2018八年级下册期末考试数学试卷及答案

合集下载

2018八年级下学期数学期末考试题(含答案)

2018八年级下学期数学期末考试题(含答案)

八年级下期末试题2018一、选择题(本大题共15小题,每小题3分,共45分)1.若a >b ,则下列各式中一定成立的是( )A .a +2<b +2B .a 一2<b 一2C .a 2>b2 D .-2a >-2b2.下面式子从左边到右边豹变形是因式分解的是( )A .x 2-x -2=x (x 一1)-2B .x 2—4x +4=(x 一2)2C .(x +1)(x —1)=x 2 - 1D .x -1=x (1-1x )3下列所培图形中·既是中心对称图形又是轴对称图形的是()A B C D 4.多项式x 2-1与多项式x 2一2x +1的公因式是( )A .x 一1B .x +1C .x 2一1D .(x -1)2 5己知一个多边形的内角和是360°,则这个多边形是( )A .四边形B .五边形C .六边形D .七边形 6. 下列多项式能用完全平方公式分解因式的有 ( )A .m 2-mn +n 2B .x 2+4x – 4 C. x 2-4x +4 D. 4x 2-4x +4 7.如图,将一个含30°角的直角三角板ABC 绕点A 旋转,得点B ,A ,C ′,在同一条直线上,则旋转角∠BAB ′的度数是( ) A .60° B .90° C .120°D .150°30°B'C 'CBA8.运用分式的性质,下列计算正确的是( )A .x 6x 2 =x 3 B .-x +y x -y =-1 C .a +x b +x =a b D .x +y x +y =09.如图,若平行四边形ABCD 的周长为40cm ,BC =23AB ,则BC =( )A .16crnB .14cmC .12cmD .8cmOCABD10.若分式方程x -3x -1=mx -1有增根,则m 等于( )A .-3B .-2C .3D .211.如图,△ABC 中,AB =AC =15,AD 平分∠BAC ,点E 为AC 的中点,连接DE ,若△CDE 的周长为24,则BC 的长为( )A .18B .14C .12D .6EDBCA12.如图,己知直线y 1=x +m 与y 2=kx —1相交于点P (一1,2),则关于x 的不等式x +m <kx —1的解集在数轴上表示正确的是( )xy2-1POA .B .C .D .13.如图,在菱形ABCD 中,对角线AC 、BD 相较于点O ,BD =8,BC =5,AE ⊥BC 于点E ,则AE 的长为( ) A .5B .125C .245D .185A DOBCE14.定义一种新运算:当a >b 时,a ○+b =ab +b ;当a <b 时,a ○+b =ab -b .若3○+(x +2)>0,则x 的取值范围是( )A .-1<x <1或x <-2B .x <-2或1<x <2C .-2<x <1或x >1D .x <-2或x >215.在平面直角坐标系xOy 中,有一个等腰直角三角形AOB ,∠OAB =90°,直角边AO 在x 轴上,且AO =1.将Rt △AOB 绕原点O 顺时针旋转90°得到等腰直角三角形A 1OB 1,且A 1O =2AO ,再将Rt △A 1OB 1绕原点O 顺时针旋转90°得到等腰三角形A 2OB 2,且A 2O =2A 1O ……,依此规律,得到等腰直角三角形A 2017OB 2017.则点B 2017的坐标( ) A .(22017,-22017) B .(22016,-22016) C .(22017,22017) D .(22016,22016)x y B 2A 2B 1A 1ABO二、填空题(本大题共5小题,每小题4分,共20分)16.若分式1x -1有意义,则x 的取值范围是_______________.17.若m =2,则m 2-4m +4的值是_________________.18.如图,已知∠AOB =30°,P 是∠AOB 平分线上一点,CP //OB ,交OA 于点C ,PD ⊥OB ,垂足为点D ,且PC =4,则PD 等于_____________.C D AOBP19.不等式组⎩⎨⎧x >4x >m(m ≠4)的解集是x>4,那么m的取值范围是_______________.20.如图,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 方向平移2个单位后得到△DEF ,连接DC ,则DC 的长为________________.21.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE ,将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论:①△ABG ≌△AFG ;②BG =CG ;③AG //CF ;④S △EFC =125.其中正确结论的是____________(只填序号).22.(本小题满分7分) (1)分解因式:ax 2-ay 2;(2)解不等式组⎩⎨⎧x -1<2 ①2x +3≥x -1 ②,并把不等式组的解集在数轴上表出来.23(本小题满分7分)(1)如图,在 ABCD 中,点E ,F 分别在AB ,CD 上,AE =CF .求证:DE =BF .(2)先化简,再求值:(1a +2-1a -2)÷1a -2,其中a =624.(本小题满分8分)在平面直角坐标系中,△ABC 的位置如图所示(每个小方格都是边长1个单位长度的正方形).(1)将△ABC 沿x 轴方向向左平移6个单位,画出平移后得到的△A 1B 1C 1; (2)将△ABC 绕着点A 顺时针旋转90°,画出旋转后得到的△AB 2C 2; (3)直接写出点B 2、C 2的坐标.25.(本小题满分8分)某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同. (1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么,最多可购买多少件甲种商品?26.(本小题满分9分)探索发现:11×2=1-12;12×3=12-13;13×4=13-14……根据你发现的规律,回答下列问题: (1)14×5=___________,1n ×(n +1)=___________;(2)利用你发现的规律计算:11×2+12×3+13×4+……+1n ×(n +1)(3)灵活利用规律解方程: 1x (x +2)+1(x +2)(x +4)+……+1(x +98)(x +100)=1x +100.27.(本小最满分9分)如图1,已知四边形ABCD 是正方形,对角线AC 、BD 相交于点E ,以点E 为顶点作正方形EFGH .(1)如图1,点A 、D 分别在EH 和EF 上,连接BH 、AF ,直接写出BH 和AF 的数量关系:(2)将正方形EFGH 绕点E 顺时针方向旋转①如图2,判断BH 和 AF 的数量关系,并说明理由;②如果四边形ABDH 是平行四边形,请在备用图中不劝图形;如果四方形ABCD 的边长为\R (,2),求正方形EFGH 的边长.28.(本小题满分9分)如图,矩形ABCO 中,点C 在x 轴上,点A 在y 轴上,点B 的坐标是(一6,8).矩形ABCO 沿直线BD 折叠,使得点A 落在对角线OB 上的点E 处,折痕与OA 、x 轴分别交于点D 、F .(1)直接写出线段BO 的长: (2)求点D 的坐标;(3)若点N是平面内任一点,在x轴上是否存在点M,使咀M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标:若不存在,请说明理由.专业资料word格式可复制编辑。

