函数, f (x )在R 上是奇函数,∴f (x )在区间[-2,2]上是增函数, ∴f (-1)<f (0)<f (1), 即f (-25)<f (80)<f (11).思维升华 (1)关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题.(2)掌握以下两个结论,会给解题带来方便:①f (x )为偶函数⇔f (x )=f (|x |).②若奇函数在x =0处有意义,则f (0)=0.(1)若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.(2)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为________.答案 (1)-32(2)(-5,0)∪(5,+∞)解析 (1)函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e -3x +1)-ax =ln(e 3x +1)+ax ,化简得ln1+e 3xe 3x +e 6x=2ax =ln e 2ax ,即1+e 3xe 3x +e6x =e 2ax ,整理得e 3x +1=e 2ax +3x (e 3x +1),所以2ax +3x =0,解得a =-32.(2)∵f (x )是定义在R 上的奇函数,∴f (0)=0. 又当x <0时,-x >0, ∴f (-x )=x 2+4x .又f (x )为奇函数,∴f (-x )=-f (x ), ∴f (x )=-x 2-4x (x <0), ∴f (x )=⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0.①当x >0时,由f (x )>x 得x 2-4x >x ,解得x >5;②当x =0时,f (x )>x 无解;③当x <0时,由f (x )>x 得-x 2-4x >x , 解得-5<x <0.综上得不等式f (x )>x 的解集用区间表示为(-5,0)∪(5,+∞).2.忽视定义域致误典例 (1)若函数f (x )=k -2x1+k ·2x在定义域上为奇函数,则实数k =________.(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.易错分析 (1)解题中忽视函数f (x )的定义域,直接通过计算f (0)=0得k =1. (2)本题易出现以下错误:由f (1-x 2)>f (2x )得1-x 2>2x ,忽视了1-x 2>0导致解答失误. 解析 (1)∵f (-x )=k -2-x1+k ·2-x =k ·2x -12x +k,∴f (-x )+f (x )=(k -2x )(2x +k )+(k ·2x -1)·(1+k ·2x )(1+k ·2x )(2x +k )=(k 2-1)(22x +1)(1+k ·2x )(2x +k ).由f (-x )+f (x )=0可得k 2=1, ∴k =±1.(2)画出f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0的图象,由图象可知,若f (1-x 2)>f (2x ),则⎩⎪⎨⎪⎧1-x 2>0,1-x 2>2x ,即⎩⎪⎨⎪⎧-1<x <1,-1-2<x <-1+2,得x ∈(-1,2-1). 答案 (1)±1 (2)(-1,2-1)温馨提醒 (1)已知函数的奇偶性,利用特殊值确定参数,要注意函数的定义域.(2)解决分段函数的单调性问题时,应高度关注:①对变量所在区间的讨论.②保证各段上同增(减)时,要注意左、右段端点值间的大小关系.③弄清最终结果取并集还是交集.[方法与技巧]1.判断函数的奇偶性,首先应该判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. 2.利用函数奇偶性可以解决以下问题①求函数值;②求解析式;③求函数解析式中参数的值;④画函数图象,确定函数单调性. 3.在解决具体问题时,要注意结论“若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期”的应用. [失误与防范]1.f (0)=0既不是f (x )是奇函数的充分条件,也不是必要条件.应用时要注意函数的定义域并进行检验.2.判断分段函数的奇偶性时,要以整体的观点进行判断,不可以利用函数在定义域某一区间上不是奇、偶函数而否定函数在整个定义域的奇偶性.A 组 专项基础训练 (时间:40分钟)1.下列函数中,①y =log 2|x |;②y =cos 2x ;③y =2x -2-x 2;④y =log 22-x 2+x ,既是偶函数又在区间(1,2)上单调递增的是________. 答案 ①解析 对于①,函数y =log 2|x |是偶函数且在区间(1,2)上是增函数;对于②,函数y =cos 2x在区间(1,2)上不是增函数;对于③,函数y =2x -2-x 2不是偶函数;对于④,函数y =log 22-x2+x 不是偶函数.2.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)的值为________. 答案 -4解析 由f (x )是定义在R 上的奇函数,得f (0)=1+m =0,解得m =-1,∴f (x )=3x -1.∵log 35>log 31=0,∴f (-log 35)=-f (log 35)=3log 5(31)--=-4.3.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2 019)=________. 答案 -2解析 ∵f (x +4)=f (x ),∴f (x )是以4为周期的周期函数, ∴f (2 019)=f (504×4+3)=f (3)=f (-1).又f (x )为奇函数,∴f (-1)=-f (1)=-2×12=-2, 即f (2 019)=-2.4.若函数f (x )=(ax +1)(x -a )为偶函数,且函数y =f (x )在x ∈(0,+∞)上单调递增,则实数a 的值为________. 答案 1解析 ∵函数f (x )=(ax +1)(x -a )=ax 2+(1-a 2)x -a 为偶函数, ∴f (-x )=f (x ),即f (-x )=ax 2-(1-a 2)x -a =ax 2+(1-a 2)x -a , ∴1-a 2=0,解得a =±1.当a =1时,f (x )=x 2-1,在x ∈(0,+∞)上单调递增,满足条件.当a =-1时,f (x )=-x 2+1,在x ∈(0,+∞)上单调递减,不满足条件.故a =1.5.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a 的取值范围是____________. 答案 (-2,1)解析 ∵f (x )是奇函数,∴当x <0时,f (x )=-x 2+2x .作出函数f (x )的大致图象如图中实线所示,结合图象可知f (x )是R 上的增函数,由f (2-a 2)>f (a ),得2-a 2>a ,解得-2<a <1.6.函数f (x )在R 上为奇函数,且当x >0时,f (x )=x +1,则当x <0时,f (x )=________. 答案 --x -1解析 ∵f (x )为奇函数,当x >0时,f (x )=x +1,∴当x <0时,-x >0,f (-x )=-x +1=-f (x ),即x <0时,f (x )=-(-x +1)=--x -1. 7.已知定义在R 上的偶函数f (x )在[0,+∞)上单调递增,且f (1)=0,则不等式f (x -2)≥0的解集是____________________.答案 (-∞,1]∪[3,+∞)解析 由已知可得x -2≥1或x -2≤-1,解得x ≥3或x ≤1,∴所求解集是(-∞,1]∪[3,+∞).8.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x ≤1时,f (x )=2x -1,则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=________. 答案 2解析 依题意知:函数f (x )为奇函数且周期为2,∴f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫-12+f (0)+f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫12+f (1)-f ⎝⎛⎭⎫12+f (0)+f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫12+f (1)+f (0)=212-1+21-1+20-1= 2. 9.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ).于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].10.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式;(3)计算f (0)+f (1)+f (2)+…+f (2 016).(1)证明 ∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ).∴f (x )是周期为4的周期函数.(2)解 ∵x ∈[2,4],∴-x ∈[-4,-2],∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8.又f (4-x )=f (-x )=-f (x ),∴-f (x )=-x 2+6x -8,即f (x )=x 2-6x +8,x ∈[2,4].(3)解 ∵f (0)=0,f (1)=1,f (2)=0,f (3)=-1.又f (x )是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2 012)+f (2 013)+f (2 014)+f (2 015)=0.∴f (0)+f (1)+f (2)+…+f (2 016)=f (2 016)=f (0)=0.B 组 专项能力提升(时间:20分钟)11.已知f (x )是定义域为(-1,1)的奇函数,而且f (x )是减函数,如果f (m -2)+f (2m -3)>0,那么实数m 的取值范围是____________.答案 ⎝⎛⎭⎫1,53 解析 ∵f (x )是定义域为(-1,1)的奇函数,∴-1<x <1,f (-x )=-f (x ).∴f (m -2)+f (2m -3)>0可转化为f (m -2)>-f (2m -3),∴f (m -2)>f (-2m +3),∵f (x )是减函数,∴m -2<-2m +3,∵⎩⎪⎨⎪⎧ -1<m -2<1,-1<2m -3<1,m -2<-2m +3.∴1<m <53. 12.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________.答案 -10解析 因为f (x )是定义在R 上且周期为2的函数,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12,且f (-1)=f (1),故f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12,从而12b +212+1=-12a +1,即3a+2b=-2.①由f(-1)=f(1),得-a+1=b+2 2,即b=-2a.②由①②得a=2,b=-4,从而a+3b=-10.13.已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为________.答案7解析因为当0≤x<2时,f(x)=x3-x,又f(x)是R上最小正周期为2的周期函数,且f(0)=0,所以f(6)=f(4)=f(2)=f(0)=0.又f(1)=0,所以f(3)=f(5)=0.故函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为7.14.设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=2x,则有①2是函数f(x)的周期;②函数f(x)在(1,2)上是减函数,在(2,3)上是增函数;③函数f(x)的最大值是1,最小值是0.其中所有正确命题的序号是________.答案①②解析在f(x+1)=f(x-1)中,令x-1=t,则有f(t+2)=f(t),因此2是函数f(x)的周期,故①正确;当x∈[0,1]时,f(x)=2x是增函数,根据函数的奇偶性知,f(x)在[-1,0]上是减函数,根据函数的周期性知,函数f(x)在(1,2)上是减函数,在(2,3)上是增函数,故②正确;由②知f(x)在[0,2]上的最大值f(x)max=f(1)=2,f(x)的最小值f(x)min=f(0)=f(2)=20=1,且f(x)是周期为2的周期函数.∴f(x)的最大值是2,最小值是1,故③错误.15.函数f(x)的定义域为D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性并证明你的结论;(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.解 (1)∵对于任意x 1,x 2∈D , 有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.(2)f (x )为偶函数.证明:令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=12f (1)=0. 令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ), ∴f (-x )=f (x ),∴f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2, 由(2)知,f (x )是偶函数,∴f (x -1)<2⇔f (|x -1|)<f (16).又f (x )在(0,+∞)上是增函数.∴0<|x -1|<16,解之得-15<x <17且x ≠1. ∴x 的取值范围是{x |-15<x <17且x ≠1}.。
2021届新课改高三数学复习:函数的奇偶性与周期性(教师版)

f(x-1)≤f(2x),可得|x-1|≥|2x|,即(x-1)2≥4x2,
1
解得-1≤x≤3.
