用比例解决实际问题(六年级)
六年级数学 用比例解决问题
03
解:设王大爷家上个月用水x吨, 19.2:x=12.8:8 x=19.2×8÷12.8 x=12 答:王大爷家上个月用水12吨。
04
2.一批书如果每包20本,要捆18 包。如果每包30本,要捆多少包?
因为书的总数一定,所以包数和每包的本数成反 比例.也就是说,每包的本数和包数的乘积相等。
解:设要捆x包, 30x=20×18 x=360÷30 x=12 答:要捆12包。
用比例 解决问题
Template
WINTER
01
02
1.张大妈上个月用了8吨水,水费12.8元, 李奶奶家用了10吨水,李奶奶家上个月 的水费是多少钱?
因为每吨水的价钱一定,所以水费和用水的吨数成正比 例,也就是说,两家的水费和用水吨数的的比值相等。
解:设李奶奶家上个月的水费是x元, 12.8:8=x:10 王大爷家上个月的 8x=12.8×10 水费是19.2元,他 x=128÷8 们家上个月用了多 x=16 少吨水? 答:李奶奶家上个月的水费是16元。
05
1.500千克的海水中含盐25千克, 6800吨的海水含盐几吨?
2.服装厂2天加工西装120套, 照这样计算,加工540套西装 需要多少天?
谢谢观赏Biblioteka
六下用比例解决实际问题
解:设装480瓶啤酒需要χ个箱子。
480 x
224=
24x 96=0
x 40 =
答:装480瓶啤酒需要40个箱子。
文字
列表
二、合作探索
我们是怎样运用比例的知识解决这个问题的? 整理信息
判断关系
列式解答
二、合作探索
如果改用载重10吨的汽车运,需要多少辆?
整理信息 判断关系 列式解答
8吨 10箱
15辆 ?辆
速度×时间 = 路程(一定)
解:设他的车模的速度是每分钟χ米。
(5+1)χ = 480×5 6χ = 2400 χ = 400
答:他的车模的速度是每分钟400米。
因为汽车的载重量×辆数=啤酒的总量(一定)
所以汽车的载重量和辆数成反比例。
解:设需要 x 辆。
10χ = 8×15 10χ = 120
χ = 12
答:需要 12 辆。
二、合作探索
想一想,解正反比例问题的步骤是怎样的?
整理信息
判断关系
列式解答
运用比例知识解决实际问题的关键是什么?
三、自主练习
1. “海上霸王”大白鲨2小时游140千米,照这样的速度,5小 时游多少千米?
答:如果每行站16人,能站15行。
三、自主练习
3. 学校计划用方砖铺微机室地面,如果用边长5分米的方砖, 需要用360块;如果改用边长6分米的方砖,需要多少块? 每块方砖的面积×块数=地面面积(一定)
解:设如果改用边长6分米的,需要χ块。 6×6×χ = 5×5×360 36χ = 9000 χ= 250
需要几辆汽车?
根从据图这中些,信你息了,解你到能哪提些出数什学么信问息题??
二、合作探索
《按比例分配的方法解决实际问题》PPT课件 西师大版六年级数学
解题思路: 由:长方体的棱长和为72厘米
可得:长+宽+高=72÷4=18(厘米)
根据:长:宽:高=4∶3∶2
求出:长方体的长、宽、高
再求出:长方体的表面积
返回
按比例分配的方法解决实际问题
解答: 长方体长、宽、高的和:72÷4=18(厘米)
长方体的长:18×
=8(厘米)
小组的人数是16,两个小组一共有多少人?
解:设两个小组一共有x人。
5∶8= x ∶16
8 x =80
x =10
答:两个小组一共有10人。
不正确!
错因:列比例时,没有找准对应的数量关系。
返回
按比例分配的方法解决实际问题
分析: 美术小组与文艺小组的人数比是5∶8,文艺小
组有16人,问题是求两个小组的人数,也就是说
=
沙子: × =
石子: × =
水泥: ×
40(吨)
60(吨)
120(吨)
答:需要水泥40吨,沙子60吨,石子120吨。
返回
按比例分配的方法解决实际问题
议一议
怎样解决按比例分配的问题?