2018年八年级下册数学期末试卷及答案(新人教版) - 副本

2018年八年级下册数学期末试卷及答案(新人教版) - 副本

2017—2018级八年级期末测试一、选择题(本题共10小题,满分共30分) 1.二次根式21、错误!、错误!、错误!、240x 、22y x +中,最简二次根式有( )个。

A 、1 个B 、2 个C 、3 个D 、4个 2。

若式子23x x --有意义,则x 的取值范围为( )。

A 、x≥2B 、x≠3C 、x≥2或x≠3D 、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .1113,4,5222C .3,4, 5D .114,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )(A )AC=BD,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C (C )AO=BO=CO=DO,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC5、如下左图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE交AE 于点F ,则∠1=( )1FEDCBAA .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )7。

如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >2 8、 在方差公式()()()[]2222121x x x x x x nS n -++-+-=中,下列说法不正确的是( )(-1,1)1y (2,2)2yxyO(第7题)BCADOA 。

n 是样本的容量B 。

n x 是样本个体C. x 是样本平均数 D 。

S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47 (B)众数是42(C)中位数是58(D)每月阅读数量超过40的有4个月10、如上右图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54 B .52C .53D .65二、填空题(本题共10小题,满分共30分)11.48—133-⎛⎫⎪ ⎪⎝⎭+)13(3--30 —23-= 12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13。

2018年八年级下册数学期末试卷及答案(新人教版)---副本

2018年八年级下册数学期末试卷及答案(新人教版)---副本

2017—2018级八年级期末测试一、选择题(本题共10小题,满分共30分) 1.二次根式21、错误!、错误!、错误!、240x 、22y x +中,最简二次根式有( )个。

A 、1 个B 、2 个C 、3 个D 、4个 2.若式子23x x --有意义,则x 的取值范围为( )。

A 、x≥2B 、x≠3C 、x≥2或x≠3D 、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .1113,4,5222C .3,4, 5D .114,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )(A )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C (C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC5、如下左图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE交AE 于点F ,则∠1=( )1FEDCBAA .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )7。

如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >2 8、 在方差公式()()()[]2222121x x x x x x nS n -++-+-=中,下列说法不正确的是( )(-1,1)1y (2,2)2yxyO(第7题)BCADOA 。

n 是样本的容量 B. n x 是样本个体C 。

x 是样本平均数D 。

S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47 (B )众数是42(C)中位数是58(D )每月阅读数量超过40的有4个月10、如上右图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54 B .52C .53D .65二、填空题(本题共10小题,满分共30分)11.48-133-⎛⎫⎪ ⎪⎝⎭+)13(3-—30 -23-= 12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13. 平行四边形ABCD 的周长为20cm,对角线AC 、BD 相交于点O,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm.14。

2018年八年级下册期末考试数学试卷与答案

2018年八年级下册期末考试数学试卷与答案

2017-2018学年度第二学期期末教学统一检测初二数学、选择题(本题共 30分,每小题3分)卜面各题均有四个选项,其中只有一个是符合题意的.1.下列函数中,正比例函数是A. y=XB. y= xC. y = 2D. y= 22.下列四组线段中,不能作为直角三角形三条边的是3.下图中,不是函数图象的是4.平行四边形所具有的性质是A.对角线相等B.C.每条对角线平分一组对角5.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:A. 3cm , 4cm, 5cmB. 2 cm ,2cm,C. 2 cm ,5cm, 6cmD. 5cm , 12cm 13cmD.邻边互相垂直 两组对边分别相等C平均数(分)92 95 95 92 万差3.63.67.48.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择A.甲 B .乙 C .丙 D二、填空题(本题共 24分,每小题3分)6.若x= - 2是关于x 的一元二次方程32,一,— ax a 0的一个根,贝U a 的值为A. 1 或-4 B . - 1 或-4 C7.将正比例函数y2x 的图象向下平移2个单位长度,所得图象对应的函数解析式是A. y 2x 1 B . y 2x 2 C . y 2x 2 D . y 2x 18.在一次为某位身患重病的小朋友募捐过程中,某年级有50师生通过微信平台奉献了爱心小东对他们的捐款金额进行统计, 并绘制了如下统计图.师生捐款金额的平均数和众数分别是A. 20 , 20B. 32.4 , 30C. 32.4 , 20D. 20 , 309.若关于x 的一元二次方程 . , 2,有实数根,则k 的取值范围是A. k< 5 B . k< 5,且 k 丰 1 C .k v 5,且 k 丰 1 D . kv 510.点P (x, y )在第一象限内,且 x+y=6,点A 的坐标为( 4, 0) .设△ OPA 勺面积为S,S 与x 之间的函数关系式的是则下列图象中,能正确反映*x11.请写出一个过点(0,1 ),且y随着x的增大而减小的一次函数解析式 .12.在湖的两侧有A, B两个消防栓,为测定它们之间的距离,小明在岸上任选一点C,并量取了AC中点D和BC中点E之间的距离为16米,则A, B之间的距离应为米.13.如图,直线y = x + b与直线y = kx + 6交于点P(3 , 5),则关于x的不等式kx + 6>x + b的解集是______________14.在菱形ABC^,Z A=60°,其所对的对角线长为4,则菱形ABCD勺面积是15.〈〈九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用^〈〈九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等 .问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为.16.方程x2 8x 15 0的两个根分别是一个直角三角形的两条边长,则直角三角形的第三条边长是.1 * 17.已知直线y 2x 2与x轴、y轴分别交于点A , B .若将直线y — x向上平移n个2单位长度与线段AB有公共点,则n的取值范围是 .18.在一节数学课上,老师布置了一个任务:已知,如图1,在RtA ABC中,/ B=90。

2018年八年级下册数学期末试卷及答案

2018年八年级下册数学期末试卷及答案

2018年八年级数学(下)期末调研检测试卷一、选择题(本题共10小题,满分共30分) 1.二次根式21、12 、30 、x+2 、240x 、22y x +中,最简二次根式有( )个。

