静力学分析等
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静力分析其实是很简单的,略下一点功夫即可入门,当然要精通是有一些难度的,但是仅仅想要掌握一个软件,能够做一些静力分析,有几个月也应该够了。
以下思路可以参考一下: 1 首先需要弄清楚要分析的是什么东西,汽车、火车、飞机、机床、建筑、土建... 或只是其中的某个零部件? 2 受力状态或工况- 这方面需要请教你的导师或课题来源单位; 3 约束情况- 同上; 4 在弄清楚这些以后,需要对结构划分网格,创建有限元模型;为此,需要对有限元有一些了解,但不必精通。
不过对ANSYS 软件却需要多了解一些,可以找一些ANSYS 基础方面的资料学习一下,包括ANSYS 基础、建模、划分网格、施加载荷和约束、求解和后处理等。
5 得到结果后,关键问题是如何判断结果是否合理,这方面也需要请教你的导师或有关单位了。
静力学分析:为什么要进行静力学分析,分析些什么问题,怎么分析(分析步骤)???
本章将系统的介绍结构静力学分析的内容,包括线性静力学分析中各种类型的工程实例,如平面应力,应变问题,轴对称问题,以及梁,桁架,壳等模型的分析问题,通过这些实例进行具体的分析求解,让读者能够熟悉静力学中各种模型的分析思路和求解方法,并掌握ansys分析静力学分析的基本步骤,
静力学主要研究物体在力系作用下的平衡规律。
静力学力有关于力的合成、分解与力系简化的研究成果,可以直接应用于动力学。
因此静力学在工程技术中具有重要的使用意义。
介绍静力学分析的定义,处理的载荷类型,静力学分析的类型及静力学分析的基本步骤。
静力分析是用来计算结构在固定不变载荷作用下的响应,如位移,应力,应变等,也就是探讨结构受到外力后变形,应力,应变的大小。
与固定不变的载荷对应,结构静力分析中结构的响应也是固定不变的。
静力分析中固定不变的载荷和响应是一种假设,即假定载荷和结构的响应随时间变化非常缓慢。
处理载荷通常包括: 位移载荷,稳定的惯性力,外部施加的作用力,温度载荷,能流载荷。
平面应变问题分析:平面应变假设适用于纵向几何尺寸和载荷变化不大的狭长物体,(如柱状,大坝状的物体);
轴对称问题的有限元分析:轴对称问题指的是受力体的几何形状,约束状态,受力情况,以及其他外在因素都对称于某一根轴,也就是说这根轴的任何一个平面都是该受力体的对称面。
此外,轴对称受力体的所有位移,应力,应变,都是对称于这根轴的。
梁分析:梁结构的特点是,梁的横截面均匀一致,可承受轴向,切向,弯矩等载荷。
根据梁的特点,等截面的梁在进行有限元分析时,需要定义梁的截面形状和尺寸,用创建的直线代替梁,在划分网格结束后,可以显示其实际形状。
桁架分析:特点在于有杆件仅仅承受轴向力,桁架的没跟杆件均只两端受力,所有载荷集中作用于节点上。
(桁架结构主要包括:三角形结构桁架,多边形结构桁架,梯形桁架,空腹结构桁架)
壳分析:
筒壳(柱形薄壳):是单向有曲率的薄壳,由壳身,侧边缘构建和横隔组成。
横隔间的距离为壳体的跨度。
接触分析:分为两种基本类型,即刚体-柔体的接触和半柔体-柔体的接触。
在前一类中,接触面的一个或多个被当做刚体,即与其他接触的变形体相比有大
得多的刚度。
Note:ANSYS支持三种接触方式,点-点,点-面,面-面,每种接触方式使用的接触单元适用于特定类型的问题。
弹性力学
应力和压强的概念差不多,就是指单位面积上所受的力的大小,单位和压强一样:帕、千帕、兆帕等等。
在流体力学中一般习惯用压强,在固体力学中一般习惯用应力这种称呼。
至于应变,就是变形量与原来的尺寸的比值。
比如,你用力拉一根长一米的铁丝,结果铁丝伸长了1mm,则应变即为1mm/1米=0.001。
习惯上将拉应力、拉应变定义为正值,但也有例外,不再列举了,希望你能听懂
物体由于外因(受力、湿度变化等)而变形时,在物体内各部分之间产生相互作用的内力,以抵抗这种外因的作用,并力图使物体从变形后的位置回复到变形前的位置。
在所考察的截面某一点单位面积上的内力称为应力。
同截面垂直的称为正应力或法向应力,同截面相切的称为剪应力或切应力。
应力会随着外力的增加而增长,对于某一种材料,应力的增长是有限度的,超过这一限度,材料就要破坏。
对某种材料来说,应力可能达到的这个限度称为该种材料的极限应力。
极限应力值要通过材料的力学试验来测定。
将测定的极限应力作适当降低,规定出材料能安全工作的应力最大值,这就是许用应力。
材料要想安全使用,在使用时其内的应力应低于它的极限应力,否则材料就会在使用时发生破坏。
有些材料在工作时,其所受的外力不随时间而变化,这时其内部的应力大小不变,称为静应力;还有一些材料,其所受的外力随时间呈周期性变化,这时内部的应力也随时间呈周期性变化,称为交变应力。
材料在交变应力作用下发生的破坏称为疲劳破坏。
通常材料承受的交变应力远小于其静载下的强度极限时,破坏就可能发生。
另外材料会由于截面尺寸改变而引起应力的局部增大,这种现象称为应力集中。
对于组织均匀的脆性材料,应力集中将大大降低构件的强度,这在构件的设计时应特别注意。
物体受力产生变形时,体内各点处变形程度一般并不相同。
用以描述一点处变形的程度的力学量是该点的应变。
为此可在该点处到一单元体,比较变形前后单元体大小和形状的变化。
A 线应变
在直角坐标中所取单元体为正六面体时,三条相互垂直的棱边的长度在变形前后的改变量与原长之比,定义为线应变,用ε表示。
一点在x、y、z方向的线应变分别为εx、εx、εy、εz。
线应变以伸长为正,缩短为负。
B 切应变