把一个数量按照已知的比分成几个部分,应先求
出三几个部分量各占总量的几分之几,再用乘法分
++
长方体的宽:18×
=6(厘米)
++Fra bibliotek长方体的高:18×
=4(厘米)
++
长方体的表面积:
(8×6+8×4+6×4)×2=104×2
=208(平方厘米)
答:长方体的表面积是208立方厘米。
六年级数学下册用比例解决问题
用比例解决问题班级姓名1、在比例尺是1:30000000的地图上量得甲乙两面地相距12厘米,一架飞机从早上的8:30以每小时800千米的速度从甲地飞往乙地。
到达乙地的时间是几时几分?2、甲乙两地相距300千米,在比例尺是的地图上应画多少厘米?如果画在比例尺是1:6000000的地图上应画多少厘米?3、在比例尺是1:4000的图纸上量得一个圆形运动场的直径是8厘米,这个圆形运动场的实际面积是多少平方米?4、在比例尺是1:2000的图纸上量得一块长方形菜地的周长是25厘米,且长与宽的比是3:2,这块长方形菜地的实际面积是多少平方米?5、一个篮球场的长是28米,宽是15米。
请选择一个合适的比例尺画出这个篮球场的平面图?6、一辆汽车5小时行驶140千米,照这样的速度,从甲地到乙地行了8小时,甲乙两地相距多少千米?(用比例解)7、用一批纸装订同样的练习本,每本40页,可装订90本,现在要装订100本,每本多少页?(用比例解)8、一个自来水龙头3天要浪费600升水,照这样计算六月份要浪费多少升水?(用比例解)9、一本书3天看了51,照这样计算剩下的还要多少天看完?(用比例解)10、一辆汽车从甲地到乙地去时每小行40千米,10小时到达,返回时,速度提高41,可节约几小时?(用比例解)11、给教室铺方砖,用面积是4平方分米的方砖需要200块,若改用面积是5平方分米的方砖需要多少块?(用比例解)0 40 80km12、给教室铺方砖,用边长是4分米的方砖需要200块,若改用面积是8平方分米的方砖需要多少块?(用比例解)13、给教室铺方砖,用边长是4分米的方砖需要200块,若改用边长是5分米的方砖需要多少块?(用比例解)14、一件商品原价80元,现打七五折出售,原来买12件商品的钱,现在可以买多少件?(用比例解)15、两个圆柱体积相等,一个圆柱的底面积是30平方米,高6米,另一个圆柱的底面积是45平方米,它的高是多少米?(用比例解)16、一段木料锯成3段要12分钟,照这样,锯成8段要多少分钟?(用比例解)17、一个服装店的所有服装都打同样的折扣销售①、李阿姨买了一件上衣,原价250元,现价150元,李阿姨还想买一条裤子,原价180元,现价多少钱?(用比例解)②、张伯伯有一笔钱,如果买现价90元一件的衬衫,正好买4件,如果想买原价200元一件的夹克衫,能买多少件?(用比例解)18、一个长方形长8厘米,宽6厘米,按3:1放大后,它的面积是多少平方厘米?19、在一幅比例尺是1:2000000的地图上,量得甲乙两地的距离是厘米,如果画在比例尺是1:5000000的地图上,应画多少厘米?20、希望小学装修多媒体教室。
2023年人教版数学六年级下册用比例解决问题优秀教案(精选3篇)
人教版数学六年级下册用比例解决问题优秀教案(精选3篇)〖人教版数学六年级下册用比例解决问题优秀教案第【1】篇〗《用比例解决问题》教学设计【教学内容】义务教育课程标准实验教材(人教版)数学六年级下册第三单元“用比例解决问题”(教科书P59—60的例5、例6,以及P60页做一做的内容,练习九3—7题。
)【教材分析】这部分内容是在学过比例的意义和性质,成正、反比例的量的基础上进行教学的,主要包括正、反比例的应用题,这是比和比例知识的综合运用。
教材通过例5和例6两个例题,讲解正、反比例应用题的解法,使学生掌握正、反比例应用题的特点以及解题的步骤。
正、反比例应用题,首先要根据题意分析数量关系,能从题中找出两种相关联的量,这两种量中相对应的两个数的比值(或积)是一定,从而判断这两种量是否成正(或反)比例,然后设未知数X,用比例解答。
判断过程也是正反比例意义实际应用的过程。
为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。
正、反比例应用题中所涉及到的基本问题的数量关系是学生以前学过的,并能运用算术法解答,本节课学习内容是在原有解法的基础上,通过自主参与,合作交流、发现归纳出一种用正、反比例关系解决一些基本问题的思路和计算方法。
从而进一步提高学生分析解答应用题的能力。
【学情分析】学生在学习这部分知识之前,已经认识了正比例意义和反比例意义,会判断生活中含有正、反比例意义的数量关系,也会解决生活中有关归一、归总的实际问题。
本节课主要学习用比例的知识来解决含有归一和归总数量关系的实际问题。
教学应用正比例解决问题,教材由张大妈与李奶奶的对话引出求水费的实际问题,为加强知识间的联系,先让学生用学过的方法解决,然后学习用比例的知识解决。
在学习用反比例的意义解决问题时,与学习正比例的方法相似,也是先让学生用已有的方法解决问题,然后学习用反比例的意义判断实际问题,解决问题。
通过解决实际问题使学生进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,也为中学数学、物理、化学学科应用比例知识解决一些问题作较好的准备。
2023年人教版数学六年级下册用比例解决问题教案(优选3篇)