A 、1 个B 、2 个C 、3 个D 、4个 2.若式子23x x --有意义,则x 的取值范围为( ).A 、x≥2B 、x≠3C 、x≥2或x≠3D 、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )A .7,24,25B .1113,4,5222C .3,4, 5D .114,7,822 4、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( )(A )AC=BD ,AB ∥CD ,AB=CD (B )AD ∥BC ,∠A=∠C (C )AO=BO=CO=DO ,AC ⊥BD (D )AO=CO ,BO=DO ,AB=BC5、如图,在平行四边形ABCD 中,∠B =80°,AE 平分∠BAD 交BC 于点E ,CF ∥AE 交AE 于点F ,则∠1=( )1FEDCBAA .40°B .50°C .60°D .80°6、表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 是常数且mn ≠0)图象是( )7.如图所示,函数x y =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x 的取值范围是( )A .x <-1B .—1<x <2C .x >2D . x <-1或x >28、 在方差公式()()()[]2222121xx x x x x nS n -++-+-= 中,下列说法不正确的是( )A. n 是样本的容量B. n x 是样本个体C. x 是样本平均数D. S 是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47(B )众数是42(C )中位数是58(D )每月阅读数量超过40的有4个月10、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54B .52C .53D .65M PFE CBAB C A D O二、填空题(本题共10小题,满分共30分)11.48-133-⎛⎫ ⎪ ⎪⎝⎭+)13(3--30-23-=12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。

2018年深圳市八年级下学期数学期末试卷含解析

2018年深圳市八年级下学期数学期末试卷含解析

2018年深圳市八年级下学期数学期末试卷含解析2018年广东省深圳市八年级下学期数学试卷一、选择题(共12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)如果分式$\frac{5}{x+3}$有意义,则x的取值范围是()。

A。

$x=-3$ B。

$x>-3$ C。

$x\neq-3$ D。

$x<-3$2.(3分)如图,图形中,既是轴对称图形又是中心对称图形的是()。

图片省略]。

XXX$3.(3分)已知实数a,b,若a>b,则下列结论错误的是()。

A。

$a+6>b+6$ B。

$a-2>b-2$ C。

$-2a>-2b$ D。

$a^2>b^2$4.(3分)将点A(1,-1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()。

A。

(-2,1) B。

(-2,-1) C。

(2,1) D。

(2,-1)5.(3分)若一个多边形的内角和是1080度,则这个多边形的边数为()。

A。

6 B。

7 C。

8 D。

106.(3分)下列多项式中,可以提取公因式的是()。

A。

$ab+cd$ B。

$mn+m^2$ C。

$x^2-y^2$ D。

$x^2+2xy+y^2$7.(3分)DE平分∠ADC,AD=8,BE=3,如图,在▱ABCD中,则▱ABCD的周长是()。

图片省略]。

A。

16 B。

14 C。

26 D。

248.(3分)下列命题中,错误的是()。

A。

过n边形一个顶点的所有对角线,将这个多边形分成(n-2)个三角形。

B。

三角形中,到三个顶点距离相等的点是三条边垂直平分线的交点。

C。

三角形的中线将三角形分成面积相等的两部分。

D。

一组对边平行另一组对边相等的四边形是平行四边形9.(3分)如图,在△ABC中,∠ACB=90°,分别以点A 和点B为圆心以相同的长(大于AB)为半径作弧,两弧相交于点M和N点,作直线MN交AB于点D,交BC于点E,若AC=3,BC=4,则BE等于()。