{ ) -2 ≤ x-1 ≤ 2,
又因为定义域为[-2,2],所以 -2 ≤ 2x ≤ 2,
{ ) -1 ≤ x ≤ 3,
1
解得 -1 ≤ x ≤ 1. ∴-1≤x≤3.
3、函数 y=f(x)在[0,2]上单调递增,且函数 f(x+2)是偶函数,则下列结论成立的是( )
1 (3)若 f(x+a)=-f(x),则 T=2a(a>0). 6、函数图象的对称性 (1)若函数 y=f(x+a)是偶函数,即 f(a-x)=f(a+x),则函数 y=f(x)的图象关于直线 x=a 对称. (2)若对于 R 上的任意 x 都有 f(2a-x)=f(x)或 f(-x)=f(2a+x),则 y=f(x)的图象关于直线 x=a 对称. (3)若函数 y=f(x+b)是奇函数,即 f(-x+b)+f(x+b)=0,则函数 y=f(x)关于点(b,0)中心对称.
A. ①③ B. ①④ C. ②③ D. ③④
【答案】A
x 2, x>0,
f (x) 0,x 0,
【解析】 根据偶函数的定义,①③正确,若举例奇函数
x 2, x<0,
由于 f(-2)=f(2),∴②④都错误.故填写①③.
2、(2019·郴州第二次教学质量检测)已知 f(x)是定义在[2b,1-b]上的偶函数,且在[2b,0]上为增函数,则
『高考复习|学与练』
『汇总归纳·备战高考』
高考复习·学与练
精品资源·备战高考
2
高考复习·学与练
第 9 讲:函数的奇偶性与周期性
1、课程标准 1.结合具体函数,了解函数奇偶性的含义. 2.会运用函数图象理解和研究函数的奇偶性. 3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.
【高中数学函数专题】函数的周期性(解析版)

函数的周期专题六性1.周期函数的定义对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.如果T 是函数y =f (x )的周期,则kT (k ∈Z 且k ≠0)也是y =f (x )的周期,即f (x +kT )=f (x );如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.2.函数周期性常用的结论结论1:若f (x +a )=f (x -a ),则f (x )的一个周期为2a ;结论2:若f (x +a )=-f (x ),则f (x )的一个周期为2a ;结论3:若f (x +a )+f (x )=c (a ≠0),则f (x )的一个周期为2a ;结论4:若f (x )=f (x +a )+f (x -a )(a ≠0),则f (x )的一个周期为6a ;结论5:若f (x +a )=1f (x ),则f (x )的一个周期为2a ;结论6:若f (x +a )=-1f (x ),则f (x )的一个周期为2a ;结论7:若函数f (x )关于直线x =a 与x =b 对称,则f (x )的一个周期为2|b -a |.结论8:若函数f (x )关于点(a ,0)对称,又关于点(b ,0)对称,则f (x )的一个周期为2|b -a |.结论9:若函数f (x )关于直线x =a 对称,又关于点(b ,0)对称,则f (x )的一个周期为4|b -a |.结论7—结论9的记忆:两次对称成周期,两轴两心二倍差,一轴一心四倍差.总规律:在函数的奇偶性、对称性、周期性中,知二断一.即这三条性质中,只要已知两条,则第三条一定成立.考点一已知函数的周期性(显性的),求函数值【方法总结】利用函数的周期性,可将其他区间上的求值等问题,转化到已知区间上,进而解决问题.【例题选讲】[例1](1)若f (x )是R 上周期为2的函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=__________.答案-1解析由f (x +2)=f (x )可得f (3)-f (4)=f (1)-f (2)=1-2=-1.(2)设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )x 2-2,-2≤x ≤0,,0<x <1,则=________.答案14解析由题意可得-2=14,=14.(3)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )+a ,-1≤x <0,|25-x|,0≤x <1,其中a ∈R .若5(2f -=9(2f ,则f (5a )的值是________.答案-25解析:由题意可得5()2f -==-12+a,9()2f =|25-12|=110,则-12+a =110,a =35,故f (5a )=f (3)=f (-1)=-1+35=-25.【高中数学函数专题】(4)函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(-2,2]上,f(x)cosπx2,0<x≤2,x+12|,-2<x≤0,则f(f(15))的值为________.答案22解析由函数f(x)满足f(x+4)=f(x)(x∈R),可知函数f(x)的周期是4,所以f(15)=f(-1)=|-1+12|=12,所以f(f(15))=cosπ4=22.(5)定义在R上的函数f(x),满足f(x+5)=f(x),当x∈(-3,0]时,f(x)=-x-1,当x∈(0,2]时,f(x)=log2x,则f(1)+f(2)+f(3)+…+f(2019)的值等于()A.403B.405C.806D.809答案B解析定义在R上的函数f(x),满足f(x+5)=f(x),即函数f(x)的周期为5.又当x∈(0,2]时,f(x)=log2x,所以f(1)=log21=0,f(2)=log22=1.当x∈(-3,0]时,f(x)=-x-1,所以f(3)=f(-2)=1,f(4)=f(-1)=0,f(5)=f(0)=-1.故f(1)+f(2)+f(3)+…+f(2019)=403×[f(1)+f(2)+f(3)+f(4)+f(5)]+f(2016)+f(2017)+f(2018)+f(2019)=403×1+f(1)+f(2)+f(3)+f(4)=403+0+1+1+0=405.【对点训练】1.已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为________.1.答案7解析因为当0≤x<2时,f(x)=x3-x.又f(x)是R上最小正周期为2的周期函数,且f(0)=0,则f(6)=f(4)=f(2)=f(0)=0.又f(1)=0,∴f(3)=f(5)=f(1)=0,故函数y=f(x)的图象在区间[0,6]上与x轴的交点有7个.2.设f(x)是定义在R上且周期为2的函数,在区间[-1,1]上,f(x)1≤x<0,0≤x≤1,其中a,b∈R.若=a+3b的值为________.2.答案-10解析因为f(x)是定义在R上且周期为2的函数,所以f f(-1)=f(1),故=,从而12b+212+1=-12a+1,即3a+2b=-2,①.由f(-1)=f(1),得-a+1=b+22,即b=-2a,②.由①②得a=2,b=-4,从而a+3b=-10.3.已知函数f(x)(1-x),0≤x≤1,-1,1<x≤2,如果对任意的n∈N*,定义f n(x)={[()]}n ff f f x⋅⋅⋅个,那么f2019(2)的值为()A.0B.1C.2D.33.答案C解析∵f1(2)=f(2)=1,f2(2)=f(1)=0,f3(2)=f(0)=2,f4(2)=f(2)=1,∴f n(2)的值具有周期性,且周期为3,∴f2019(2)=f3×673(2)=f3(2)=2,故选C.4.定义在R上的函数f(x)满足f(x+6)=f(x).当-3≤x<-1时,f(x)=-(x+2)2;当-1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2022)=__________.4.答案337解析由f(x+6)=f(x)可知,函数f(x)的周期为6,由已知条件可得f(1)=1,f(2)=2,f(3)=f(-3)=-1,f(4)=f(-2)=0,f(5)=f(-1)=-1,f(6)=f(0)=0,所以在一个周期内有f(1)+f(2)+f(3)+…+f(6)=1+2-1+0-1+0=1,所以f(1)+f(2)+…+f(2022)=337×1=337.5.已知函数f(x)的定义域为R.当x<0时,f(x)=x3-1;当-1≤x≤1时,f(-x)=-f(x);当x>12时,f(6)=()A.-2B.-1C.0D.25.答案D解析当x>12时,由可得当x>0时,f(x)=f(x+1),所以f(6)=f(1),而f(1)=-f(-1),f(-1)=(-1)3-1=-2,所以f(6)=f(1)=2,故选D.6.对任意的实数x都有f(x+2)-f(x)=2f(1),若y=f(x-1)的图象关于x=1对称,且f(0)=2,则f(2019)+f(2020)=()A.0B.2C.3D.46.答案B解析∵y=f(x-1)的图象关于x=1对称,则函数y=f(x)的图象关于x=0对称,即函数f(x)是偶函数.