单元体的两条相互垂直的棱边,在变形后的直角改变量,定义为角应变或切应变,用γ表示。
一点在x-y方向、y-z方向z-x方向的切应变,分加别为γxy、γyz、γzx。
切应变以直角减少为正,反之为负。
C 一点的应变状态
一点的应变分量εx、εy、εz、γxy、γyz、γzx已知时,在该点处任意方向的线应变,以及通过该点任意两线段间的直角改变量,都可根据应变分量的坐标变换公式求出。
该点的应变状态也就确定。
表示一点应变状态的个应变分量εx、εy、εz、γxy、γyx、γyzγzy、γzx、γxz组成的应变张量,即
式中右边的张量中的切应变用εxy、εxz、---表示,适用于使用张量的附标标号的表示法;
左边张量中的切应变用γxy、γxz、---表示,是工程习惯表示法。
二者概念相同,大小相差一倍。
应变张量也是二阶对称量,其中切应变分量
εxy=εyx,...。
材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。
弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。
它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。
模态分析:
模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。
概述
振动模态是弹性结构固有的、整体的特性。
通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内的各阶主要模态的特性,就可以预言结构在此频段内在外部或内部各种振源作用下产生的实际振动响应。
因此,模态分析是结构动态设计及设备故障诊断的重要方法。
机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息变化。
模态分析提供了研究各类振动特性的一条有效途径。
首先,将结构物在静止状态下进行人为激振,通过测量激振力与响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。
用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。
根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。
近十多年来,由于计算机技术、FFT分析仪、高速数据采集系统以及振动传感器、激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高度重视。
已有多种档次、各种原理的模态分析硬件与软件问世。
编辑本段详细说明
经典定义
模态分析的经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。
坐标变换的变换矩阵为模态矩阵,其每列为模态振型。
用处
模态分析的最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。
模态分析技术的应用可归结为一下几个方面:
1) 评价现有结构系统的动态特性;
2) 在新产品设计中进行结构动态特性的预估和优化设计;
3) 诊断及预报结构系统的故障;
4) 控制结构的辐射噪声;
5) 识别结构系统的载荷。
最佳悬挂点
模态试验时,一般希望将悬挂点选择在振幅较小的位置,最佳悬挂点应该是某阶振型的节点。
最佳激励点
最佳激励点视待测试的振型而定,若单阶,则应选择最大振幅点,若多阶,则激励点处各阶的振幅都不小于某一值。
如果是需要许多能量才能激励的结构,可以考虑
多选择几个激励点。
最佳测试点
模态试验时测试点所得到的信息要求有尽可能高的信噪比,因此测试点不应该靠近节点。
在最佳测试点位置其ADDOF(Average Driving DOF Displacement)值应该较大,一般可用EI(Effective Independance)法确定最佳测试点。
模态参数有那些
模态参数有:模态频率、模态质量、模态向量、模态刚度和模态阻尼等。
主模态主空间主坐标
无阻尼系统的各阶模态称为主模态,各阶模态向量所张成的空间称为主空间,其相应的模态坐标称为主坐标。
模态截断
理想的情况下我们希望得到一个结构的完整的模态集,实际应用中这即不可能也不必要。
实际上并非所有的模态对响应的贡献都是相同的。
对低频响应来说,高阶模态的影响较小。
对实际结构而言,我们感兴趣的往往是它的前几阶或十几阶模态,更高的模态常常被舍弃。
这样尽管会造成一点误差,但频响函数的矩阵阶数会大大减小,使工作量大为减小。
这种处理方法称为模态截断。
实模态和复模态
按照模态参数(主要指模态频率及模态向量)是实数还是复数,模态可以分为实模态和复模态。
对于无阻尼或比例阻尼振动系统,其各点的振动相位差为零或180度,其模态系数是实数,此时为实模态;对于非比例阻尼振动系统,各点除了振幅不同外相位差也不一定为零或180度,这样模态系数就是复数,即形成复模态。
模态分析和有限元分析
1)利用有限元分析模型确定模态试验的测量点、激励点、支持点(悬挂点),参照计算振型对测试模态参数进行辩识命名,尤其是对于复杂结构很重要。
2)利用试验结果对有限元分析模型进行修改,以达到行业标准或国家标准要求。
3)利用有限元模型对试验条件所产生的误差进行仿真分析,如边界条件模拟、附加质量、附加刚度所带来的误差及其消除。
4)两套模型频谱一致性和振型相关性分析。
5)利用有限元模型仿真分析解决实验中出现的问题!