2018八年级下册期末考试数学试卷及答案(精品范文).doc

2018八年级下册期末考试数学试卷及答案(精品范文).doc

【最新整理,下载后即可编辑】2017-2018学年度第二学期期末教学统一检测初二数学一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 下列函数中,正比例函数是A .y =x 2B. y =x2 C. y =2x D.y =21 x2. 下列四组线段中,不能作为直角三角形三条边的是 A. 3cm ,4cm ,5cm B. 2cm ,2cm ,cm C. 2cm ,5cm ,6cm D. 5cm ,12cm ,13cm3. 下图中,不是函数图象的是ABC D4. 平行四边形所具有的性质是A. 对角线相等B.邻边互相垂直C. 每条对角线平分一组对角D. 两组对边分别相等5.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择A .甲B .乙C .丙D .丁 6. 若x=﹣2是关于x 的一元二次方程22302x ax a +-=的一个根,则a 的值为A .1或﹣4B .﹣1或﹣4C .﹣1或4D .1或47. 将正比例函数2y x =的图象向下平移2个单位长度,所得图象对应的函数解析式是A .21y x =-B .22y x =+C .22y x =-D . 21y x =+8. 在一次为某位身患重病的小朋友募捐过程中,某年级有50师生通过微信平台奉献了爱心.小东对他们的捐款金额进行统计,并绘制了如下统计图. 师生捐款金额的平均数和众数分别是 A . 20, 20 B . 32.4,30 C . 32.4,20 D . 20, 30xS612OxS612OxS124O9. 若关于x 的一元二次方程()21410k x x -++=有实数根,则k 的取值范围是 A .k ≤5 B .k ≤5,且k ≠1 C .k <5,且k ≠1 D .k <510.点P (x ,y )在第一象限内,且x+y=6,点A 的坐标为(4,0).设△OPA 的面积为S ,则下列图象中,能正确反映S 与x 之间的函数关系式的是A BC D二、填空题(本题共24分,每小题3分)11. 请写出一个过点(0,1),且y 随着x 的增大而减小的一次函数解析式 .12. 在湖的两侧有A ,B 两个消防栓,为测定它们之间的距离,小明在岸上任选一点C ,并量取了AC 中点D 和BC 中点E 之间的距离为16米,则A ,B 之间的距离应为 米.xS66O13. 如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式kx+6>x+b的解集是_____________.14. 在菱形ABCD中,∠A=60°,其所对的对角线长为4,则菱形ABCD的面积是.15. 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短. 横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为 .16. 方程28150-+=的两个根分别是一个直角三角形的两x x条边长,则直角三角形的第三条边长是 .17. 已知直线22y x =+与x 轴、y 轴分别交于点A ,B . 若将直线12y x =向上平移n 个单位长度与线段AB 有公共点,则n 的取值范围是 .18. 在一节数学课上,老师布置了一个任务:已知,如图1,在Rt ABC △中,∠B =90°,用尺规作图作矩形ABCD .图1 图2同学们开动脑筋,想出了很多办法,其中小亮作了图2,他向同学们分享了作法:① 分别以点A ,C 为圆心,大于12AC 长为半径画弧,两弧分别交于点E ,F ,连接EF 交AC 于点O ; ② 作射线BO ,在BO 上取点D ,使OD OB =; ③ 连接AD ,CD .则四边形ABCD 就是所求作的矩形.老师说:“小亮的作法正确.”小亮的作图依据是.三、解答题(本题共46分,第19—21, 24题, 每小题4分,第22 ,23, 25-28题,每小题5分)19.用配方法解方程:261-=x x20. 如图,正方形ABCD的边长为9,将正方形折叠,使顶点BE EC=,求线段EC, D落在BC边上的点E处,折痕为GH.若:2:1CH的长.,其中 21. 已知关于x的一元二次方程()()2--++=1120m x m xm≠ .1(1)求证:此方程总有实根;(2)若此方程的两根均为正整数,求整数m的值22. 2017年5月5日,国产大飞机C919首飞圆满成功. C919大型客机是我国首次按照国际适航标准研制的150座级干线客机,首飞成功标志着我国大型客机项目取得重大突破,是我国民用航空工业发展的重要里程碑. 目前, C919大型客机已有国内外多家客户预订六百架表1是其中20家客户的订单情况.赁有限公司赁公司美国通用租赁公司GECAS20 兴业金融租赁公司20泰国都市航空10 德国普仁航空公司7根据表1所提供的数据补全表2,并求出这组数据的中位数和众数.表223.如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13, AF=BD=5,求四边形AFBD的面积.订单(架)7 10 15 20 30 50 客户(家)1 12 2 224.有这样一个问题:探究函数11y=+的图象与性质.x小明根据学习一次函数的经验,对函数11=+的图象与性质yx进行了探究.下面是小明的探究过程,请补充完整:(1)函数11y=+的自变量x的取值范围是;x(2)下表是y与x的几组对应值.求出m 的值;(3)如图,在平面直角坐标系xOy 中,描出了以表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)写出该函数的一条性质 .25.已知:如图,平行四边形ABCD 的对角线相交于点O ,点E 在边BC 的延长线上,且OE =OB ,联结DE . (1)求证:DE ⊥BE ;(2)设CD 与OE 交于点F ,若222OF FD OE +=,3CE = , 4DE =,求线段CF 长.26. 如图,在平面直角坐标系中,已知点A(﹣,0),B(0,3),C(0,-1)三点.(1)求线段BC的长度;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,直线BD上应该存在点P,使以A,B,P三点为顶点的三角形是等腰三角形. 请利用尺规作图作出所有的点P,并直接写出其中任意一个点P的坐标.(保留作图痕迹)BDB27. 如图,在△ABD中,AB=AD, 将△ABD沿BD翻折,使点A 翻折到点C. E是BD上一点,且BE>DE,连结CE并延长交AD于F,连结AE.