除尘系统中通风管道设计
风机通风管道设计
式($ % 3)中两项单位均为 )*,与压强相同,所以分别称为静压( $ & ) 、动压( $ 4)
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !" 静压、动压、全压 管道中的气体,处在静止状成时只受静压作用;处在流动状态时,同时受到静压和 动压的作用。 静压是单位体积气体所具有的势能,是一种力,它的表现将气体压缩、对管壁施 压。管道内气体的绝对静压,可以是正压,高于周围的大气压;也可以是负压,低于周 围的大气压。动压是单位体积气体所具有的动能,也是一种力,它的表现是使管内气体 改变速度,动压只作用在气体的流动方向恒为正值。在某一点上,动压和静压的代数和 即为该点的全压,表示单位气体所具有的总能量。 !# $ !% & !’ 式中 — —全压, (); ! #— — —静压, (); ! %— — —动压, ()。 ! ’— 图 * + , + ! 列出了几种情况的压力分布。图 * + , + !( ))是在一个密闭管道内,气 体静止不流动,此时气体只受静压作用,动压为 -,全压等于静压。
表!"#"! !, $ & !& ,& 0& #& ’& 3& /& 空气的动力黏滞系数和运动黏滞系数与温度的关系
! ! ! ! !! ! !! ! !! ! !! ! !! ! !! ! !! ! !! ! !
! % !& ・ () *
!./’ !.1! !.13 !.2! !.23 ,.&& ,.&’ ,.&1
除尘系统中通风管道设计
除尘系统中通风管道设计应注意的几个问题一个完整的除尘系统包括吸尘罩、通风管道、除尘器、风机四个部分。
通风管道(简称管道)是运送含尘气流的通道,它将吸尘罩、除尘器及风机等部分连接成一体。
管道设计是否合理,直接影响到整个除尘系统的效果。
因此,必须全面考虑管道设计中的各种问题,以获得比较合理、有效的方案。
1、管道构件1.1 弯头弯头是连接管道的常见构件,其阻力大小与弯管直径d、曲率半径R以及弯管所分的节数等因素有关。
曲率半径R越大,阻力越小。
但当R大于2~2.5d时,弯管阻力不再显著降低,而占用的空间则过大,使系统管道、部件及设备不易布置,故从实用出发,在设计中R一般取1~2d,90°弯头一般分成4~6节。
1.2 三通在集中风网的除尘系统中,常采用气流汇合部件——三通。
合流三通中两支管气流速度不同时,会发生引射作用,同时伴随有能量交换,即流速大的失去能量,流速小的得到能量,但总的能量是损失的。
为了减小三通的阻力,应避免出现引射现象。
设计时最好使两个支管与总管的气流速度相等,即V1=V2=V3,则两支管与总管截面直径之间的关系为d12+d22=d32。
三通的阻力与气流方向有关,两支管间的夹角一般取15°~30°,以保证气流畅通,减少阻力损失。
三通不能采用T形连接,因为T形连接的三通阻力比合理的连接方式大4~5倍。
另外,尽量避免使用四通,因为气流在四通干扰很大,严重影响吸风效果,降低系统的效率。
1.3 渐扩管气体在管道中流动时,如管道的截面骤然由小变大,则气流也骤然扩大,引起较大的冲击压力损失。
为减小阻力损失,通常采用平滑过渡的渐扩管。
渐扩管的阻力是由于截面扩大时,气流因惯性作用来不及扩大而形成涡流区所造成的。
渐扩角а越大,涡流区越大,能量损失也越大。
当a超过45°时,压力损失相当于冲击损失。
为了减小渐扩管阻力,必须尽量减小渐扩角a,但a越小,渐扩管的长度也越大。
通常,渐扩角a以30°为宜。
除尘系统管道制作安装施工方案
除尘系统管道制作安装施工方案目录一、项目概述3 页二、主要施工方法及质量要求3页三、施工部署9 页四、安全施工保障措施11 页五、文明施工保障措施12页六、防火措施12 页七、环保措施12 页8. 建筑机械和工具,第12 页随附的:除尘风管生产安装清单一,项目概况:该项目为钢鲁某钢铁搅拌炉、汽车卸料仓、中转站、高位散料除尘工程的管道工程。
施工图由某市明清环保设备设计。
除计划中转站主弯头至除尘器入口的一段主管道外,不包括方支架1、单件支架1、方支架2,局部仅安装管道、支架和其他组件。
建设一定质量的恒定施工安装机构,工程项目的增加和变更应及时与甲方沟通,工程量以现场签证为准。
建设周期为一个月。