令x=-1,则f(-1+2)-f(-1)=2f(1),即f(1)-f(1)=2f(1)=0,即f(1)=0.则f(x+2)-f(x)=2f(1)=0,即f(x+2)=f(x),即函数的周期是2,又f(0)=2,则f(2019)+f(2020)=f(1)+f(0)=0+2=2,故选B.考点二已知函数的周期性(隐性1),求函数值【方法总结】已知函数的周期性(隐性1),可利用周期性的性质结论1到结论6,先明确了周期再将其他区间上的求值转化到已知区间上,进而解决问题.【例题选讲】[例2](1)已知定义在R上的函数f(x)满足f(x+1)=-f(x),且f(x),-1<x≤0,1,0<x≤1,则下列函数值为1的是()A.f(2.5)B.f(f(2.5))C.f(f(1.5))D.f(2)答案D解析由f(x+1)=-f(x)知f(x+2)=-f(x+1)=f(x),于是f(x)是以2为周期的周期函数,从而f(2.5)=f(0.5)=-1,f(f(2.5))=f(-1)=f(1)=-1,f(f(1.5))=f(f(-0.5))=f(1)=-1,f(2)=f(0)=1,故选D.(2)已知定义在R上的函数f(x),对任意x∈R,都有f(x+4)=f(x)+f(2)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2018)的值为()A.2018B.-2018C.0D.4答案C解析依题意得,函数y=f(x)的图象关于直线x=0对称,因此函数y=f(x)是偶函数,且f(-2+4)=f(-2)+f(2),即f(2)=f(2)+f(2),所以f(2)=0,所以f(x+4)=f(x),即函数y=f(x)是以4为周期的函数,f(2018)=f(4×504+2)=f(2)=0.(3)已知f(x)是定义在R上的函数,并且f(x+2)=1f(x),当2≤x≤3时,f(x)=x,则f(2022)=__________.答案2解析由f(x+2)=1f(x)得f(x+4)=1f(x+2)=f(x),所以T=4,f(2022)=f(4×505+2)=f(2)=2.(4)已知定义在R上的函数f(x)满足f(2)=2-3,且对任意的x都有f(x+2)=1-f(x),则f(2020)=________.答案-2-3解析由f(x+2)=1-f(x),得f(x+4)=1-f(x+2)=f(x),所以函数f(x)的周期为4,所以f (2020)=f (4).因为f (2+2)=1-f (2),所以f (4)=-1f (2)=-12-3=-2- 3.故f (2020)=-2-3.(5)已知定义在R 上的函数满足f (x +2)=-1f (x ),当x ∈(0,2]时,f (x )=2x -1.则f (1)+f (2)+f (3)+…+f (2018)的值为________.答案1348解析∵f (x +2)=-1f (x ),∴f (x +4)=-1f (x +2)=f (x ),∴函数y =f (x )的周期T =4.又x ∈(0,2]时,f (x )=2x -1,∴f (1)=1,f (2)=3,f (3)=-1f (1)=-1,f (4)=-1f (2)=-13.∴f (1)+f (2)+f (3)+…+f (2018)=504[f (1)+f (2)+f (3)+f (4)]+f (504×4+1)+f (504×4+2)=+3-11+3=1348.【对点训练】7.函数f (x )满足f (x +1)=-f (x ),且当0≤x ≤1时,f (x )=2x (1-x ),则5(2f 的值为()A .12B .14C .-14D .-127.答案A解析由f (x +1)=-f (x )得f (x +2)=f (x ),即函数f (x )的周期为2,则5()2f =2×12×=12,故选A .8.已知f (x )是定义在R 上的函数,且f (x +2)=-f (x ).当x ∈(0,2)时,f (x )=2x 2,则f (7)=()A .-2B .2C .-98D .988.答案A解析由f (x +2)=-f (x ),得f (7)=-f (5)=f (3)=-f (1)=-2.故选A .9.已知定义在R 上的函数f (x )满足f (x )=-f (x +2),当x ∈(0,2]时,f (x )=2x +log 2x ,则f (2019)=()A .5B .12C .2D .-29.答案D解析由f (x )=-f (x +2),得f (x +4)=f (x ),所以函数f (x )是周期为4的周期函数,所以f (2019)=f (504×4+3)=f (3)=f (1+2)=-f (1)=-(2+0)=-2.10.已知函数f (x )对任意x ∈R ,都有f (x +6)+f (x )=0,y =f (x -1)的图象关于点(1,0)对称,且f (2)=4,则f (2014)=()A .0B .-4C .-8D .-1610.答案B解析由题意可知,函数f (x )对任意x ∈R ,都有f (x +6)=-f (x ),∴f (x +12)=f [(x +6)+6]=-f (x +6)=f (x ),∴函数f (x )的周期T =12.把y =f (x -1)的图象向左平移1个单位得y =f (x -1+1)=f (x )的图象,关于点(0,0)对称,因此函数f (x )为奇函数,∴f (2014)=f (167×12+10)=f (10)=f (10-12)=f (-2)=-f (2)=-4.故选B .11.已知定义在R 上的函数f (x )满足f (4)=2-3,且对任意的x 都有f (x +2)=1-f (x ),则f (2018)=()A .-2-3B .-2+3C .2-3D .2+311.答案A解析由f (x +2)=1-f (x )得f (x +4)=f (x ).所以函数f (x )的周期为4,所以f (2018)=f (2).又f (4)=f (2+2)=1-f (2)=2-3,所以-f (2)=12-3=2+3,即f (2)=-2-3,故选A .12.已知f (x )是定义在R 上的函数,且满足f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则________.12.答案52解析∵f (x +2)=-1f (x ),∴f (x +4)=f (x ),∴2≤x ≤3时,f (x )=x ,∴=52,∴=52.考点三已知函数的周期性(隐性2),求函数值【方法总结】已知函数的周期性(隐性2),可利用周期性的性质结论7到结论9,先明确了周期再将其他区间上的求值转化到已知区间上,进而解决问题.【例题选讲】[例3](1)已知函数y =f (x )满足y =f (-x )和y =f (x +2)是偶函数,且f (1)=π3,设F (x )=f (x )+f (-x ),则F (3)=()A .π3B .2π3C .πD .4π3答案B解析由y =f (-x )和y =f (x +2)是偶函数知f (-x )=f (x ),且f (x +2)=f (-x +2),则f (x +2)=f (x -2).∴f (x +4)=f (x ),则y =f (x )的周期为4.所以F (3)=f (3)+f (-3)=2f (3)=2f (-1)=2f (1)=2π3.(2)函数f (x )的定义域为R ,且满足:f (x )是偶函数,f (x -1)是奇函数,若f (0.5)=9,则f (8.5)等于()A .-9B .9C .-3D .0答案B解析因为f (x -1)是奇函数,所以f (-x -1)=-f (x -1),即f (-x )=-f (x -2).又因为f (x )是偶函数,所以f (x )=-f (x -2)=f (x -4),故f (x )的周期为4,所以f (0.5)=f (8.5)=9.故选B .(3)奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (4)+f (5)的值为()A .2B .1C .-1D .-2解析:设g (x )=f (x +1),∵f (x +1)为偶函数,则g (-x )=g (x ),即f (-x +1)=f (x +1).∵f (x )是奇函数,∴f (-x +1)=f (x +1)=-f (x -1),∴f (x +2)=-f (x ),f (x +4)=f (x +2+2)=-f (x +2)=f (x ),则f (4)=f (0)=0,f (5)=f (1)=2,∴f (4)+f (5)=0+2=2,故选A .(4)已知f (x )是定义在R 上的奇函数,f (x +1)是偶函数,当x ∈(2,4)时,f (x )=|x -3|,则f (1)+f (2)+f (3)+f (4)+…+f (2020)=________.答案解析因为f (x )为奇函数,f (x +1)为偶函数,所以f (x +1)=f (-x +1)=-f (x -1),所以f (x+2)=-f (x ),所以f (x +4)=-f (x +2)=f (x ),所以函数f (x )的周期为4,所以f (4)=f (0)=0,f (3)=f (-1)=-f (1).