人教版数学六年级下册用比例解决问题教案(优选3篇)〖人教版数学六年级下册用比例解决问题教案第【1】篇〗——《用比例解决问题》说课稿3篇《用比例解决问题》说课稿1说教学内容:教科书第59页的例5和相关的“做一做”。
说教学目标:1.掌握用正比例的方法解答相关应用题。
2.通过解答应用题使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解。
3.培养学生分析问题、解决问题的能力。
4.发展学生综合运用知识解决问题的能力。
说教学重点:掌握用正比例的方法解答应用题。
说教学难点:能正确判断两种相关联的量成什么比例,正确列出比例式。
说教法和学法:1.教法:创设情境,质疑引导。
经历用比例方法解决问题的过程,体验解决问题的策略,培养和发展学生的发散思维。
2.学法:理解分析与合作交流相结合。
说教学准备:教学挂图、小黑板说教学过程:一、联系实际,复习迁移1.判断下面每题中的两种量成什么比例?并说明理由。
(1)单价一定,总价和数量。
(2)我们班学生做操,每行站的人数和站的行数。
(3)速度一定,路程和时间。
(4)每吨水的价钱一定,水费和用水的吨数。
2.师:同学们,全社会都在节约用水,在和我们息息相关的用水问题里也藏有数学问题。
二、探索新知,培养能力1.教学例5(1)出示挂图:观察画面,说出题中告诉我们哪些信息?(2)出示例5:张大妈家上个月用了8吨水,水费是12.8元,李奶奶家用了10吨水,李奶奶家上个月的水费是多少?(3)提出:你能用以前学过的方法解答(4)学生试着解答,并汇报解法。
可能出现两种情况:生1:12.8÷8×10 生2:10÷8×12.8=1.6×10 =1.25×12.8=16(元) =16(元)(5)激励引新师:这两种方法都合理,还可以有什么方法解答呢?学生互议,师引导,我们已经学习了比例的知识,能不能用比例解答呢?师指出:这样的问题可以应用比例的知识解答。
人教版六年级下册数学用正比例解决问题(附答案)
人教版六年级下册数学用正比例解决问题一.解比例。
51=25x x 2=5.311.2 32=15x x 5.2=4.01二、填空1.车轮直径一定,所行的路程和车轮的转数成( )比例。
2.因为每度电的价格一定,所以电费和用电的度数成( )比例。
3. 把下面的数量关系式补充完整路程÷( )=时间 路程÷( )=速度总价÷( )=数量 总价÷ ( )=单价 三、判断1.两种相关联的量,不成正比例,就成反比例。
( )2.图上距离和实际距离成正比例。
( )3.X 和Y 表示两种变化的相关联的量,同时5X -7Y =0,X 和Y 不成比例。
( )4.分数的大小一定,它的分子和分母成正比例。
( )5.在一定的距离内,车轮周长和它转动的圈数成反比例。
( ) 四、解决问题 1.2.小明买9本练习本花了4.5元,如果买同样的练习本20本需要付多少元?3.小明买9本练习本花了4.5元,如果用20元钱买同样的练习本,可以买多少本?4.运一批煤,18次运了90吨,照这样计算,14次可以运多少吨?5.运一批煤,18次运了90吨,照这样计算,多少次才能运完140吨煤?6.用8辆卡车每天可运货128吨,照这样计算,用同样的卡车11辆,每天可运货多少吨?7.一种水管,40米重60千克。
现称得一捆水管重270千克,这捆水管共长多少米?8.华南服装厂3天加工西装180套,照这样计算,要生产540套西装,需要多少天?9.王师傅生产25个零件需要1.5小时,照这样计算,生产125个零件需要多少小时?10.把一根3m长的标杆直立在地上,测得影长2.7m,同时测得旁边一棵树的影长比标杆影长多3.6m,这棵树高多少米?11.一辆汽车2小时行驶140千米,照这样的速度,从甲地到乙地的距离是400千米,需要行驶多少小时?12.一个修路队,原计划每天修400m,15天可以修完。
结果12天就完成任务,实际每天修多少米?参考答案:人教版六年级下册数学用正比例解决问题一.解比例。
六年级数学复习巧用比例解题
六年级数学复习巧用比例解题比例是数学中常见的概念,在解决实际问题时,巧妙运用比例关系可以帮助我们快速求解。
本文将通过六年级数学复习,介绍一些巧用比例解题的方法和技巧。
一、商品打折问题在日常生活中,我们经常会遇到商品打折的情况。
假设某商品原价为100元,打六折售卖,我们可以利用比例关系快速计算出打折后的价格。
解题步骤:1. 将打折的比例转化为小数形式:6折表示的比例为60%,即0.6。
2. 用商品原价乘以打折的比例,即可求得打折后的价格:100 × 0.6 = 60元。
利用比例解题方法,我们可以迅速计算出商品的实际价格,为我们的购物提供便利。
二、路程时间问题在规划旅行路线或计算行车时间时,比例解题也是非常常见的应用场景。
解题步骤:假设小明骑自行车以每小时20公里的速度从A地到B地,共需2小时。
如果小明以同样的速度从A地到C地,我们可以利用比例关系计算出骑行时间。
1. 求得A地到B地的距离:20公里/小时 × 2小时 = 40公里。
2. 由于小明以同样的速度骑行,我们可以利用比例关系计算出A地到C地的距离:40公里 ÷ 20公里/小时 = 2小时。
通过比例解题,我们可以轻松计算出小明骑行从A地到C地所需的时间,提前规划行程,更好地安排时间。
三、物体放大缩小问题在几何学和艺术设计中,我们经常需要对图形或物体进行放大、缩小的处理。
比例关系也能在这些问题中派上用场。