(1)依题意补全图形;(2)判断∠DFC与∠BAE的大小关系并加以证明;(3)若∠BAD=120°,AB=2,取AD的中点G,连结EG,求EA+EG的最小值.备用图28.在平面直角坐标系xOy中,已知点(),M a b及两个图形1W和2W,若对于图形1W上任意一点(),P x y,在图形2W上总存在点(),P x y''',使得点P'是线段PM的中点,则称点P'是点P关于点M的关联点,图形2W是图形1W关于点M的关联图形,此时三个点的坐标满足2x ax+'=,2y by+'=.(1)点()P'-是点P关于原点O的关联点,则点P的坐标2,2是;(2)已知,点()C--,()D--以及点()3,0M4,14,1A-,()2,12,1B-,()①画出正方形ABCD关于点M的关联图形;②在y轴上是否存在点N,使得正方形ABCD关于点N的关联图形恰好被直线y x=-分成面积相等的两部分?若存在,求出点N的坐标;若不存在,说明理由.2018学年度第二学期期末统一检测初二数学参考答案及评分标准一、选择题(本题共30分,每小题3分) 题号 12345678910答案C C BD B A C BB B二、填空题(本题共24分,每小题3分)11. y = -x +1等,答案不唯一. 12. 32 13. X <3 14. 3 15. ()()22242x x x =-+- 16. 434122n ≤≤18. 到线段两端距离相等的点在线段的垂直平分线上,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.三、解答题(本题共46分,第19—21, 24题, 每小题4分,第22 ,23, 25-28题,每小题5分) 19. 解:()2310x -=, ………………2分解得1310x =,2310x = (4)分20.解:∵9BC =,:2:1BE EC =, ∴3EC =. (1)分设CH x =,则9DH x =- . ………………2分 由折叠可知9EH DH x ==-. 在Rt △ECH △中,=90C ∠︒, ∴ 222EC CH EH +=. 即()22239x x +=-. ………………3分解得4x =.∴4CH =. ………………4分21. (1)证明:由题意1m ≠ .()()21421m m ∆=-+-⨯-⎡⎤⎣⎦ (1)分()22693m m m =-+=-∵()23m -≥0恒成立,∴方程()()21120m x m x --++=总有实根;………………2分 (2)解:解方程()()21120m x m x --++=, 得11x =,221x m =-. ∵方程()()21120m x m x --++=的两根均为正整数,且m 是整数, ∴11m -=,或12m -=. ∴2m =,或3m =.………………4分22. 解:………………3分中位数是20,众数是20. (5)分23.(1)证明:∵点E 是AD 的中点,∴AE =DE . ∵AF ∥BC ,∴∠AFE =∠DCE ,∠FAE =∠CDE . ∴△EAF ≌△EDC .………………1分∴AF =DC . ∵AF =BD ,∴BD =DC ,即D 是BC 的中点.………………2分(2)解:∵AF ∥BD ,AF =BD , ∴四边形AFBD 是平行四边形. ………………3分订单(架) 7 10 15 20 30 45 50客户(家)1 12 10 2 2 2∵AB=AC,又由(1)可知D是BC的中点,∴AD⊥BC.………………4分在Rt△ABD中,由勾股定理可求得AD=12,∴矩形AFBD的面积为60⋅=. (5)BD AD分24. 解:(1)x≠0;………………1分(2)令113+=,m∴1m=;………………2分2(3)如图………………3分(4)答案不唯一,可参考以下的角度:………………4分①该函数没有最大值或该函数没有最小值;②该函数在值不等于1;③增减性25.(1)证明:∵平行四边形,∴OB=OD.∵OB=OE,∴OE=OD.∴∠OED=∠ODE. ………………1分∵OB=OE,∴∠1=∠2.∵∠1+∠2+∠ODE+∠OED=180°,∴∠2+∠OED=90°.∴DE⊥BE;………………2分(2)解:∵OE=OD,222+=,OF FD OE∴222+=.OF FD OD∴△OFD为直角三角形,且∠OFD=90°.………………3分在Rt△CED中,∠CED=90°,CE=3,4DE=,∴222=+ .CD CE DE∴5CD=. ………………4分又∵1122CD EF CE DE ⋅=⋅,∴125EF =.在Rt △CEF 中,∠CFE=90°,CE=3,125EF =,根据勾股定理可求得95CF =. ………………5分26. 解:(1)∵B (0,3),C (0,﹣1).∴BC =4. ………………1分 (2)设直线AC 的解析式为y=kx+b , 把A (﹣,0)和C (0,﹣1)代入y=kx+b , ∴. 解得:,∴直线AC 的解析式为:y=﹣x ﹣1. ………………2分∵DB=DC ,∴点D 在线段BC 的垂直平分线上. ∴D 的纵坐标为1. 把y=1代入y=﹣x ﹣1,解得x=﹣2,∴D 的坐标为(﹣2,1). ………………3分F D B E (3)………………4分当A 、B 、P 三点为顶点的三角形是等腰三角形时,点P 的坐标为(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+),写出其中任意一个即可. ………………5分27.解:(1)………………1分(2)判断:∠DFC =∠BAE . ………………2分 证明:∵将△ABD 沿BD 翻折,使点A 翻折到点C .∴BC=BA=DA=CD .∴四边形ABCD 为菱形. ∴∠ABD =∠CBD ,AD ∥BC.又∵BE=BE,∴△ABE≌△CBE(SAS).∴∠BAE=∠BCE.∵AD∥BC,∴∠DFC=∠BCE.∴∠DFC=∠BAE. (3)分(3)连CG, AC.由()P-轴对称可知,EA+EG=EC+EG,4,4CG长就是EA+EG的最小值. ………………4分∵∠BAD=120°,四边形ABCD为菱形,∴∠CAD=60°.∴△ACD为边长为2的等边三角形.可求得3.∴EA+EG3.………………5分28. 解:(1)∵P(-4,4).………………1分(2)①连接AM,并取中点A′;同理,画出B′、C′、D′;∴正方形A′B′C′D′为所求作.-----------------------------3分②不妨设N(0,n).∵关联正方形被直线y=-x分成面积相等的两部分,∴中心Q落在直线y=-x上.-------------------------------------4分∵正方形ABC D的中心为E(-3,0),。