在f (x +1)=f (-x +1)中,令x =1,可得f (2)=f (0)=0,所以f (1)+f (2)+f (3)+f (4)=0,所以f (1)+f (2)+f (3)+f (4)+…+f (2020)=0.(5)设函数f (x )是定义在R 上的奇函数,对任意实数x 有33()()22f x f x +=--成立.若f (1)=2,则f (2)+f (3)=________.答案-2解析由33()()22f x f x +=--,且f (-x )=-f (x ),知f (3+x )=f 32+-f 32-=-f (-x )=f (x ),所以y =f (x )是周期函数,且T =3是其一个周期.因为f (x )为定义在R 上的奇函数,所以f (0)=0,且f (-1)=-f (1)=-2,又T =3是y =f (x )的一个周期,所以f (2)+f (3)=f (-1)+f (0)=-2+0=-2.(6)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f(50)等于()A.-50B.0C.2D.50答案C解析∵f(x)是奇函数,∴f(-x)=-f(x),∴f(1-x)=-f(x-1).∵f(1-x)=f(1+x),∴-f(x -1)=f(x+1),∴f(x+2)=-f(x),∴f(x+4)=-f(x+2)=-[-f(x)]=f(x),∴函数f(x)是周期为4的周期函数.由f(x)为奇函数且定义域为R得f(0)=0,又∵f(1-x)=f(1+x),∴f(x)的图象关于直线x=1对称,∴f(2)=f(0)=0,∴f(-2)=0.又f(1)=2,∴f(-1)=-2,∴f(1)+f(2)+f(3)+f(4)=f(1)+f(2)+f(-1)+f(0)=2+0-2+0=0,∴f(1)+f(2)+f(3)+f(4)+…+f(49)+f(50)=0×12+f(49)+f(50)=f(1)+f(2)=2+0=2,故选C.【对点训练】13.定义在R上的奇函数f(x)满足f(x+1)是偶函数,且当x∈[0,1]时,f(x)=x(3-2x),则()A.12B.-12C.-1D.113.答案C解析∵y=f(x)是定义在R上的奇函数,∴f(-x)=-f(x),∵函数y=f(x+1)是定义在R上的偶函数,∴f(-x+1)=f(x+1)=-f(x-1),f(x+2)=-f(x),可得f(x+4)=-f(x+2)=f(x),则f(x)的周期是4,∴f-12=-=-12·(3-1)=-1,故选C.14.已知偶函数f(x)的定义域为R,若f(x-1)为奇函数,且f(2)=3,则f(5)+f(6)的值为() A.-3B.-2C.2D.314.答案D解析因为f(x-1)是奇函数,所以f(-x-1)=-f(x-1),即f(-x)=-f(x-2).又因为f(x)是偶函数,所以f(x)=-f(x-2)=f(x-4),故f(x)的周期为4,所以f(5)+f(6)=f(1)+f(2)=0+3=3.选D.15.偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(-1)=________.15.答案3解析解析:因为f(x)的图象关于直线x=2对称,所以f(x)=f(4-x),f(-x)=f(4+x).又f(-x)=f(x),所以f(x)=f(4+x),则f(-1)=f(4-1)=f(3)=3.16.已知奇函数f(x)的图象关于直线x=3对称,当x∈[0,3]时,f(x)=-x,则f(-16)=________.16.答案2解析根据题意,函数f(x)的图象关于直线x=3对称,则有f(x)=f(6-x),又由函数为奇函数,则f(-x)=-f(x),则有f(x)=-f(6-x)=f(x-12),则f(x)的最小正周期是12,故f(-16)=f(-4)=-f(4)=-f(2)=-(-2)=2.17.已知f(x)是定义在R上的奇函数,满足f(1+x)=f(1-x),且f(1)=a,则f(2)+f(3)+f(4)=() A.0B.-a C.a D.3a17.答案B解析因为函数f(x)满足f(1+x)=f(1-x),所以f(x)关于直线x=1对称,所以f(2)=f(0),f(3)=f(-1),又f(x)是定义在R上的奇函数,所以f(0)=0,又由f(1+x)=f(1-x)可得f(x+1)=f(1-x)=-f(x-1),所以f(x+2)=-f(x),故f(x+4)=-f(x+2)=f(x),因此,函数f(x)是以4为周期的周期函数,所以f(4)=f(0),又f(1)=a,因此f(2)+f(3)+f(4)=f(0)+f(-1)+f(0)=-f(1)=-a.故选B.18.函数y=f(x)满足对任意x∈R都有f(x+2)=f(-x)成立,且函数y=f(x-1)的图象关于点(1,0)对称,f(1)=4,则f(2016)+f(2017)+f(2018)的值为________.18.答案4解析∵函数y=f(x-1)的图象关于点(1,0)对称,∴f(x)是R上的奇函数,又f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x),故f(x)的周期为4,∴f(2017)=f(504×4+1)=f(1)=4,∴f(2016)+f(2018)=f(2016)+f(2016+2)=f(2016)-f(2016)=0,∴f(2016)+f(2017)+f(2018)=4.。
专题51 高中数学正、余弦函数的周期性与奇偶性(解析版)

专题51 正、余弦函数的周期性与奇偶性知识点一 函数的周期性(1)一般地,对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.(2)如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. (3)记f (x )=sin x ,则由sin(2k π+x )=sin x (k ∈Z),得f (x +2k π)=f (x )(k ∈Z)对于每一个非零常数2k π(k ∈Z)都成立,余弦函数同理也是这样,所以正弦函数、余弦函数都是周期函数,2k π(k ∈Z 且k ≠0)都是它们的周期,最小正周期都为2π.2.正弦函数、余弦函数的周期性和奇偶性(1)定义法:即利用周期函数的定义求解.(2)公式法:对形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(A ,ω,φ是常数,A ≠0,ω≠0)的函数,T =2π|ω|.(3)图象法:即通过观察函数图象求其周期.提醒:y =|A sin(ωx +φ)|(A ≠0,ω≠0)的最小正周期T =π|ω|.2.与三角函数奇偶性有关的结论(1)要使y =A sin(ωx +φ)(Aω≠0)为奇函数,则φ=k π(k ∈Z); (2)要使y =A sin(ωx +φ)(Aω≠0)为偶函数,则φ=k π+π2(k ∈Z);(3)要使y =A cos(ωx +φ)(Aω≠0)为奇函数,则φ=k π+π2(k ∈Z);(4)要使y =A cos(ωx +φ)(Aω≠0)为偶函数,则φ=k π(k ∈Z).题型一 三角函数的周期问题及简单应用1.下列函数中,周期为π2的是( )A .y =sin xB .y =sin2xC .y =cos x2 D .y =cos4x[解析]∵T =π2=2π|ω|,∴|ω|=4,而ω>0,∴ω=42.利用周期函数的定义求下列函数的周期.(1)y =cos 2x ,x ∈R ;(2)y =sin ⎝⎛⎭⎫13x -π4,x ∈R.[解析] (1)因为cos 2(x +π)=cos(2x +2π)=cos 2x ,由周期函数的定义知,y =cos 2x 的周期为π.(2)因为sin ⎣⎡⎦⎤13(x +6π)-π4=sin ⎝⎛⎭⎫13x +2π-π4=sin ⎝⎛⎭⎫13x -π4, 由周期函数的定义知,y =sin ⎝⎛⎭⎫13x -π4的周期为6π. 3.求下列函数的最小正周期.(1)y =sin ⎝⎛⎭⎫2x +π3;(2)f (x )=2sin ⎝⎛⎭⎫x 2-π6;(3)f (x )=cos ⎝⎛⎭⎫-2x +π3;(4)f (x )=|sin x |. [解析] (1)∵sin ⎝⎛⎭⎫2x +π3+2π=sin ⎝⎛⎭⎫2x +π3,∴sin ⎣⎡⎦⎤2(x +π)+π3=sin ⎝⎛⎭⎫2x +π3,∴y =sin ⎝⎛⎭⎫2x +π3的周期是π. (2)解法一:∵2sin ⎝⎛⎭⎫x 2-π6+2π=2sin ⎣⎡⎦⎤12(x +4π)-π6=2sin ⎝⎛⎭⎫x 2-π6,∴f (x +4π)=f (x ), ∴f (x )=2sin ⎝⎛⎭⎫x 2-π6的周期是4π. 解法二:∵ω=12,∴T =2π12=4π.(3)f (x )=cos ⎝⎛⎭⎫-2x +π3=cos ⎝⎛⎭⎫2x -π3. ∵cos ⎝⎛⎭⎫2x -π3+2π=cos ⎣⎡⎦⎤2(x +π)-π3=cos ⎝⎛⎭⎫2x -π3,∴f (x +π)=f (x ),∴T =π. (4)f (x )=|sin x |的图象如图所示.∴周期T =π.4.求下列函数的周期.