修正有限元分析的结果
用试验模态分析的结果怎么修正有限元分析的结果?
1)结构设计参数的修正,可用优化方法进行。
2)子结构校正因子修正。
3)结构矩阵元素修正,包括非零元素和全元素修正两种。
4)刚度矩阵和质量矩阵同时修正
编辑本段过程
(1)动态数据的采集及频响函数或脉冲响应函数分析
1)激励方法。
试验模态分析是人为地对结构物施加一定动态激励,采集各点的振动响应信号及激振力信号,根据力及响应信号,用各种参数识别方法获取模态参数。
激励方法不同,相应识别方法也不同。
目前主要由单输入单输出(SISO)、单输入多输出(SIMO)多输入多输出(MIMO)三种方法。
以输入力的信号特征还可分为正弦慢扫描、正弦快扫描、稳态随机(包括白噪声、宽带噪声或伪随机)、瞬态激励(包括随机脉冲激励)等。
2)数据采集。
SISO方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振形数据。
SIMO及MIMO的方法则要求大量通道数据的高速并行采集,因此要求大量的振动测量传感器或激振器,试验成本较高。
3)时域或频域信号处理。
例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。
(2)建立结构数学模型根据已知条件,建立一种描述结构状态及特性的模型,作为计算及识别参数依据。
目前一般假定系统为线性的。
由于采用的识别方法不同,也分为频域建模和时域建模。
根据阻尼特性及频率耦合程度分为实模态或复模态模型等。
(3)参数识别按识别域的不同可分为频域法、时域法和混合域法,后者是指在时域识别复特征值,再回到频域中识别振型,激励方式不同(SISO、SIMO、MIMO),相应的参数识别方法也不尽相同。
并非越复杂的方法识别的结果越可靠。
对于目前能够进行的大多数不是十分复杂的结构,只要取得了可靠的频响数据,即使用较简单的识别方法也可能获得良好的模态参数;反之,即使用最复杂的数学模型、最高级的拟合方法,如果频响测量数据不可靠,则识别的结果一定不会理想。
(4)振形动画参数识别的结果得到了结构的模态参数模型,即一组固有频率、模态阻尼以及相应各阶模态的振形。
由于结构复杂,由许多自由度组成的振形也相当复杂,必须采用动画的方法,将放大了的振形叠加到原始的几何形状上。
以上四个步骤是模态试验及分析的主要过程。
而支持这个过程的除了激振拾振装置、双通道FFT分析仪、台式或便携式计算机等硬件外,还要有一个完善的模态分析软件包。
通用的模态分析软件包必须适合各种结构物的几何物征,设置多种坐标系,划分多个子结构,具有多种拟合方法,并能将结构的模态振动在屏幕上三维实时动画显示。
2.结构动力修改与灵敏度分析
结构动力修改(Structure Dynamic Modify——SDM)有两个含义:①如果机器作了某种设计上的修改,它的动力学特性将会有何种变化?这个问题被称为SDM的正问题。
②如果要求结构动力学参数作某种改变,应该对设计作何种修改?这是SDM的反问题。
上述两个问题,如果局限在有限元计算模型内解决,其正问题是比较简单的,即只要改变参数重新计算一次就可以。
其反问题就是特征值的反问题,由于结构的复杂性和数学处理的难度较大,目前在理论上还不完善。
只有涉及雅可比矩阵的问题得到了比较完善的解决,相应的力学模型是弹簧质量单向串联系统或杆件经过有限元或差分法离散的系统。
此外,特征值反问题的解决要求未修改系统计算的特征值及特征向量是精确的。
因此,现在通常所指的SDM是指在试验模态分析基础上的。
不论是结构动力修改的正问题还是反问题,都要涉及针对结构进行修改。
为了避免修改的盲目性,人们自然要问,如何修改才是最见成效的?换而言之,对一个机械系统,是进行质量修改,还是进行刚度修改?质量或刚度修改时,在机械结构上何处修改才是最灵敏部位,使得以较少的修改量得到较大的收获?由此,引出了结构动力修改中的灵敏度分析技术。