2018年重庆八年级下学期期末考试数学试题word版含答案

2018年重庆八年级下学期期末考试数学试题word版含答案

2018年重庆八年级下学期期末考试数学试题(本试卷满分150分,考试时间120分钟)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了 代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将各小题所选答案的标号填入对应的表格内.1.若分式011=+-x x ,则的值是( ) A . 1=x B .1-=x C .0=x D .1-≠x 2.下列分解因式正确的是( )A .)1(23-=-x x x xB .)1)(1(12-+=-x x xC .2)1(22+-=+-x x x xD .22)1(12-=-+x x x3.下列图形中,是中心对称图形,但不是轴对称图形的是( )A. B . C . D . 4.方程x x 32=的解是( )A .3=xB .3-=xC .0=xD . 3=x 或0=x 5.根据下列表格的对应值:判断方程012=-+x x 一个解的取值范围是( )A .61.059.0<<xB .61.060.0<<xC .62.061.0<<xD .63.062.0<<x6.将点P (-3,2)向右平移2个单位后,向下平移3个单位得到点Q ,则点Q 的坐标为( ) A .(-5,5) B .(-1,-1) C .(-5,-1) D .(-1,5)7.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率. 设平均每次降价的百分率为,可列方程为( )A .100)1(1202=-xB .120)1(1002=-xC .120)1(1002=+xD .100)1(1202=+x8.如图,在平行四边形ABCD 中,E 是AB 的中点,CE 和BD 交于点O ,若2=∆BOE S ,则DOC S ∆是( ) A .4B .6C .8D .99.已知0=x 是关于的一元二次方程012)1(22=-++-k x x k的根,则常数的值为( ) A .0或1 B .1 C .-1 D .1或-1 10.如图,菱形ABCD 中,对角线AC 、BD 交于点O ,菱形ABCD 周长为32,点P 是边CD 的中点,则线段OP 的长为( ) A .3 B .5 C .8 D .411.如图,以下各图都是由同样大小的图形①按一定规律组成,其中第①个图形中共有1个完整菱形,第②个图形中共有5个完整菱形,第③个图形中共有13个完整菱形,……,则第⑦个图形中完整菱形的个数为( )A .83B .84C .85D .86 12.如图,□ABCD 中,∠B =70°,点E 是BC 的中点,点F 在 AB 上,且BF=BE ,过点F 作FG ⊥CD 于点G ,则∠EGC 的度数 为( )A .35°B .45°C .30°D .55°二.填空题(本大题6个小题,每小题4分,共24分)请将正确答案填入对应的表格内. 题号 13 14 15 16 17 18 答案13.已知23=y x ,则yy x + = . 14.已知点C 是线段AB 的黄金分割点,且AC >BC ,AB =2,CO PA BD第10题图第12题图第8题图①④ ③ ② F G A EB C D 3-=kx y xybx y +=24-6O POEDCB A则AC 的长为 .15.如图,已知函数b x y +=2与函数3-=kx y 的图象交于点P ,则不等式b x kx +>-23的解集是 .16. 已知一元二次方程01892=+-x x 的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为 .17. 关于的方程15=+x m的解是负数,则的取值范围是 . 18. 如图,矩形ABCD 中,AD=10,AB=8,点P 在边CD 上,且BP=BC ,点M 在线段BP 上,点N 在线段BC的延长线上,且PM=CN ,连接MN 交BP 于点F ,过 点M 作ME ⊥CP 于E ,则EF= .三.解答题(本大题3个小题,19题12分,20,21题各6分,共24分)解答每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.19.解方程: (1) 121=--xx x (2) 01322=-+x x20. 解不等式组: ()⎪⎩⎪⎨⎧-≥-+<-42211513x x x xP B DNA MC F E 第18题图 第15题图21. 如图,矩形ABCD 中,点E 在CD 边的延长线上,且∠EAD =∠CAD . 求证:AE=BD .四.解答题(本大题3个小题,每小题10分,共30分)解答每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.22.先化简,再求值:41)2122(216822+-+--÷++-x x x xx x x ,其中满足0342=-+x x .BC D EA 第21题图23.某蔬菜店第一次用400元购进某种蔬菜,由于销售状况良好,该店又用700元第二次购进该品种蔬菜,所购数量是第一次购进数量的2倍,但进货价每千克少了0.5元.(1)第一次所购该蔬菜的进货价是每千克多少元?(2)蔬菜店在销售中,如果两次售价均相同,第一次购进的蔬菜有2% 的损耗,第二次购进的蔬菜有3% 的损耗,若该蔬菜店售完这些蔬菜获利不低于944元,则该蔬菜每千克售价至少为多少元?24.在正方形ABCD 中,点F 是BC 延长线上一点,过点B 作BE ⊥DF 于点E ,交CD 于点G ,连接CE . (1)若正方形ABCD 边长为3,DF =4,求CG 的长; (2)求证:EF+EG =2CE .第24题图GEA BCDF五.解答题(本大题2个小题,每小题12分,共24分)解答每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.25. 为深化“携手节能低碳,共建碧水蓝天”活动,发展“低碳经济”,某单位进行技术革新,让可再生资源重新利用.今年1月份,再生资源处理量为40吨,从今年1月1日起,该单位每月再生资源处理量每一个月将提高10吨.月处理成本(元)与月份之间的关系可近似地表示为:450100502++=x x p ,每处理一吨再生资源得到的新产品的售价定为100元. 若该单位每月再生资源处理量为(吨),每月的利润为(元). (1)分别求出与,与的函数关系式; (2)在今年内....该单位哪个月获得利润达到5800元? (3)随着人们环保意识的增加,该单位需求的可再生资源数量受限.今年三月的再生资源处理量比二月份减少了%,该新产品的产量也随之减少,其售价比二月份的售价增加了m 6.0%.四月份,该单位得到国家科委的技术支持,使月处理成本比二月份的降低了20%.如果该单位四月份在保持三月份的再生资源处理量和新产品售价的基础上,其利润比二月份的利润减少了60元,求的值.26. 如图1,菱形ABCD 中,AB =5,AE ⊥BC 于E ,AE =4.一个动点P 从点B 出发,以每秒个单位长度的速度沿线段BC 方向运动,过点P 作PQ ⊥BC ,交折线段BA-AD 于点Q ,以PQ 为边向右作正方形PQMN ,点N 在射线BC 上,当P 点到达C 点时,运动结束.设点P 的运动时间为秒(0t >). (1)求出线段BD 的长,并求出当正方形PQMN 的边PQ 恰好经过点A 时,运动时间的值; (2)在整个运动过程中,设正方形PQMN 与△BCD 的重合部分面积为S ,请直接写出S 与之间的函数关系式和相应的自变量的取值范围;(3)如图2,当点M 与点D 重合时,线段PQ 与对角线BD 交于点O ,将△BPO 绕点O 逆时针旋转︒α (1800<<α),记旋转中的△BPO 为△O P B '',在旋转过程中,设直线P B ''与直线BC 交于G ,与直线BD 交于点H ,是否存在这样的G 、H 两点,使△BGH 为等腰三角形?若存在,求出此时2OH 的值;若不存在,请说明理由.第26题图1第26题图2CABDOQ PB 'P 'E P NCBD MQA2018年重庆八年级下学期期末考试数学试题参考答案一、选择题(每小题4分,共48分)ABCD CBAC CDCD二、填空题(每小题4分,共24分)13. 14.15- 15. 4<x 16.15 17.5<m 且0≠m 18. 52 19. (1)解:方程两边同乘以)1(-x x ,得)1()1(22-=--x x x x ……………… 3分∴02=+-x ……………… 4分 ∴2=x . ……………… 5分 经检验2=x 是原方程的解.∴原方程的解为2=x . ……………… 6分(2)解:∵2=a ,3=b ,1-=c∴17)1(24942=-⨯⨯-=-ac b ……………… 2分∴4173±-=x ……………… 5分 ∴41731+-=x ,41732--=x . ……………… 6分20. 解:解不等式①得: 2->x ……………… 2分 解不等式②得: 37≤x ……………… 4分 ∴原不等式组的解集为:372≤<-x……………… 6分21..证明:∵四边形ABCD 是矩形∴∠CDA =∠EDA =90°,AC=BD . ……………… 3分∵∠CAD=∠EAD ,AD=AD∴△ADC ≌△ADE . ……………… 5分 ∴AC =AE. 分∴BD=AE . ……………… 6分22. 