(1)y =3sin ⎝⎛⎭⎫π2x +3;(2)y =|cos x |;(3)y =3cos ⎝⎛⎭⎫π6-3x ;(4)y =sin ⎝⎛⎭⎫2x -π4. [解析] (1)解法一:y =3sin ⎝⎛⎭⎫π2x +3+2π=3sin ⎣⎡⎦⎤π2(x +4)+3=3sin ⎝⎛⎭⎫π2x +3, 令y =f (x ),则f (x +4)=f (x ),∴y =3sin ⎝⎛⎭⎫π2x +3的周期为4. 解法二:ω=π2,∴T =2πω=2ππ2=4.(2)y =|cos x |的图象如下图所示.∴周期T =π.(3)解法一:y =3cos ⎝⎛⎭⎫π6-3x =3cos ⎝⎛⎭⎫3x -π6. ∵3cos ⎝⎛⎭⎫3x -π6+2π=3cos ⎣⎡⎦⎤3⎝⎛⎭⎫x +2π3-π6=3cos ⎝⎛⎭⎫3x -π6, 令y =f (x ),则f ⎝⎛⎭⎫x +2π3=f (x ),∴y =3cos ⎝⎛⎭⎫π6-3x 的周期为2π3. 解法二:∵|ω|=3,∴T =2π|ω|=2π3.(4)解法一:y =sin ⎝⎛⎭⎫2x -π4=sin ⎝⎛⎭⎫2x -π4+2π=sin ⎣⎡⎦⎤2(x +π)-π4,令y =f (x ),则f (x +π)=f (x ), ∴y =sin ⎝⎛⎭⎫2x -π4的周期为π. 解法二:∵ω=2,∴T =2πω=2π2=π.5.函数y =|cos x |-1的最小正周期为[解析]因为函数y =|cos x |-1的周期同函数y =|cos x |的周期一致,由函数y =|cos x |的图象(略)知其最小正周期为π,所以y =|cos x |-1的最小正周期也为π. 6.函数y =⎪⎪⎪⎪sin x2的最小正周期是 [解析]∵y =sin x2的周期为4π,∴y =⎪⎪⎪⎪sin x 2的周期为2π 7.如图所示的是定义在R 上的四个函数的图象,其中不是周期函数的图象的是( )[解析]观察图象易知,只有D 选项中的图象不是周期函数的图象. 8.设a >0,若函数y =sin(ax +π)的最小正周期是π,则a =________. [解析]由题意知T =2πa=π,所以a =2.9.函数f (x )=sin ⎝⎛⎭⎫ωx +π6的最小正周期为π5,其中ω>0,则ω等于[解析] 由已知得2π|ω|=π5,又ω>0,所以2πω=π5,ω=10.10.若函数f (x )=2cos ⎝⎛⎭⎫ωx +π3的最小正周期为T ,且T ∈(1,4),则正整数ω的最大值为________. [解析]T =2πω,1<2πω<4,则π2<ω<2π,∴ω的最大值是6.11.函数y =cos ⎝⎛⎭⎫k 4x +π3(k >0)的最小正周期不大于2,则正整数k 的最小值应是________. [解析] 由题意得2πk 4=8πk ≤2,∴k ≥4π.∴正整数k 的最小值为4π.12.函数y =cos(sin x )的最小正周期是[解析] ∵y =cos[sin(x +π)]=cos(-sin x )=cos(sin x ),∴函数y =cos(sin x )的最小正周期为π.13.函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫2x +π4+2的最小正周期是________. [解析]∵函数y =sin2x 的最小正周期T =π,∴函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫2x +π4+2的最小正周期为π2. 14.若函数f (x )的定义域为R ,最小正周期为3π2,且满足f (x )=⎩⎪⎨⎪⎧cos x ,-π2≤x <0sin x ,0≤x <π,则f ⎝⎛⎭⎫-15π4=________. [解析]∵T =3π2,∴f ⎝⎛⎭⎫-15π4=f ⎝⎛⎭⎫-15π4+3π2×3=f ⎝⎛⎭⎫3π4=sin 3π4=22. 15.设函数f (x )=3sin ⎝⎛⎭⎫ωx +π6,ω>0,x ∈R ,且以π2为最小正周期.若f ⎝⎛⎭⎫α4+π12=95,则sin α的值为_____.[解析]因为f (x )的最小正周期为π2,ω>0,所以ω=2ππ2=4.所以f (x )=3sin ⎝⎛⎭⎫4x +π6. 因为f ⎝⎛⎭⎫α4+π12=3sin ⎝⎛⎭⎫α+π3+π6=3cos α=95,所以cos α=35.所以sin α=±1-cos 2α=±45. 16.已知f (n )=sin n π4(n ∈Z),则f (1)+f (2)+…+f (100)=________.[解析]f (1)+f (2)+…+f (8)=0,f (9)+f (10)+…+f (16)=0,依此循环, f (1)+f (2)+…+f (100)=0+f (97)+f (98)+f (99)+f (100)=2+1. 17.设函数f (x )=sin π3x ,则f (1)+f (2)+f (3)+…+f (2 019)=[解析]∵f (x )=sin π3x 的周期T =2ππ3=6,∴f (1)+f (2)+f (3)+…+f (2 019)=336[f (1)+f (2)+f (3)+f (4)+f (5)+f (6)]+f (2 017)+f (2 018)+f (2 019)=336sin π3+sin 23π+sin π+sin 43π+sin 53π+sin 2π+f (336×6+1)+f (336×6+2)+f (336×6+3)=336×0+f (1)+f (2)=sin π3+sin 23π+sin 33π= 3.18.已知f (x )是R 上的奇函数,且f (x +2)=-f (x ).(1)求证:f (x )是以4为周期的函数; (2)当0≤x ≤1时,f (x )=x ,求f (7.5)的值.[解析] (1)证明:f (x +4)=f [(x +2)+2]=-f (x +2)=-[-f (x )]=f (x ),所以f (x )是以4为周期的函数.(2)由(1)可知f (x +4)=f (x ),所以f (7.5)=f (3.5+4)=f (3.5)=f (-0.5+4)=f (-0.5)=-f (0.5)=-0.5. 19.已知f (x )=sin ax (a >0)的最小正周期为12.(1)求a 的值;(2)求f (1)+f (2)+f (3)+…+f (2019). [解析] (1)由2πa =12,得a =π6.(2)∵f (x )=sin π6x 的最小正周期为12,且f (1)+f (2)+…+f (12)=0,所以f (1)+f (2)+f (3)+…+f (2019)=f (1)+f (2)+f (3)+…+f (2017)+f (2018)+f (2019) =0+f (2017)+f (2018)+f (2019)=0+f (1)+f (2)+f (3)=0+sin π6+sin π3+sin π2=3+32.20.已知函数y =12sin x +12|sin x |.(1)画出函数的简图;(2)此函数是周期函数吗?若是,求其最小正周期.[解析](1)y =12sin x +12|sin x |=⎩⎪⎨⎪⎧sin x ,x ∈[2k π,2k π+π](k ∈Z ),0,x ∈[2k π-π,2k π](k ∈Z ),图象如下:(2)由图象知该函数是周期函数,且周期是2π. 21.已知函数y =12cos x +12|cos x |.(1)画出函数的图象;(2)这个函数是周期函数吗?如果是,求出它的最小正周期.[解析] (1)y =12cos x +12|cos x |=⎩⎨⎧cos x ,x ∈⎝⎛⎦⎤2k π-π2,2k π+π2(k ∈Z )0,x ∈⎝⎛⎦⎤2k π+π2,2k π+3π2(k ∈Z ),函数图象如图所示.(2)由图象知这个函数是周期函数,且最小正周期是2π.22.已知函数f (x )=cos ⎝⎛⎭⎫2x +π3,若函数g (x )的最小正周期是π,且当x ∈⎣⎡⎦⎤-π2,π2时,g (x )=f ⎝⎛⎭⎫x2,求关于x 的方程g (x )=32的解集. [解析]当x ∈⎣⎡⎦⎤-π2,π2时,g (x )=f ⎝⎛⎭⎫x 2=cos ⎝⎛⎭⎫x +π3.因为x +π3∈⎣⎡⎦⎤-π6,5π6,所以由g (x )=32解得x +π3=-π6或π6,即x =-π2或-π6.又因为g (x )的最小正周期为π,所以g (x )=32的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π-π2或x =k π-π6,k ∈Z . 题型二 三角函数奇偶性的判断1.判断下列函数的奇偶性:(1)f (x )=sin ⎝⎛⎭⎫-12x +π2;(2)f (x )=lg(1-sin x )-lg(1+sin x ); (3)f (x )=1+sin x -cos 2x 1+sin x;(4)f (x )=x sin ⎝⎛⎭⎫π2+x ;(5)f (x )=2sin ⎝⎛⎭⎫2x +3π2. [解析] (1)显然x ∈R ,f (x )=cos 12x ,∵f (-x )=cos ⎝⎛⎭⎫-12x =cos 12x =f (x ),∴f (x )是偶函数. (2)由⎩⎪⎨⎪⎧1-sin x >0,1+sin x >0,得-1<sin x <1,解得定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ∈R 且x ≠k π+π2,k ∈Z , ∴f (x )的定义域关于原点对称.