目前较为常见的是基于摄动的灵敏度分析。
模态分析技术从20世纪60年代后期发展至今已趋成熟,它和有限元分析技术一起成为结构动力学的两大支柱。
模态分析作为一种“逆问题”分析方法,是建立在实验基础上的,采用实验与理论相结合的方法来处理工程中的振动问题。
编辑本段实例解释模态分析
简单地说,模态分析是根据用结构的固有特征,包括频率、阻尼和模态振型,这些动力学属性去描述结构的过程。
那只是一句总结性的语言,现在让我来解释模态分析到底是怎样的一个过程。
不涉及太多的技术方面的知识,我经常用一块平板的振动模式来简单地解释模态分析。
这个解释过程对于那些振动和模态分析的新手们通常是有用的。
考虑自由支撑的平板,在平板的一角施加一个常力,由静力学可知,一个静态力会引起平板的某种静态变形。
但是在这儿我要施加的是一个以正弦方式变化,且频率固定的振荡常力。
改变此力的振动频率,但是力的峰值保持不变,仅仅是改变力的振动频率。
同时在平板另一个角点安装一个加速度传感器,测量由此激励力引起的平板响应。
现在如果我们测量平板的响应,会注意到平板的响应幅值随着激励力的振动频率的变化而变化。
随着时间的推进,响应幅值在不同的频率处有增也有减。
这似乎很怪异,因为我们对此系统仅施加了一个常力,而响应幅值的变化却依赖于激励力的振动频率。
具体体现在,当我们施加的激励力的振动频率越来越接近系统的固有频率(或者共振频率)时,响应幅值会越来越大,在激励力的振动频率等于系统的共振频率时达到最大值。
想想看,真令人大为惊奇,因为施加的外力峰值始终相同,而仅仅是改变其振动频率。
时域数据提供了非常有用的信息,但是如果用快速傅立叶变换(FFT)将时域数据转换到频域,可以计算出所谓的频响函数(FRF)。
这个函数有一些非常有趣的信息值得关注:注意到频响函数的峰值出现在系统的共振频率处,注意到频响函数的这些峰出现在观测到的时域响应信号的幅值达到最大时刻的频率处。
如果我们将频响函数叠加在时域波形之上,会发现时域波形幅值达到最大值时的激励力振动频率等于频响函数峰值处的频率。
因此可以看出,既可以使用时域信号确定系统的固有频率,也可以使用频响函数确定这些固有频率。
显然,频响函数更易于估计系统的固有频率。
许多人惊奇结构怎么会有这些固有特征,而更让人惊奇的是在不同的固有频率处,结构呈现的变形模式也不同,且这些变形模式依赖于激励力的频率。
现在让我们了解结构在每一个固有频率处的变形模式。
在平板上均匀分布45个加速度计,用于测量平板在不同激励频率下的响应幅值。
如果激励力在结构的每一个固有频率处驻留,会发现结构本身存在特定的变形模式。
这个特征表明激励频率与系统的某一阶固有频率相等时,会导致结构产生相应的变形模式。
我们注意到当激励频率在第一阶固有频率处驻留时,平板发生了第1阶弯曲变形,在图中用蓝色表示。
在第2阶固有频率处驻留时,平板发生了第1阶扭转变形,在图中用红色表示。
分别在结构的第3和第4阶固有频率处驻留时,平板发生了第2阶弯曲变形,在图中用绿色表示,和第2阶扭转变形,在图中用红紫红色表示。
这些变形模式称为结构的模态振型。
(从纯数学角度讲,这种叫法实际上不完全正确,但在这儿作为简单的讨论,从实际应用角度讲,这些变形模式非常接近模态振型。
)我们设计的所有结构都具有各自的固有频率和模态振型。
本质上,这些特性取决于确定结构固有频率和模态振型的结构质量和刚度分布。
作为一名设计工程师,需要识别这些频率,并且当有外力激励结构时,应知道它们怎样影响结构的响应。
理解模态振型和结构怎样振动有助于设计工程师设计更优的结构。
模态分析有太多的需要讲解的地方,但这个例子仅仅是一个非常简单的解释。
现在我们能更好地理解模态分析主要是研究结构的固有特性。
理解固有频率和模态振型(依赖结构的质量和刚度分布)有助于设计噪声和振动应用方面的结构系统。
我们使用模
态分析有助于设计所有类型的结构,包括机车、航天器,宇宙飞船、计算机、网球拍、高尔夫球杆……这些清单举不胜举。