解题步骤:假设一张矩形图纸的长度为10厘米,宽度为6厘米。
如果按照1:2的比例将该图纸放大,我们可以利用比例关系计算出放大后的长度和宽度。
1. 计算放大后的长度:10厘米 × 2 = 20厘米。
2. 计算放大后的宽度:6厘米 × 2 = 12厘米。
通过比例解题,我们可以快速获得放大后图纸的尺寸,有助于我们进行几何结构的设计和制作。
四、食谱调整问题在烹饪中,我们有时需要根据人数的变化对原有的食谱进行调整。
用比例解决实际问题
用比例解决实际问题教师袁心顺课时:1学生通过分析应用题的已知条件和所求问题,却定那些知识点量成什么比例关系,并利用正反比例的意义列出等式。
教学内容分析人教版义务教育课程标准实验教科书《数学》六年级下册《比例》第61页-64页例5、例6,练习十一3、4、5、6题。
教学目标1、使学生能正确判应用题中涉及的量成什么比例关系。
2、使学生能利用正反比例的意义正确解答应用题。
3、培养学生的判断分析推理能力。
教学重点及难点教学重点::使学生能正确判断应用题中的数量之间存在什么样的比例关系。
并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题。
教学难点::学生通过分析应用题的已知条件和所求问题,却定那些量成什么比例关系,并利用正反比例的意义列出等式。
教学过程教师活动学生活动设计意图(一)复习1.说说正、反比例的意学生回答义。
2.下面各题有哪三种量?其中哪一种量是固定不变的?哪两种是变化的?变化的规律是怎样的?这两种量成什么比例?(1)一辆汽车行驶速度一定,所行的路程和所用时间。
(2)从A地到B地,行驶的速度和时间。
(3)每块砖的面积一定,砖的块数和总面积。
(4)海水的出盐率一定,晒出的盐和海水重量。
3.判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。
(1)一辆汽车3小时行180千米,照这样速度,5小时可行300千米。
(2)一辆汽车从A地到B 地,每小时行60千米,5小时到达。
如果要4小时到达,每小时行驶75千米(二)新课例1:一辆汽车2小时行驶140千米,照这样速度,从甲地到乙地共行驶5小学生回忆学生说一说复习成正、反比例的特征。
强调成正反比例的特征。
利用正反比例的意义正确解答应用题。
时。
甲乙两地之间的公路长多少千米? (1)用以前方法解答。
(2)研究用比例的方法解答题中涉及哪三种量?哪一种量使一定的行驶的路程和时间成什么系?能不能利用这个关系式列比例解答?改变例1中的条件和问题甲乙两地之间的公路长350千米,一辆汽车从甲地到乙地共行驶5小时,照这样的速度,2小时行驶多少千米?教学例2一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果要4小时到达,每小时需要行驶多少干米?1、以前的方法解答。
六年级常见比例问题
六年级常见比例问题1.育才学校六年级有三个班,一班人数占三个班总人数的25%。
二班和 人数的比是 5:7,一班比二班少7人,六年级有多少人?2.甲、乙两校原有图书本数的比是5:3,如果甲校给乙校720本,甲、乙两校图书本数的比就是2:3,原来甲校有图书多少本?3.新鲜水果店运来三种水果,其中苹果占总质量的40%,香蕉和橙子质量的比是3:4,香蕉比橙子少.30千克。
苹果的质量是多少千克?4.小龙看一本故事书。
第一天看了30页,第二天看了全书的41,这时已看页数与未看页数的比为1:2.这本书共有多少页?5.两辆汽车同时从相距360千米的两地相向而行。
3小时后相遇。
已知两车的速度比是7:15,两车的速度分别是多少?6.一列慢车和一列快车分别从A.B 两站相对开出,快车和慢车速度的比是5:14,慢车先从 A 站开出27千米,快车才从B 站开出。
相遇时快车和B 站的距离比慢车和A 站的距离多32千米,A.B 两站相距多少千米?7.育才学校六年级学生报名参加数学兴趣小组,参加的同学是六年级总人数的31。
后来有20人参加,这时参加的同学与未参加的人数的比是3:4。
六年缓一共有多少人?8.甲、乙两人搜集的上海世博会吉祥物“海宝”的数量之比是3:1,如果甲给乙6个。
则两人的“海宝”数量之比变为2:1,两人共搜集了多少个“海宝”?9.在此例尺是1:5000000的地图上量得甲两城距离9cm ,一辆汽车从甲城开往乙城、每小时行驶80千米5小时能到达乙城吗?10.一列客车和一列货车分别从甲、乙两城同时相对而行、4小时后,两车还相距276千米,这时已行的和未行的路程比是3:2.已知货车每小时行48千米,客车每小时行多少千米?11.比例尺是1:1000的学校平面图上,量得长方形操场的长是12厘米,宽是5.5厘米,这个操场的实际面积是多少平方米?12.甲、乙两车从相距350千米的两地同时出发,相向而行2小时后相遇。
已知甲车的速度与乙车的速度比是2:3,求甲、乙两车的速度。
小学数学比例应用题(共6篇)
小学数学比例应用题〔共6篇〕篇1:六年级数学比例应用题练习题六年级数学比例应用题练习题(1)水果店一天运进苹果、香蕉、梨共390千克,苹果的重量是梨的1.5倍,香蕉的重量是梨的3/4,三种水果各运进多少千克?(2)一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?(3)有一快棱长20厘米的正方体木料,刨成一个底面直径的圆柱体,刨去木料的体积是多少?(4)一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?(5)两个小组装配收音机,甲组每天装配50台,第一天完成了总任务的10%,这时乙组才开场装配,每天装配40台,完成这批任务时,甲组做了多少天?(6)修筑一条公路,完成了全长的2/3后,离中点16。