又∵f (x )=lg(1-sin x )-lg(1+sin x ),∴f (-x )=lg [1-s i n (-x )]-lg [1+s i n (-x )]=lg(1+sin x )-lg(1-sin x )=-f (x ),∴f (x )为奇函数. (3)∵1+sin x ≠0,∴sin x ≠-1,∴x ∈R 且x ≠2k π-π2,k ∈Z.∵定义域不关于原点对称,∴该函数是非奇非偶函数.(4)函数f (x )=x sin ⎝⎛⎭⎫π2+x 的定义域为R.∵f (x )=x sin ⎝⎛⎭⎫π2+x =x cos x , ∴f (-x )=(-x )·cos(-x )=-x cos x =-f (x ),∴f (x )是奇函数. (5)f (x )=2sin ⎝⎛⎭⎫2x +3π2=-2cos2x ,定义域为R. ∵f (-x )=-2cos(-2x )=-2cos2x =f (x ),∴f (x )是偶函数. 2.判断下列函数的奇偶性.(1)f (x )=3cos2x ;(2)f (x )=sin ⎝⎛⎭⎫2x 3+π2+2;(3)f (x )=x ·cos x . [解析] (1)因为x ∈R ,f (-x )=3cos(-2x )=3cos2x =f (x ), 所以f (x )=3cos2x 是偶函数.(2)因为x ∈R ,f (x )=sin ⎝⎛⎭⎫2x 3+π2+2=cos 2x 3+2,所以f (-x )=cos 2(-x )3+2=cos 2x3+2=f (x ), 所以函数f (x )=sin ⎝⎛⎭⎫2x 3+π2+2是偶函数.(3)因为x ∈R ,f (-x )=-x ·cos(-x )=-x ·cos x =-f (x ),所以f (x )=x cos x 是奇函数. 3.判断下列函数的奇偶性.(1)f (x )=sin ⎝⎛⎭⎫3x 4+3π2;(2)f (x )=sin|x |;(3)f (x )=1-cos x +cos x -1. [解析] (1)因为函数的定义域为R ,f (x )=sin ⎝⎛⎭⎫3x 4+3π2=-cos 3x4, 所以f (-x )=-cos ⎝⎛⎭⎫-3x 4=-cos 3x4=f (x ),所以函数f (x )=sin ⎝⎛⎭⎫3x 4+3π2是偶函数. (2)因为函数的定义域为R ,f (-x )=sin|-x |=sin|x |=f (x ),所以函数f (x )=sin|x |是偶函数.(3)由⎩⎪⎨⎪⎧1-cos x ≥0,cos x -1≥0,得cos x =1,所以x =2k π(k ∈Z),此时f (x )=0,故该函数既是奇函数又是偶函数. 4.判断下列函数的奇偶性:(1)f (x )=-2cos 3x ;(2)f (x )=x sin(x +π);(3)f (x )=|sin x |+cos x ;(4)f (x )=cos(2π-x )-x 3·sin x . [解析] (1)f (-x )=-2cos 3(-x )=-2cos 3x =f (x ),x ∈R ,所以f (x )=-2cos 3x 为偶函数.(2)f (x )=x sin(x +π)=-x sin x ,x ∈R ,所以f (-x )=x sin(-x )=-x sin x =f (x ),故函数f (x )为偶函数. (3)函数的定义域为R ,又f (-x )=|sin(-x )|+cos(-x )=|sin x |+cos x =f (x ),所以f (x )是偶函数. (4)函数的定义域为R ,关于原点对称,因为f (x )=cos x -x 3·sin x ,所以f (-x )=cos(-x )-(-x )3·sin(-x )=cos x -x 3·sin x =f (x ),所以f (x )为偶函数.5.判断函数f (x )=lg(sin x +1+sin 2x )的奇偶性.[解析]∵f (-x )=lg[sin(-x )+1+sin 2(-x )]=lg(1+sin 2x -sin x )=lg (1+sin 2x )-sin 2x 1+sin 2x +sin x=lg(sin x +1+sin 2x )-1=-lg(sin x +1+sin 2x )=-f (x ). 又当x ∈R 时,均有sin x +1+sin 2x >0,∴f (x )是奇函数. 6.f (x )=sin x cos x 是________(填“奇”或“偶”)函数.[解析]x ∈R 时,f (-x )=sin(-x )cos(-x )=-sin x cos x =-f (x ),即f (x )是奇函数. 7.函数y =cos ⎝⎛⎭⎫-12x +π2的奇偶性为( ) A .奇函数 B .偶函数 C .非奇非偶函数D .既是奇函数,又是偶函数 [解析]函数的定义域为R ,且y =cos ⎝⎛⎭⎫-12x +π2=sin 12x ,故所给函数是奇函数. 8.函数y =|sin x |(1-sin x )1-sin x的奇偶性为( )A .奇函数B .既是奇函数也是偶函数C .偶函数D .非奇非偶函数[解析]由题意知,当1-sin x ≠0,即sin x ≠1时,y =|sin x |(1-sin x )1-sin x =|sin x |,所以函数的定义域为⎩⎨⎧⎭⎬⎫x |x ≠2k π+π2,k ∈Z ,由于定义域不关于原点对称,所以该函数是非奇非偶函数.9.若f (x )是R 上的偶函数,当x ≥0时,f (x )=sin x ,则f (x )的解析式是________. [解析]当x <0时,-x >0,f (-x )=sin(-x )=-sin x ,∵f (-x )=f (x ), ∴x <0时,f (x )=-sin x .∴f (x )=sin|x |,x ∈R.10.若f (x )为奇函数,当x >0时,f (x )=cos x -sin x ,当x <0时,f (x )的解析式为________. [解析]f (x )=-cos x -sin x [x <0时,-x >0,f (-x )=cos(-x )-sin(-x )=cos x +sin x ,因为f (x )为奇函数,所以f (x )=-f (-x )=-cos x -sin x ,即x <0时,f (x )=-cos x -sin x . 11.若函数f (x )=sin ⎝⎛⎭⎫12x -φ是偶函数,则φ的一个取值为( ) A .2010π B .-π8 C .-π4D .-π2[解析]当φ=-π2时,f (x )=sin ⎝⎛⎭⎫12x +π2=cos 12x 为偶函数,故选D. 12.函数f (x )=sin(2x +φ)为R 上的奇函数,则φ的值可以是( )A.π4B.π2 C .π D.3π2[解析]要使函数f (x )=sin(2x +φ)为R 上的奇函数,需φ=k π,k ∈Z.故选C. 13.已知函数f (x )=2sin ⎝⎛⎭⎫x +π4+φ是奇函数,则φ的值可以是( ) A .0 B .-π4 C .π2D .π[解析]法一:f (x )=2sin ⎝⎛⎭⎫x +π4+φ为奇函数,则只需π4+φ=k π,k ∈Z ,从而φ=k π-π4,k ∈Z . 显然当k =0时,φ=-π4满足题意.法二:因为f (x )是奇函数,所以f (0)=0,即2sin ⎝⎛⎭⎫π4+φ=0,所以φ+π4=k π(k ∈Z ), 即φ=k π-π4,令k =0,则φ=-π4.14.若0<α<π2,g (x )=sin(2x +π4+α)是偶函数,则α的值为________.[解析]要使g (x )=sin(2x +π4+α)为偶函数,则须π4+α=k π+π2,k ∈Z.所以α=k π+π4,k ∈Z.因为0<α<π2,所以α=π4.15.已知a ∈R ,函数f (x )=sin x -|a |,x ∈R 为奇函数,则a 等于________. [解析]因为f (x )=sin x -|a |,x ∈R 为奇函数,所以f (0)=sin 0-|a |=0,所以a =0. 16.已知f (x )=a sin x +bx 3c cos x,若f (5)=-2,则f (-5)=________.[解析]f (x )=a sin x +bx 3c cos x ,则f (-x )=a sin (-x )+b (-x )3c cos (-x )=-a sin x +bx 3c cos x =-f (x ),所以f (x )是奇函数.所以f (-5)=-f (5)=2.题型三 三角函数的奇偶性与周期性的综合应用1.下列函数中是奇函数,且最小正周期是π的函数是( )A .y =cos|2x |B .y =|sin 2x |C .y =sin ⎝⎛⎭⎫π2+2x D .y =cos ⎝⎛⎭⎫3π2-2x [解析]y =cos|2x |是偶函数,y =|sin 2x |是偶函数,y =sin ⎝⎛⎭⎫π2+2x =cos 2x 是偶函数, y =cos ⎝⎛⎭⎫3π2-2x =-sin 2x 是奇函数,根据公式得其最小正周期T =π. 2.