解:原式=41216)2()4(22+-+-÷+-x x x x x x ··················· 3分=41)4)(4(2)2()4(2+--++⋅+-x x x x x x x ················· 4分=41)4(4+-+-x x x x ························ 5分 =)4(4+-x x=xx 442+-. ························· 6分∵0342=-+x x∴342=+x x . ························ 8分∴原式=34-. ························· 10分 23.解:(1)设第一次所购该蔬菜的进货价是每千克元,根据题意得5.07002400-=⋅x x …………………………3分 解得4=x .经检验4=x 是原方程的根,∴第一次所购该蔬菜的进货价是每千克4元; ············· 5分 (2)由(1)知,第一次所购该蔬菜数量为400÷4=100第二次所购该蔬菜数量为100×2=200 设该蔬菜每千克售价为元,根据题意得[100(1-2%)+200(1-3%)]944700400≥--y . ··········· 8分 ∴7≥y . ···························· 9分∴该蔬菜每千克售价至少为7元. ················ 10分24. (1)∵四边形ABCD 是正方形∴∠BCG =∠DCB=∠DCF=90°,BC=DC .∵BE ⊥DF∴∠CBG+∠F=∠CDF+∠F .∴∠CBG=∠CDF . ……………………………………2分 ∴△CBG ≌△CDF .∴BG=DF=4. ……………………………………3分∴在Rt △BCG 中,222BG BC CG =+∴CG =73422=-. …………………………4分 (2)过点C 作CM ⊥CE 交BE 于点M∵∠BCG=∠MCE =∠DCF =90°M∴∠BCM=∠DCE ,∠MCG=∠ECF ∵BC=DC ,∠CBG=∠CDF∴△CBM ≌△CDE ……………………………………6分 ∴CM=CE∴△CME 是等腰直角三角形 ……………………………………7分 ∴ME=CE 2 ,即MG+EG=CE 2又∵△CBG ≌△CDF ∴CG=CF∴△CMG ≌△FCE ……………………………………9分 ∴MG=EF∴EF+EG =2CE ……………………………………10分25. (1)3010+=x y ……………………………………2分 p y w -=100255090050)45010050()3010(10022++-=++-+=x x x x x ……………………………………4分(2)由58002550900502=++-x x 得 ……………………………………6分065182=+-x x∴131=x ,52=x∵12≤x ∴5=x . ……………………………………8分 ∴在今年内....该单位第5个月获得利润达到5800元. (3)二月份再生资源处理量为:40+10=50(吨)二月份月处理成本为:85045021002502=+⨯+⨯=p (元)50(1-%)×100(1+m 6.0%)-850×(1-20%)=50×100-850-60………10分 设%=,则023*******=-+t t∴30131060067600200±-=±-=t ∵0>t ,∴1.0=t∴%=0.1,即10=m . ……………………………………12分26.(1)过点D 作DK ⊥BC 延长线于K∴Rt △DKC 中,CK =3.∴Rt △DBK 中,BD=544)35(22=-+ ……………………2分在Rt △ABE 中,AB =5,AE =4, . ∴BE =3,∴当点Q 与点A 重合时,3=t . …………3分(2)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤<+-≤<++-≤<-+-≤<=)54(1041)43(31031032)3715(35091402768)7150(9102222t t t t t t t t t t S …………8分(3)当点M 与点D 重合时,BP=QM=4,∠BPO=∠MQO ,∠BOP=∠MOQ∴△BPO ≌△MQO ∴PO=2,BO=52 若HB=HG 时,∠HBC=∠HGB=∠O B H ' ∴B O '∥BG ∴HO=B H '∴设HO=B H '=222)4(2x x -+=, ∴25=x ∴4252=OH . ……………………………………9分 若GB=GH 时, ∠GBH=∠GHB∴此时,点G 与点C 重合,点H 与点D 重合∴20)52(222===OD OH . ……………………………………10分 当BH=BG 时, ∠BGH=∠BHG∵∠HBG=∠B ', ∴∠B OH B HO '∠='∴B O B H '='=52,∴P H '=452-.∴51640)452(2222-=-+=OH . 或∠BGH=∠HA P 'BB 'O CDHGA BC D OP 'B '(G)(H)ABC DOB 'P 'GH P 'GHBADOCB '∴∠OBG=∠H P B O ∠=''2 ∴∠H B HO ∠='∴B O B H '='=52, ∴P H '=452+.∴51640)452(2222+=++=OH . ……………………………………12分 综上所述,当4252=OH 、20、51640-、51640+时,△BGH 为等腰三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年度第二学期期末教学统一检测初二数学一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 下列函数中,正比例函数是 A .y =x 2B. y =x 2 C. y =2x D. y =21x2. 下列四组线段中,不能作为直角三角形三条边的是A. 3cm ,4cm ,5cmB. 2cm ,2cm ,22 cmC. 2cm ,5cm ,6cmD. 5cm ,12cm ,13cm 3. 下图中,不是函数图象的是A BC D4. 平行四边形所具有的性质是A. 对角线相等B.邻边互相垂直C. 每条对角线平分一组对角D. 两组对边分别相等5.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:甲 乙 丙 丁 平均数(分)92 95 95 92 方差3.63.67.48.1要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择 A .甲 B .乙 C .丙 D .丁 6. 若x=﹣2是关于x 的一元二次方程22302x ax a +-=的一个根,则a 的值为 A .1或﹣4 B .﹣1或﹣4 C .﹣1或4 D .1或47. 将正比例函数2y x =的图象向下平移2个单位长度,所得图象对应的函数解析式是A .21y x =-B .22y x =+C .22y x =-D . 21y x =+8. 在一次为某位身患重病的小朋友募捐过程中,某年级有50师生通过微信平台奉献了爱心.小东对他们的捐款金额进行统计,并绘制了如下统计图. 师生捐款金额的平均数和众数分别是 A . 20, 20 B . 32.4,30 C . 32.4,20 D . 20, 309. 若关于x 的一元二次方程()21410k x x -++=有实数根,则k 的取值范围是A .k ≤5B .k ≤5,且k ≠1C .k <5,且k ≠1D .k <510.点P (x ,y )在第一象限内,且x+y=6,点A 的坐标为(4,0).设△OPA 的面积为S ,则下列图象中,能正确反映S 与x 之间的函数关系式的是A B C D 二、填空题(本题共24分,每小题3分)11. 请写出一个过点(0,1),且y 随着x 的增大而减小的一次函数解析式 .12. 在湖的两侧有A ,B 两个消防栓,为测定它们之间的距离,小明在岸上任选一点C ,并量取了AC 中点D 和BC 中点E 之间的距离为16米,则A ,B 之间的距离应为 米.13. 如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于x 的不等式kx +6>x +b 的解集是_____________.14. 在菱形ABCD 中,∠A =60°,其所对的对角线长为4,则菱形ABCD 的面积是 .15. 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,书中的算法体系至今仍在推动着计算机的发展和应用.《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,邪之适出.问户高、广、邪各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短. 横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x 尺,则可列方程为 .16. 方程28150x x -+= 的两个根分别是一个直角三角形的两条边长,则直角三角形的第三条边长是 .17. 已知直线22y x =+与x 轴、y 轴分别交于点A ,B . 若将直线12y x =向上平移n 个单位长度与线段AB 有公共点,则n 的取值范围是 .18. 在一节数学课上,老师布置了一个任务:已知,如图1,在Rt ABC △中,∠B =90°,用尺规作图作矩形ABCD .图1 图2同学们开动脑筋,想出了很多办法,其中小亮作了图2,他向同学们分享了作法: ① 分别以点A ,C 为圆心,大于12AC 长为半径画弧,两弧分别交于点E ,F ,连接EF 交AC 于点O ;② 作射线BO ,在BO 上取点D ,使OD OB =; ③ 连接AD ,CD .则四边形ABCD 就是所求作的矩形. 老师说:“小亮的作法正确.”小亮的作图依据是 .