八年级上册一次函数经典例题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数复习课

知识点1 一次函数和正比例函数的概念

若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=2

1x ,y=-x 都是正比例函数. 【说明】 (1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.

(2)一次函数y=kx+b (k ,b 为常数,b≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数.

(3)当b=0,k≠0时,y= kx 仍是一次函数.

(4)当b=0,k=0时,它不是一次函数.

知识点2 函数的图象

把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.

知识点 3一次函数的图象

由于一次函数y=kx+b (k ,b 为常数,k≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b .

由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点

(-k

b ,0).但也不必一定选取这两个特殊点.画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可.

知识点4 一次函数y=kx+b (k ,b 为常数,k≠0)的性质

(1)k 的正负决定直线的倾斜方向;

①k >0时,y 的值随x 值的增大而增大;

②k ﹤O 时,y 的值随x 值的增大而减小.

(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直

线陡),|k|越小,直线与x轴相交的锐角度数越小(直线缓);

(3)b的正、负决定直线与y轴交点的位置;

①当b>0时,直线与y轴交于正半轴上;

②当b<0时,直线与y轴交于负半轴上;

③当b=0时,直线经过原点,是正比例函数.

(4)由于k,b的符号不同,直线所经过的象限也不同;

①如图11-18(l)所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);

②如图11-18(2)所示,当k>0,b﹥O时,直线经过第一、三、四象限(直线不经过第二象限);

③如图11-18(3)所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);

④如图11-18(4)所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).

(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.

知识点5 正比例函数y=kx(k≠0)的性质

(1)正比例函数y=kx的图象必经过原点;

(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;

(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.

知识点6 点P(x0,y0)与直线y=kx+b的图象的关系

(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;

(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.

例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l 的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.

知识点7 确定正比例函数及一次函数表达式的条件

(1)由于正比例函数y=kx (k≠0)中只有一个待定

系数k ,故只需一个条件(如一对x ,y 的值或一个点)

就可求得k 的值.

(2)由于一次函数y=kx+b (k≠0)中有两个待定系

数k ,b ,需要两个独立的条件确定两个关于k ,b 的方程,

求得k ,b 的值,这两个条件通常是两个点或两对x ,y

的值.

知识点8 待定系数法

先设待求函数关系式(其中含有未知常数系数),再

根据条件列出方程(或方程组),求出未知系数,从而得

到所求结果的方法,叫做待定系数法.其中未知系数也

叫待定系数.例如:函数y=kx+b 中,k ,b 就是待定系数.

知识点9 用待定系数法确定一次函数表达式的一般步骤

(1)设函数表达式为y=kx+b ;

(2)将已知点的坐标代入函数表达式,解方程(组);

(3)求出k 与b 的值,得到函数表达式.

例如:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式. 解:设一次函数的关系式为y =kx+b (k≠0),

由题意可知,

⎨⎧+-=-+=,3,21b k b k 解⎪⎪⎩

⎪⎪⎨⎧-==.35,34b k

∴此函数的关系式为y=3

534-x . 【说明】 本题是用待定系数法求一次函数的关系式,具体步骤如下:第一步,设(根据题中要求的函数“设”关系式y=kx+b ,其中k ,b 是未知的常量,且k≠0);第二步,代(根据题目中的已知条件,列出方程(或方程组),解这个方程(或方程组),求出待定系数k ,

相关文档
最新文档