已知函数f (x )=sin ⎝⎛⎭⎫πx -π2-1,则下列命题正确的是( ) A .f (x )是周期为1的奇函数 B .f (x )是周期为2的偶函数C .f (x )是周期为1的非奇非偶函数D .f (x )是周期为2的非奇非偶函数 [解析]∵f (x )=sin ⎝⎛⎭⎫πx -π2-1=-sin ⎝⎛⎭⎫π2-πx -1=-cos(πx )-1 ∴T =2ππ=2,而f (-x )=f (x ),∴f (x )为偶函数.3.函数f (x )=3sin ⎝⎛⎭⎫23x +15π2是( )A .周期为3π的偶函数B .周期为2π的偶函数C .周期为3π的奇函数D .周期为4π3的偶函数[解析]∵f (x )=3sin ⎝⎛⎭⎫23x +6π+π+π2=3sin ⎣⎡⎦⎤π+⎝⎛⎭⎫π2+2x 3=-3sin ⎝⎛⎭⎫π2+23x =-3cos 23x ∴T =2π23=3π,而f (-x )=f (x ),则f (x )为偶函数.4.定义在R 上的函数f (x )既是偶函数,又是周期函数,若f (x )的最小正周期为π,且当x ∈⎣⎡⎦⎤0,π2时, f (x )=sin x ,则f ⎝⎛⎭⎫5π3等于[解析]f ⎝⎛⎭⎫5π3=f ⎝⎛⎭⎫5π3-π=f ⎝⎛⎭⎫2π3=f ⎝⎛⎭⎫2π3-π=f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3=sin π3=32. 5.定义在R 上的函数f (x )周期为π,且是奇函数,f ⎝⎛⎭⎫π4=1,则f ⎝⎛⎭⎫3π4的值为 [解析]由已知得f (x +π)=f (x ),f (-x )=-f (x ),所以f ⎝⎛⎭⎫3π4=f ⎝⎛⎭⎫3π4-π=f ⎝⎛⎭⎫-π4=-f ⎝⎛⎭⎫π4=-1. 6.设定义在R 上的函数f (x )满足f (x )·f (x +2)=13.若f (1)=2,则f (99)=________. [解析]因为f (x )·f (x +2)=13,所以f (x +2)=13f (x ),所以f (x +4)=13f (x +2)=1313f (x )=f (x ), 所以函数f (x )是周期为4的周期函数,所以f (99)=f (3+4×24)=f (3)=13f (1)=132.7.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)= [解析]因为f (x +4)=f (x ),所以函数的周期是4.因为f (x )在R 上是奇函数,且当x ∈(0,2)时,f (x )=2x 2, 所以f (7)=f (7-8)=f (-1)=-f (1)=-2.8.函数f (x )是以4为周期的奇函数,且f (-1)=1,则sin ⎣⎡⎦⎤πf (5)+π2=________. [解析] ∵函数f (x )是以4为周期的奇函数,且f (-1)=1,∴f (5)=f (4+1)=f (1)=-f (-1)=-1,则原式=sin ⎝⎛⎭⎫-π+π2=-sin π2=-1.9.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎡⎦⎤0,π2时, f (x )=sin x ,求f ⎝⎛⎭⎫5π3的值.[解析]∵f (x )的最小正周期是π,∴f ⎝⎛⎭⎫5π3=f ⎝⎛⎭⎫5π3-2π=f ⎝⎛⎭⎫-π3. ∵f (x )是R 上的偶函数,∴f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3=sin π3=32.∴f ⎝⎛⎭⎫5π3=32. 10.设函数f (x )(x ∈R)满足f (-x )=f (x ),f (x +2)=f (x ),则函数y =f (x )的图象是( )[解析]由f (-x )=f (x ),则f (x )是偶函数,图象关于y 轴对称.由f (x +2)=f (x ),则f (x )的周期为2.11.已知f (x )是以π为周期的偶函数,且x ∈⎣⎡⎦⎤0,π2时,f (x )=1-sin x ,当x ∈⎣⎡⎦⎤5π2,3π时,求f (x )的解析式. [解析] x ∈⎣⎡⎦⎤5π2,3π时,3π-x ∈⎣⎡⎦⎤0,π2,因为x ∈⎣⎡⎦⎤0,π2时,f (x )=1-sin x , 所以f (3π-x )=1-sin(3π-x )=1-sin x .又f (x )是以π为周期的偶函数,所以f (3π-x )=f (-x )=f (x ),所以f (x )的解析式为f (x )=1-sin x ,x ∈⎣⎡⎦⎤5π2,3π.12.关于x 的函数f (x )=sin(x +φ)有以下说法:①对任意的φ,f (x )都是非奇非偶函数;②存在φ,使f (x )是偶函数;③存在φ,使f (x )是奇函数; ④对任意的φ,f (x )都不是偶函数.其中错误的是________(填序号).[解析]答案为①④,φ=0时,f (x )=sin x ,是奇函数,φ=π2时,f (x )=cos x 是偶函数. 13.已知f (x )是定义在(-3,3)上的奇函数,当0<x <3时,f (x )的图象如图所示,那么不等式f (x )cos x <0的解集是______________________.[解析]∵f (x )是(-3,3)上的奇函数,∴g (x )=f (x )·cos x 是(-3,3)上的奇函数,从而观察图象(略)可知所求不等式的解集为⎝⎛⎭⎫-π2,-1∪(0,1)∪⎝⎛⎭⎫π2,3 14.设函数f (x )=sin ⎝⎛⎭⎫2k +13πx +π4(k ∈N *),若在区间[a ,a +3](a 为实数)上存在有不少于4个且不多于8个不同的x 0,使f (x 0)=12,求k 的值. [解析]∵f (x )在一个周期内有且只有2个不同的x 0,使f (x 0)=12,∴f (x )在区间[a ,a +3]上至少有2个周期,至多有4个周期.而这个区间的长度为3个单位,∴⎩⎪⎨⎪⎧2T ≤3,4T ≥3,即34≤T ≤32,即34≤62k +1≤32,解得32≤k ≤72,因为k ∈N *,∴k =2或k =3.。
高中数学练习题附带解析三角函数的奇偶性与周期性

高中数学练习题附带解析三角函数的奇偶性与周期性随着数学的不断深入,三角函数已经成为高中数学中不可或缺的一部分。
但是,对于初学者来说,理解三角函数的奇偶性与周期性并不容易。
本文将为大家介绍一些练习题,并附带解析,帮助大家更好地掌握三角函数的奇偶性与周期性。
练习题 1求下列函数的奇偶性:$f(x) = \sin 2x$解析:对于任意实数 $x$,都有 $\sin (-x)=-\sin x$。
因此,当 $x$ 取遍全体实数时,$f(x)$ 是一个奇函数,即 $f(-x)=-f(x)$。
因此,$f(x)$ 是奇函数。
练习题 2求下列函数的奇偶性:$g(x) = \cos 3x$解析:对于任意实数 $x$,都有 $\cos (-x)=\cos x$。
因此,当 $x$ 取遍全体实数时,$g(x)$ 是一个偶函数,即 $g(-x)=g(x)$。
因此,$g(x)$ 是偶函数。
练习题 3求下列函数的周期:$h(x) = \sin 5x$解析:对于任意实数 $x$,都有 $\sin (x+2\pi)=\sin x$。
因此,当$x$ 取遍全体实数时,$h(x)$ 的周期是 $\dfrac{2\pi}{5}$。
即$h(x+2\pi/5)=h(x)$。
练习题 4求下列函数的周期:$k(x) = \cos \dfrac{x}{4}$解析:对于任意实数 $x$,都有 $\cos (x+2\pi)=\cos x$。
因此,当$x$ 取遍全体实数时,$k(x)$ 的周期是 $8\pi$。
即 $k(x+8\pi)=k(x)$。
练习题 5求下列函数的周期:$m(x) = \sin x + \cos 2x$解析:对于任意实数 $x$,都有 $\sin (x+\pi)=-\sin x$,$\cos(x+\pi)=-\cos x$。
因此,当 $x$ 取遍全体实数时,$m(x)$ 的周期是$\pi$ 的公倍数和 $2\pi$ 的公倍数的最小正周期。
函数的奇偶性、周期性:高考数学复习课件

返回
第二部分
探究核心题型
题型一 函数奇偶性的判断
例1 (1)(多选)下列函数是奇函数的是
√A.f(x)=tan x
⑥余弦函数
f(x)=cos
x,对应
f(x)+f(y)=2f
x+y
2
f
x-y,来源于 2
cos
α+
α+β α-β cos β=2cos 2 ·cos 2 ;
⑦正切函数 f(x)=tan x,对应 f(x±y)=1f∓xf±xffyy,来源于 tan(α±β) =1ta∓ntaαn±αttaannββ.
④对数函数 f(x)=logax(a>0,且 a≠1),对应 f(xy)=f(x)+f(y)或 f xy=f(x)- f(y)或 f(xn)=nf(x);
⑤正弦函数f(x)=sin x,对应f(x+y)f(x-y)=f2(x)-f2(y),来源于sin 2α-
sin 2β=sin(α+β)sin(α-β);
自主诊断
2.(2023·济南统考)若函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x2-
6x,则f(-1)等于
A.-7
B.-5
√C.5
D.7
因为f(x)为奇函数, 所以f(-1)=-f(1)=5.