5千米,这条公路全长多少千米?(7)师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?(8)两队修一条公路,甲队每天修全长的1/5,乙队独做7.5天修好。
假如两队合修2天后,其余由乙队独修,还要几天完成?(9)仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?(10)前轮在720米的间隔里比后轮多转40周,假如后轮的周长是2米,求前轮的周长。
11、为创立海华公司,张、王、李三人分别投资100万元、120万元和80万元。
在他们三人的共同努力下,到年末,公司共盈利60万元,你认为该如何合理分配这笔钱,每人分别得多少?12、甲乙两地相距360千米,一辆汽车从甲地到乙地方案7小时行完全程,汽车的速度如下表,问能否在规定的时间内行完全程?(计算后简要说明)13、在比例尺是的地图上,量得甲乙两地的间隔为4.5厘米,假如一辆客车和货车同时从甲乙两地相对开出,经过3小时相遇。
客车每小时行65千米,那么这辆货车每小时行多少千米?14、在比例尺是1:3000000的地图上,量得A、B两城之间的间隔是2.4厘米。
人教版六年级下册《用比例解决问题》教学设计
本节课的核心素养目标主要包括:
1. 数学抽象:通过实际问题,让学生理解比例的概念,抽象出比例的基本性质,培养学生的数学抽象能力。
2. 逻辑推理:引导学生运用比例解决实际问题,培养学生根据已知条件进行逻辑推理的能力。
3. 数学建模:让学生学会从实际问题中建立比例模型,运用比例解决生活中的问题,培养学生的数学建模能力。
反应物A的摩尔质量是2克/摩尔,所以消耗的反应物A的摩尔数是x / 2。
反应物B的摩尔质量是4克/摩尔,所以消耗的反应物B的摩尔数是y / 4。
因为摩尔比是1:2,所以我们可以列出比例方程:x / 2 = y / 4。
解这个方程,我们可以得到:x = 2 * y / 4 = y / 2。
所以,消耗的反应物A和反应物B的质量比是1:2。
鼓励学生相互讨论、互相帮助,共同解决比例解决问题。
错题订正:
针对学生在随堂练习中出现的错误,进行及时订正和讲解。
引导学生分析错误原因,避免类似错误再次发生。
(五)拓展延伸(预计用时:3分钟)
知识拓展:
介绍与比例解决问题相关的拓展知识,拓宽学生的知识视野。
引导学生关注学科前沿动态,培养学生的创新意识和探索精神。
因为我们没有给出总距离,所以无法具体计算出x的值。
例题5:
一个化学反应中,反应物A和反应物B的摩尔比是1:2。如果反应物A的摩尔质量是2克/摩尔,反应物B的摩尔质量是4克/摩尔,那么在反应中消耗的反应物A和反应物B的质量比是多少?
解答:
设消耗的反应物A的质量为x克,消耗的反应物B的质量为y克。
根据题意,反应物A和反应物B的摩尔比是1:2,所以消耗的反应物A和反应物B的摩尔数之比也是1:2。
人教版 六年级下册《用比例解决问题》 教学设计
六年级比例练习题及答案
六年级比例练习题及答案1. 小明每天骑自行车上学,他每小时骑行12公里。
如果他一共需要骑行2个小时,他总共要骑行多远?答案:小明总共要骑行24公里。
2. 一桶果汁中有3升,小红将桶里的果汁倒进了三个杯子中。
如果每个杯子都装满,每个杯子里有多少升果汁?答案:每个杯子里有1升果汁。
3. 校园里有500名学生,其中男生和女生的比例是3:5。
校园里有多少名男生?答案:校园里有150名男生。
4. 玩具店一套积木由240块积木组成,其中红色积木的数量是黄色积木数量的2倍,绿色积木的数量是红色积木数量的3倍。
红色积木和绿色积木的数量加起来是多少?答案:红色积木有80块,绿色积木有240块,红色积木和绿色积木的数量加起来是320块。
5. 某项工程耗时15天,甲组和乙组合作完成。
如果甲组每天完成工程量的1/3,乙组每天完成工程量的2/3,甲组需要多少天完成该工程?答案:甲组需要45天完成该工程。
6. 一辆车以每小时70公里的速度行驶,需要行驶700公里才能到达目的地。
车辆行驶多久才能到达目的地?答案:车辆需要行驶10小时才能到达目的地。
7. 小明用了120元去超市购买文具。
如果他买了笔和纸张,而纸张的价格是笔的价格的2倍。
他用了多少钱买了笔?答案:小明用了80元买了笔。
8. 一辆火车以每小时80公里的速度行驶,经过5个小时后行驶了多远?答案:火车行驶了400公里。
9. 甲组和乙组共同完成一个工程,两组所用的时间比是3:5。
如果甲组耗时15天,那么乙组耗时多久?答案:乙组耗时25天。
10. 某公司的员工总数是120人,其中男性员工的数量是女性员工数量的3倍,那么公司中女性员工有多少人?答案:公司中女性员工有30人。
总结:通过上述六年级比例练习题,我们可以看到比例概念在日常生活中的应用。
了解和掌握比例的概念对于解决实际问题非常重要。
通过练习题的答案,我们可以巩固对比例的理解,并提高解决问题的能力。
希望同学们通过这些练习题的训练,能够更好地应用比例知识解决实际问题。