三、解答题(本题共46分,第19—21, 24题, 每小题4分,第22 ,23, 25-28题,每小题5分)19. 用配方法解方程: 261x x -=20. 如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若:2:1BE EC =,求线段EC ,CH 的长.21. 已知关于x的一元二次方程()()m≠ .2--++=,其中11120m x m x(1)求证:此方程总有实根;(2)若此方程的两根均为正整数,求整数m的值22. 2017年5月5日,国产大飞机C919首飞圆满成功. C919大型客机是我国首次按照国际适航标准研制的150座级干线客机,首飞成功标志着我国大型客机项目取得重大突破,是我国民用航空工业发展的重要里程碑. 目前, C919大型客机已有国内外多家客户预订六百架表1是其中20家客户的订单情况.表1根据表1所提供的数据补全表2,并求出这组数据的中位数和众数.表223.如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13, AF=BD=5,求四边形AFBD的面积.24.有这样一个问题:探究函数11yx=+的图象与性质.小明根据学习一次函数的经验,对函数11yx=+的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数11yx=+的自变量x的取值范围是;(2)下表是y与x的几组对应值.x …-4 -3 -2 -1 -m m 1 2 3 4 …y (3)423120 -1 3 2324354…求出m的值;(3)如图,在平面直角坐标系xOy中,描出了以表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)写出该函数的一条性质 .25.已知:如图,平行四边形ABCD 的对角线相交于点O ,点E 在边BC 的延长线上,且OE =OB ,联结DE .(1)求证:DE ⊥BE ;(2)设CD 与OE 交于点F ,若222OF FD OE +=,3CE = , 4DE =,求线段CF 长.26. 如图,在平面直角坐标系中,已知点A(﹣,0),B(0,3),C(0,-1)三点. (1)求线段BC的长度;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,直线BD上应该存在点P,使以A,B,P三点为顶点的三角形是等腰三角形. 请利用尺规作图作出所有的点P,并直接写出其中任意一个点P的坐标.(保留作图痕迹)27. 如图,在△ABD中,AB=AD, 将△ABD沿BD翻折,使点A翻折到点C. E是BD上一点,且BE>DE,连结CE并延长交AD于F,连结AE.(1)依题意补全图形;(2)判断∠DFC与∠BAE的大小关系并加以证明;(3)若∠BAD=120°,AB=2,取AD的中点G,连结EG,求EA+EG的最小值.DB DB备用图28.在平面直角坐标系xOy 中,已知点(),M a b 及两个图形1W 和2W ,若对于图形1W 上任意一点(),P x y ,在图形2W 上总存在点(),P x y ''',使得点P '是线段PM 的中点,则称点P '是点P 关于点M 的关联点,图形2W 是图形1W 关于点M 的关联图形,此时三个点的坐标满足2x a x +'=,2y by +'=. (1)点()2,2P '-是点P 关于原点O 的关联点,则点P 的坐标是 ; (2)已知,点()4,1A -,()2,1B -,()2,1C --,()4,1D --以及点()3,0M①画出正方形ABCD 关于点M 的关联图形;②在y轴上是否存在点N,使得正方形ABCD关于点N的关联图形恰好被直线=-分成面积相等的两部分?若存在,求出点N的坐标;若不存在,说明理由.y x2018学年度第二学期期末统一检测 初二数学参考答案及评分标准一、选择题(本题共30分,每小题3分) 题号 1 2 3 4 5 6 7 8 9 10 答案CCBDBACBBB二、填空题(本题共24分,每小题3分)11. y = -x +1等,答案不唯一. 12. 32 13. X <3 14. 83 15. ()()22242x x x =-+- 16. 434122n ≤≤18. 到线段两端距离相等的点在线段的垂直平分线上,对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.三、解答题(本题共46分,第19—21, 24题, 每小题4分,第22 ,23, 25-28题,每小题5分)19. 解:()2310x -=, ………………2分解得1310x =2310x = ………………4分20.解:∵9BC =,:2:1BE EC =, ∴3EC =. ………………1分 设CH x =,则9DH x =- . ………………2分 由折叠可知9EH DH x ==-.在Rt △ECH △中,=90C ∠︒, ∴ 222EC CH EH +=.即()22239x x +=-. ………………3分 解得4x =.∴4CH =. ………………4分21. (1)证明:由题意1m ≠ .()()21421m m ∆=-+-⨯-⎡⎤⎣⎦ ………………1分()22693m m m =-+=-∵()23m -≥0恒成立,∴方程()()21120m x m x --++=总有实根;………………2分(2)解:解方程()()21120m x m x --++=,得11x =,221x m =-. ∵方程()()21120m x m x --++=的两根均为正整数,且m 是整数,∴11m -=,或12m -=. ∴2m =,或3m =.………………4分22. 解:………………3分中位数是20,众数是20. ………………5分23.(1)证明:∵点E 是AD 的中点,∴AE =DE . ∵AF ∥BC ,∴∠AFE =∠DCE ,∠FAE =∠CDE . ∴△EAF ≌△EDC .………………1分∴AF =DC . ∵AF =BD ,∴BD =DC ,即D 是BC 的中点.………………2分 (2)解:∵AF ∥BD ,AF =BD ,∴四边形AFBD 是平行四边形. ………………3分 ∵AB =AC ,又由(1)可知D 是BC 的中点,∴AD ⊥BC . ………………4分 在Rt △ABD 中,由勾股定理可求得AD =12,∴ 矩形AFBD 的面积为60BD AD ⋅=. ………………5分24. 解:(1)x ≠0;………………1分订单(架) 7 10 15 20 30 45 50 客户(家) 11210222(2)令113 m+=,∴12m=;………………2分(3)如图………………3分(4)答案不唯一,可参考以下的角度:………………4分①该函数没有最大值或该函数没有最小值;②该函数在值不等于1;③增减性25.(1)证明:∵平行四边形ABCD,∴OB=OD.∵OB=OE,∴OE=OD.∴∠OED=∠ODE. ………………1分∵OB=OE,∴∠1=∠2.∵∠1+∠2+∠ODE +∠OED =180°, ∴∠2+∠OED =90°.∴DE ⊥BE ; ………………2分 (2)解:∵OE =OD ,222OF FD OE +=,∴222OF FD OD +=.∴△OFD 为直角三角形,且∠OFD=90°. ………………3分 在Rt △CED 中,∠CED=90°,CE=3,4DE =, ∴222CD CE DE =+ .∴5CD =. ………………4分 又∵1122CD EF CE DE ⋅=⋅, ∴125EF =. 在Rt △CEF 中,∠CFE=90°,CE=3,125EF =, 根据勾股定理可求得95CF =. ………………5分26. 解:(1)∵B (0,3),C (0,﹣1).∴BC =4. ………………1分 (2)设直线AC 的解析式为y=kx+b , 把A (﹣,0)和C (0,﹣1)代入y=kx+b ,FDBE∴.解得:,∴直线AC 的解析式为:y=﹣x ﹣1. ………………2分∵DB=DC ,∴点D 在线段BC 的垂直平分线上. ∴D 的纵坐标为1.把y=1代入y=﹣x ﹣1,解得x=﹣2,∴D 的坐标为(﹣2,1). ………………3分(3)………………4分当A 、B 、P 三点为顶点的三角形是等腰三角形时,点P 的坐标为(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+),写出其中任意一个即可. ………………5分27.解:(1)………………1分(2)判断:∠DFC =∠BAE . ………………2分 证明:∵将△ABD 沿BD 翻折,使点A 翻折到点C . ∴BC=BA=DA=CD .∴四边形ABCD 为菱形. ∴∠ABD =∠CBD ,AD ∥BC. 又∵BE=BE ,∴△ABE ≌△CBE (SAS ). ∴∠BAE =∠BCE . ∵AD ∥BC , ∴∠DFC =∠BCE .∴∠DFC =∠BAE . ………………3分 (3)连CG , AC .由()4,4P -轴对称可知,EA +EG =EC +EG ,CG 长就是EA +EG 的最小值. ………………4分∵∠BAD =120°,四边形ABCD 为菱形, ∴∠CAD =60°.∴△ACD 为边长为2的等边三角形.可求得CG=3.∴EA+EG的最小值为3.………………5分28. 解:(1)∵P(-4,4).………………1分(2)①连接AM,并取中点A′;同理,画出B′、C′、D′;∴正方形A′B′C′D′为所求作.-----------------------------3分②不妨设N(0,n).∵关联正方形被直线y=-x分成面积相等的两部分,∴中心Q落在直线y=-x上.-------------------------------------4分∵正方形ABC D的中心为E(-3,0),。

相关文档
最新文档