自主诊断
3.(2023·盐城检测)已知定义在R上的函数f(x)满足f(x+2)=f(x),当x∈[-1,
所以f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2), 又因为x1>x2,所以x1-x2>0, 所以f(x1-x2)>0,即f(x1)>f(x2), 所以f(x)在R上单调递增,因为f(-2)=-1, 所以f(-4)=f(-2-2)=2f(-2)=-2, 由f(2x)-f(x-3)>-2, 可得f(2x)>f(x-3)+f(-4),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学专题训练(教师版)—函数的奇偶性和周期性 一、选择题 1.下列函数中,不具有奇偶性的函数是( )
A.y=ex-e-x B.y=lg1+x1-x C.y=cos2x D.y=sinx+cosx 答案 D 2.(2011·山东临沂)设f(x)是R上的任意函数,则下列叙述正确的是( ) A.f(x)f(-x)是奇函数 B.f(x)|f(-x)|是奇函数 C.f(x)-f(-x)是偶函数 D.f(x)+f(-x)是偶函数 答案 D 3.已知f(x)为奇函数,当x>0,f(x)=x(1+x),那么x<0,f(x)等于( ) A.-x(1-x) B.x(1-x) C.-x(1+x) D.x(1+x) 答案 B 解析 当x<0时,则-x>0,∴f(-x)=(-x)(1-x).又f(-x)=-f(x),∴f(x)=x(1-x). 4.若f(x)=ax2+bx+c(a≠0)是偶函数,则g(x)=ax3+bx2+cx是( ) A.奇函数 B.偶函数 C.非奇非偶函数 D.既奇又偶函数 答案 A 解析 由f(x)是偶函数知b=0,∴g(x)=ax3+cx是奇函数. 5.(2010·山东卷)设f(x)为定义在R上的奇函数.当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=( ) A.3 B.1 C.-1 D.-3 答案 D 解析 令x≤0,则-x≥0,所以f(-x)=2-x-2x+b,又因为f(x)在R上是奇函数,所以f(-x)=-f(x)且f(0)=0,即b=-1,f(x)=-2-x+2x+1,所以f(-1)=-2-2+1=-3,故选D. 6.(2011·北京海淀区)定义在R上的函数f(x)为奇函数,且f(x+5)=f(x),若f(2)>1,f(3)=a,则( ) A.a<-3 B.a>3 C.a<-1 D.a>1 答案 C 解析 ∵f(x+5)=f(x),∴f(3)=f(-2+5)=f(-2),又∵f(x)为奇函数,∴f(-2)=-f(2),又f(2)>1,∴a<-1,选择C. 7.(2010·新课标全国卷)设偶函数f(x)满足f(x)=x3-8(x≥0),则{x|f(x-2)>0}=( ) A.{x|x<-2或x>4} B.{x|x<0或x>4} C.{x|x<0或x>6} D.{x|x<-2或x>2} 答案 B 解析 当x<0时,-x>0, ∴f(-x)=(-x)3-8=-x3-8, 又f(x)是偶函数, ∴f(x)=f(-x)=-x3-8,
∴f(x)= x3-8,x≥0-x3-8,x<0.
∴f(x-2)= x-23-8,x≥0-x-23-8,x<0,
x≥0x-23-8>0或 x<0-x-23-8>0,
解得x>4或x<0.故选B. 二、填空题 8.设函数f(x)=(x+1)(x+a)为偶函数,则a=________. 答案 -1 解析 f(x)=x2+(a+1)x+a. ∵f(x)为偶函数,∴a+1=0,∴a=-1. 9.设f(x)=ax5+bx3+cx+7(其中a,b,c为常数,x∈R),若f(-2011)=-17,则f(2011)=________. 答案 31 解析 f(2011)=a·20115+b·20113+c·2011+7 f(-2011)=a(-2011)5+b(-2011)3+c(-2011)+7 ∴f(2011)+f(-2011)=14,∴f(2011)=14+17=31. 10.函数f(x)=x3+sinx+1的图象关于________点对称. 答案(0,1) 解析 f(x)的图象是由y=x3+sin x的图象向上平移一个单位得到的. 11.已知f(x)是定义在R上的偶函数,且对任意的x∈R,总有f(x+2)=-f(x)成立,则f(19)=________. 答案 0 解析 依题意得f(x+4)=-f(x+2)=f(x),即f(x)是以4为周期的函数,因此有f(19)=f(4×5-1)=f(-1)=f(1),且f(-1+2)=-f(-1),即f(1)=-f(1),f(1)=0,因此f(19)=0.
12.定义在(-∞,+∞)上的函数y=f(x)在(-∞,2)上是增函数,且函数y=f(x+2)为偶函数,则f(-1),f(4),f(512)的大小关系是__________. 答案 f(512)解析 ∵y=f(x+2)为偶函数 ∴y=f(x)关于x=2对称 又y=f(x)在(-∞,2)上为增函数 ∴y=f(x)在(2,+∞)上为减函数,而f(-1)=f(5)
∴f(512)<f(-1)<f(4). 13.(2011·山东潍坊)定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,给出下列关于f(x)的判断: ①f(x)是周期函数; ②f(x)关于直线x=1对称; ③f(x)在[0,1]上是增函数; ④f(x)在[1,2]上是减函数; ⑤f(2)=f(0), 其中正确的序号是________. 答案 ①②⑤ 解析 由f(x+1)=-f(x)得 f(x+2)=-f(x+1)=f(x), ∴f(x)是周期为2的函数,①正确, f(x)关于直线x=1对称,②正确, f(x)为偶函数,在[-1,0]上是增函数, ∴f(x)在[0,1]上是减函数,[1,2]上为增函数,f(2)=f(0).因此③、④错误,⑤正确.综上,①②⑤正确. 三、解答题 14.已知f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=x2+x-2,求f(x)、g(x)的解析式. 答案 f(x)=x2-2,g(x)=x 解析 ∵f(x)+g(x)=x2+x-2.① ∴f(-x)+g(-x)=(-x)2+(-x)-2. 又∵f(x)为偶函数,g(x)为奇函数, ∴f(x)-g(x)=x2-x-2.② 由①②解得f(x)=x2-2,g(x)=x. 15.已知f(x)是定义在R上的奇函数,且函数f(x)在[0,1)上单调递减,并满足f(2-x)=f(x),若方程f(x)=-1在[0,1)上有实数根,求该方程在区间[-1,3]上的所有实根之和. 答案 2 解析 由f(2-x)=f(x)可知函数f(x)的图象关于直线x=1对称,又因为函数f(x)是奇函数,则f(x)在(-1,1)上单调递减,根据函数f(x)的单调性,方程f(x)=-1在(-1,1)上有唯一的实根,根据函数f(x)的对称性,方程f(x)=-1在(1,3)上有唯一的实根,这两个实根关于直线x=1对称,故两根之和等于2.
16.已知定义域为R的函数f(x)=-2x+b2x+1+a是奇函数. (Ⅰ)求a,b的值; (Ⅱ)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
答案 (1)a=2,b=1 (2)k<-13 解析 (Ⅰ)因为f(x)是奇函数,所以f(0)=0,即b-1a+2=0⇒b=1 ∴f(x)=1-2xa+2x+1
又由f(1)=-f(-1)知1-2a+4=-1-12a+1⇒a=2. (Ⅱ)解法一 由(Ⅰ)知f(x)=1-2x2+2x+1,易知f(x)在(-∞,+∞)上为减函数.又因f(x)是奇函数,从而不等式:f(t2-2t)+f(2t2-k)<0 等价于f(t2-2t)<-f(2t2-k)=f(k-2t2),因f(x)为减函数,由上式推得: t2-2t>k-2t2.即对一切t∈R有:3t2-2t-k>0,
从而判别式Δ=4+12k<0⇒k<-13
解法二 由(Ⅰ)知f(x)=1-2x2+2x+1.又由题设条件得: 1-2t2-2t2+2t2-2t+1+1-22t2-k2+22t2-k+1<0,
即:(22t2-k+1+2)(1-2t2-2t)+(2t2-2t+1+2)(1-22t2-k)<0, 整理得23t2-2t-k>1,因底数2>1,故:3t2-2t-k>0
上式对一切t∈R均成立,从而判别式Δ=4+12k<0⇒k<-13
1.(2010·上海春季高考)已知函数f(x)=ax2+2x是奇函数,则实数a=________. 答案 0 2.(2010·江苏卷)设函数f(x)=x(ex+ae-x)(x∈R)是偶函数,则实数a的值为________. 答案 -1 解析 令g(x)=x,h(x)=ex+ae-x,因为函数g(x)=x是奇函数,则由题意知,函数h(x)=ex+ae-x为奇函数,又函数f(x)的定义域为R,∴h(0)=0,解得a=-1. 3.(2011·《高考调研》原创题)已知f(x)是定义在R上的奇函数,且{x|f(x)>0}={x|1<x<3},则f(π)+f(-2)与0的大小关系是( ) A.f(π)+f(-2)>0 B.f(π)+f(-2)=0 C.f(π)+f(-2)<0 D.不确定 答案 C 解析 由已知得f(π)<0,f(-2)=-f(2)<0,因此f(π)+f(-2)<0. 4.如果奇函数f(x)在区间[3,7]上是增函数,且最小值为5,那么f(x)在区间[-7,-3]上是( ) A.增函数且最小值为-5 B.增函数且最大值为-5 C.减函数且最小值为-5 D.减函数且最大值为-5 答案 B 解析 先考查函数f(x)在[-7,-3]上的最值,由已知,当3≤x≤7时,f(x)≥5,则当-7≤x≤-3时,f(-x)=-f(x)≤-5即f(x)在[-7,-3]上最大值为-5.再考查函数f(x)在[-7,-3]上的单调性,设-7≤x1-x1≤7,由已知-f(x2)=f(-x2)f(x1),即f(x)在[-7,-3]上是单调递增的.
5.(08·全国卷Ⅰ)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式fx-f-xx<0的解集为________. 答案 (-1,0)∪(0,1) 解析 由f(x)为奇函数,则不等式化为xf(x)<0
法一:(图象法)由,可得-1法二:(特值法)取f(x)=x-1x,则x2-1<0且x≠0,解得-1
6.定义在R上的函数f(x)满足f(x+1)=-f(x),且f(x)= 1 -1解析 ∵f(x+1)=-f(x),则f(x)=-f(x+1)=-[-f(x+2)]=f(x+2),则f(x)的周期为2,f(3)=f(1)=-1.