人教版数学六年级下册用比例解决问题创新教案(精推3篇)
人教版数学六年级下册用比例解决问题创新教案(精推3篇)〖人教版数学六年级下册用比例解决问题创新教案第【1】篇〗教学过程:一、复习1.一辆汽车行驶的速度不变,行驶的时间和路程。
2.一辆汽车从甲地开往乙地,行驶的时间和速度。
看上面的题,回答下面的问题:(1)各有哪三种量?(2)其中哪一种量是固定不变的?(3)哪两种量是变化的?这两种量是按怎样的规律变化的?他们成是什么关系?3、这节课,我们就应用比例的知识解决一些实际问题。
二、新授1、教学例5(1)出示例5:张大妈家上个月用了8吨水,水费是2.8元。
李奶奶家上个月用了10吨水,李奶奶家上个月的水费是多少钱?(2)学生读题后,思考和讨论下面的问题:①问题中有哪两种量?②它们成什么比例关系?你是根据什么判断的?③根据这样的比例关系,你能列出等式吗?(3)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。
也就是说,两家的水费和用水的吨数的比值是相等的。
(4)根据正比例的意义列出方程:解:设李奶奶家上个月的水费是元。
12.8/8=/108= 12.8×10=128÷8= 16 答:李奶奶家上个月的水费是16元。
(5)将答案代入到比例式中进行检验。
2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生**应用比例的知识来解答,并交流订正,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)3、教学例6(1)出示例6:书店运来一批书,如果每包20本,要捆18包。
如果每包30本,要捆多少包?(2)学生根据例5的解题思路,思考:题中已知两个量?什么是一定的?已知的两个量成什么关系?思考后**解答。
(3)指名板演,全班评讲。
4、做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。
三、巩固练习1、教科书P61练习九第3、4题。
学生读题后,先说说题中哪个量是一定的,再**进行解答。
六年级比例的应用题及答案
六年级比例的应用题及答案【篇一:六年级数学按比分配应用题及答案】>1、把300本作业按4∶5∶6分给四、五、六年级的同学,四、五、六年级的同学各得多少本作业本?解:4+5+6=15答:四年级得80本,五年级得100本,六年级得120本。
2、一种生理盐水是把盐水和水按照1∶100配制而成,要配制这种生理盐水5050千克,需要盐水多少千克?解:1+100=101答:需要盐水50千克。
答:山羊和绵羊一共有140头。
4、一种石灰水是用石灰和水按1∶100配成的,要配制5656千克的石灰水,需石灰多少千克?解:1+100=101答:需石灰56千克。
5、体育室有200根跳绳,按人数分配给六年级一、二两个班,一班有52人,二班有48人,两个班各得跳绳多少根?解:52+48=100(人)答:一班可得跳绳104根,二班可得跳绳96根。
6、一个分数,它的分子和分母的和是40,分子和分母的比是4∶6,这个分数是几分之几?解:4+6=10答:这个分数是24分之16。
7、一种药水是用药粉和水按1∶80配制成的。
⑴、40千克药粉,可配制成多少千克的药水?3200+40=3240(千克)答:40千克药粉,可配制成3240千克的药水。
⑵、60千克水,需要药粉多少千克?答:60千克水,需要药粉0.75千克。
⑶、配制这种药水1620千克,需要药粉多少千克?解:1+80=81答:配制这种药水1620千克,需要药粉20千克。
8、把96分米长的铁丝焊成一个长方体框架,长、宽、和高的比是3∶2∶1,这个长方体的体积和表面各是多少?3+2+1=6答:这个长方体的体积是384立方分米,表面是352平方分米。
9、五年级有140人,六年级有130人,从六年级调多少人到五年级,才能使五年级、六年级的人数比为5∶1?解:140+130=270(人)5+1=6130-45=85(人)答:从六年级调85人到五年级。
10、甲做3000个零件比乙做2400个零件多用1小时,甲、乙的工作效率的比是6∶5。
新人教版六年级数学下册《用比例解决问题》精品说课稿
用比例解决问题说课稿大家好!我今天说课的题目是《用比例解决实际问题》,下面我将从说教材、说学情、说教法、说学法、说教学过程和说板书设计这几个方面来展开我的说课。
一、说教材《用比例解决实际问题》是人教版小学数学六年级下册第四单元第3课时的内容,本节课是在学生已经比例的相关知识,并且了解了正比例关系和反比例关系的基础上学习的,学习了本节课既可以使学生加深对比例的认识,同时还能够为之后更好的应用比例解决问题,因此本节课具有承上启下的重要作用。
基于以上对教材的分析以及新课程标准的要求,我制定了如下三维教学目标:1.知识与技能目标:在具体情境中认识、理解成正比例和反比例的量的意义,掌握和运用正、反比例知识解决问题。
2.过程与方法目标:通过让学生尝试解决问题的过程,培养学生分析问题和解决问题的能力。
3.情感态度及价值观目标:联系日常生活,体会数学知识之间的密切联系,培养学生学习数学的兴趣和积极性。
通过以上对教材以及教学目标的分析,本节课的教学重点如下:在具体情境中认识、理解成正比例和反比例的量的意义,掌握和运用正、反比例知识解决问题。
根据对学生认知特点的分析,本节课的难点为:利用正、反比例的关系列出含有未知数的等式。
二、说学情了解学生的学习情况有利于教育教学的顺利开展,六年级的学生已经有了一定的生活经验和分析问题、解决问题的能力,在此之前学生已经能够解比例了,但是对于如何用比例解决实际问题还有一定疑惑,因此教师在教学中可以利用学生已有的知识经验,带领学生探索掌握用比例解决实际问题的解题思路。
三、说教法基于以上对教材、学习情况的分析和新课改的要求,本节课我主要采用引导探究法,辅之以小组交流法,从而达到培养能力、养成良好的学习态度的目的。
四、说学法新课改理念告诉我们,学生不仅要学到具体的知识,而且要学会该如何学习,所以本节课中我将引导学生通过合作探究、小组交流的学法来更好的掌握本节课的内容。
五、说教学过程为了激发学生学习的积极性,本节课的教学过程将从复习旧知,导入新课;师生合作、探究新知;强化练习,巩固提高;小结归纳、拓展新知和布置作业、内化新知这五个环节来展开:1、复习旧知、导入新课上课伊始,我会询问学生对于正比例和反比例有哪些认识?带领学生回顾正比例和反比例的相关知识,以此加深学生对正反比例的理解,从而引出本节课题《用比例解决实际问题》通过复习正比例和反比例的有关知识导入新课,让学生体会数学在生活的应用,从而能够激发学生的学习兴趣。
六年级用比例解决问题
六年级比例知识应用题1、甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米?2、修一条路,如果每天修120米,8天可以修完;如果每天修150米,几天可以修完?(用比例方法解)3、一台织补袜机2小时织袜26双,照这样计算,7小时可以织补多少双?4、一种铁丝长30米,重量是7 千克,现有这种铁丝950千克,长多少米?5.用同样的砖铺地,铺18平方米用砖618砖,如果铺24平方米,要用砖多少块?6、一个晒盐场用100克海水可以晒出3克盐,如果一块盐用一次放入585000吨海水,可以晒出多少吨盐?7、一篮苹果,如果8个人分,每人正好分6个,如果12个人来分,每人可以分几个?8、同学们排队做操,每行站20人,正好站8行,如果每行站24人,可以站多少行?9、一间房子要用砖铺地,用面积是9平方分米的方砖,需要96块,如果用面积是6平方分米的方砖,需要多少块?10、一艘轮船3小时航行80千米,照这样的速度航行200千米需要多少小时?11、一间房五铺地砖,用面只是9平方分米的方砖需要96块,如果改用面积是4平方分米的方砖,需要多少块?12、农场收小麦,前3天收割了16公顷,照这样计算,8天可以收割多少公顷小麦?13、一辆汽车2小时行驶64千米,用这样的速度从甲地到乙地行驶5小时,甲、乙两地之间的公路长多少千米?14、一个榨油厂用100千克黄豆可以榨出13千克豆油,照这样计算,用3吨黄豆可以榨出多少吨豆油?15.同学们做操,每行站20人,正好站18行。
如果每行站24人,可以站多少行?(用比例方法解)16.飞机每小时飞行480千米,汽车每小时行60千米。
飞机行4小时的路程,汽车要行多少小时?(用比例方法解)17.修一条公路,每天修0.5千米,36天完成。
如果每天修0.6千米,多少天可修完?(用比例方法解)18.一个晒盐场用500千克海水可以晒15千克盐;照这样的计算,用100吨海水可以晒多少吨盐?(用比例方法解答)19.一个车间装配一批电视机,如果每天装50台,60天完成任务,如果要用40天完成任务,每天应装多少台?(用比例方法解)20.生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,可以提前几天完成?(用比例方法解)21.小明买4本同样的练习本用了4.8元,3.6元可以买多少本这样的练习本? (用比例方法解)22.配制一种农药,药粉和水的比是1:500(1) 现有水6000千克,配制这种农药需要药粉多少千克?(2) 现有药粉3.6千克,配制这种农药需要水多少千克?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.掌握用正比例知识解答含有正比例关系问题的步骤和方法。
2.使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解。
3.发展学生探究解决问题策略的能力,帮助其构建相应的知识结构。
【教学重点】:
1.判断题中相对应的两个量和它们的比例关系。
2.利用正比例的关系列出含有未知数的等式,运用比例知识正确解决问题。
【设计意图:用以往学过的方法解决例题,有助于从旧知跳跃到新知的学习,同时有利于用比例解决问题的检验,帮助学生在后面的学习中构建知识结构。】
(2)师:像这样的问题也可以用比例的知识来解决。
【设计意图:点明主题,鼓励学生以积极的态度投入新课的学习。】
2. 探究解法
(1)梳理两种相关联的量
2.师:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用哪个式子来表示?(板书: (一定))
3. 师:如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系可以用哪个式子来表示?(板书: x×y=k(一定))
4. 师:看来同学们正比例和反比例的知识学得都很不错,下面我们就一起来学习今天的新知识吧!今天我们就一起来研究——用比例解决问题。(板书课题:用比例解决问题)
生:齐答:有!
师:我们先来回忆一下已经学过的知识吧!
(课件出示:)我会判断:判断下列每题中的两个量是不是成比例,成什么比例?
(1)购买课本的单价一定,总价和数量。(成正比例)
(2)差一定,减数与被减数。(不成比例)
(3)总路程一定,速度和时间。(成反比例)
(4)零件总数一定,生产的天数和每天生产的件数。(成反比例)
5. 提炼方法
师:解决了两个问题,我们一起来反思一下刚才的学习过程,归纳出用比例解决问题的步骤,好吗?
得出用比例解决问题的“五步曲”(板书):
一梳(梳理相关联的两种量)
二判(判断相关联的两种量成什么比例)
三列(设未知x,根据判断列出比例)
四解(解比例)
五检(用自己熟练的方法来检验)。
四、全课总结。
1. 今天你们有什么收获?
【设计意图:通过练习的巩固,提高学生解决问题的能力。】
教学反思:通过本节课的教学,绝大部分同学能够掌握用比例知识解决问题的策略,即:先判断题目中的两种相关联的量成什么比例,再根据列出比例式所需的相等关系列方程并解答。但在教学用比例知识解答例5时,我虽有提出问题让学生交流,但放手还是不够,似乎还是扶着学生说出等量关系式:水费∶吨数=水费∶吨数,因此交流形式还属于走过场,没有很好地突出学生怎样进行思考的过程。以至于反馈练习情况时,个别学生会出现:数量∶总价=数量∶总价,虽然学生列出的比例式也对,但从中说明这些学生对正比例的意义理解还不够,不能根据题目中的常见的数量关系式列方程。因此,对于学生知识的获得,数学思维能力的培养,我自认为做得还不够。
【教学难点】:
1.掌握用比例知识解答解答应用题的步骤和方法。
2.理解“用比例解决问题”的结构特点,从而构建知识结构。
【教学准备】:多媒体课件
【教学过程】:
一、激发兴趣,回忆旧知
1.师:本节课是我们这个学期最后的一节新课,我们知道最后一节课上的是我们所学的知识来解决问题,希望大家用精彩的表现完成这节课,大家有没有信心!
让学生再思考,看看有没有出现其它比例的解法,如果有,教师也要进行评析。(学生可能通过复习题3的复习,想出不同的解法。)
如果列出的比例是8︰12.8=10︰x 可以吗?为什么?(可以,因为8︰12.8 和10︰x 都表示1元可以用水多少吨,是一定的,板书解法2)
师:这个问题我们用比例的知识解决了,你有什么方法检验自己的解答是正确的呢?(启发学生自主选择检验方法。如:将结果代入原题、运用比例的基本性质、用算术方法或一般方程方法解答来检验等。)
【设计意图:在教师引导下,学生通过合作、交流从而解决问题,能使他们增强学习的信心、能给他们自信。在交流中,让学生充分地表达自己的见解,培养学生的辩证思维能力和口语交际能力。】
4.即时练习
师:同学们很了不起,帮李奶奶解决完了问题,能再帮王大爷解决一个问题吗?
课件出示:“王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?”让学生进行变式练习。)
8χ=12.8×10 8χ= 12.8×10
χ= χ=
χ=16 χ=16
答:李奶奶家上个月的水费是16元。
师:12.8︰8和x︰10 分别表示什么?(水费单价)
师:你是怎么想的?(根据上面的数据,概括:因为每吨水的价钱一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。)
12.8︰8=x︰10
板书: 解:设李奶奶家上个月的水费是χ元。
12.8 :8 =χ:10 或 12.88 =x10
师:用比例解决这个问题之前,我们先来思考(课件出示)
①问题中有哪两种量?它们对应的数据分别是多少?
②它们成什么比例关系?你是根据什么判断的?
③根据这样的比例关系,你能列出等式吗?
( )一定,所以( )和( )成( )比例。也就是说,两家的( )和( )的( )相等。
3.用比例解答。
如果设李奶奶家上个月的水费是x元,请根据表中相对应的数据和判断列出比例式,然后解答。
知道每吨水的价钱一定,所以水费和用水量成正比例。也就是说,两家的水费和用水量的比值相等。
设李奶奶家上个月的水费是x元。列出比例是:(12.8:8=x:10),比例的解是x=16。(板书解法1)
二、揭示课题、探索新知。
(一)教学例5(课件出示:情境图)
1.回顾旧知
师:从这幅图中你能知道哪些信息?(指名回答)李奶奶家上个月的水费是多少钱?想请我们帮她算一算,你们能帮这个忙吗?
(1)学生自己解答,然后交流解答方法。
(学生可以先求出单价,再求总价或先求出用水量的倍数关系再求总价。)
【设计意图:“检验反思”有利于培养学生良好的学习习惯,同时提高解决问题的正确率。归纳解题的策略,有助于提高学生解决问题的能力。】
三、巩固提高。
1. 教材60页的做一做:1题。
2. 教材练习九ቤተ መጻሕፍቲ ባይዱ第3、5题。
【设计意图:通过练习的巩固,提高学生解决问题的能力。同时从学生的生活实际入手,引导学生把所学的知识运用与生活实践,从中体会所学知识的生活价值。】