施工工程见附表:【除尘管道生产安装清单】建设依据:1 、施工图:GLLG.G00[GLLG.G01~13 ] 、GLLG.ZJ00[GLLG.ZJ01~11]2、施工规范十:钢结构工程施工及验收规程X? GB50205-2001现场设备、工业管道焊接工程施工及验收规程 X? GB50236-2011 _ 工业金属管道工程及验收规程X? GB50235-2011 _冶金机械设备安装施工及验收规程 X?通风空调工程施工质量验收规程 X? GB50243-20023.准备和执行如下a、熟悉施工工段的分工交接时间和工作界面;b、考虑施工现场作业环境、穿插作业和高空作业的具体难度;c、充分考虑风雨季节施工困难;d。
根据起重部位合理选用起重机;二、主要施工方法及质量要求:一、除尘管道工艺流程:放样、切割、坡口、钢板拼接、压头、焊缝检测盘管管道焊接、管段拼接质检、除锈、防腐编号。
2.生产订单:首先制作中转站与混铁炉之间的主管道,同时制作各管道支架和管道支架。
然后制作风管、风机后段的还原管、支架、排气管、混铁炉管网、仓上管网、仓下管网、管网高大宗物料,中转站管网。
三、施工前准备:[ 1 ] 材料准备采购的材料应有材料证明和出厂证明,并检查外观进度,符合国家有关规定。
通风管道设计通风管道设计工程量计算规则
通风管道设计通风管道设计工程量计算规则一、工程量清单项目的工程量计算规则1.通风管道设计及空调设备及部件制作安装(1)空气加热器(冷却器)除尘设备安装依据不同的规格、重量,按设计图示数量计算,以台为计量单位。
(2)通风管道设计机安装依据不同的形式、规格,按设计图示数量计算,以台为计量单位。
(3)空调器安装依据不同形式、重量、安装位置,按设计图示数量计算,以台为计量单位;其中分段组装式空调器按设计图示所示重量以千克为计量单位。
(4)风机盘管安装依据不同形式、安装位置,按设计图示数量计算,以台为计量单位。
(5)密闭门制作安装依据不同型号、特征(带视孔或不带视孔),按设计图示数量计算,以个为计量单位。
(6)挡水板制作安装依据不同材质,按设计图示按空调器断面面积计算,以平方米为计量单位。
(7)金属空调器壳体、滤水器、溢水盘制作安装依据不同特征、用途,按设计图示数量计算,以千克为计量单位。
(8)过滤器安装依据不同型号、过滤功效,按设计图示数量计算,以台为计量单位。
(9)净化工作台安装依据不同类型,按设计图示数量计算,以台为计量单位。
(10)风淋室、洁净室安装依据不同重量,按设计图示数量计算,以台为计量单位。
(11)设备支架依据图示尺寸按重量计算,以千克为计量单位。
2.通风管道设计制作安装(1)各种通风管道设计制作安装依据材质、形状、周长或直径、板材厚度、接口形式,按设计图示以展开面积计算,不扣除检查孔、测定孔、送风口、吸风口等所占面积;风管长度一律以设计图示中心线长度为准(主管与支管以其中心线交点划分)。
包括弯头、三通、变径管、天圆地方等管件的长度。
风管展开面积不包括风管、管口重叠部分面积。
直径和周长按图注尺寸为准展开。
整个通风管道设计系统设计采用渐缩管均匀送风者,圆形风管按平均直径、矩形风管按平均周长计算,以平方米为计量单位。
(2)柔性软风管安装依据材质、规格和有无保温套管按设计图示中心线长度计算。
包括弯头、三通、变径管、天圆地方等管件的长度。
某加工车间通风除尘系统设计
课程名称工业通风与防尘院(系)土木与环境工程学院专业班级安全工程(1)班学生姓名学号设计地点指导教师设计起止时间:2014年5月12日至2014年5月25日目录1.前言 (1)2.车间简介 (2)2.1抛光间的基本情况 (2)2.2设计相关说明 (2)3.生产车间除尘系统设计 (4)3.1通风除尘系统各部件的选择 (4)3.1.1系统划分 (4)3.1.2排风罩的选择 (4)3.1.3风管的设计 (5)3.1.4除尘器的选择 (6)3.2系统组合........................... 错误!未定义书签。
3.3通风除尘系统的阻力计算 (10)3.3.1风量的计算 (10)3.3.2系统的水力计算.................. 错误!未定义书签。
4.结束语............................... 错误!未定义书签。
参考文献............................... 错误!未定义书签。
1.前言在工业生产过程中会散发各种有害物质(粉尘、有害蒸气和气体)以及余热和余湿,如果不加以控制会使室内、外空气环境受到污染和破坏,危害人体的健康、动植物生长,影响生产过程的正常运行。
因此控制工业有害物对室内外空气环境的影响和破环是当前非常重要的问题。
要控制有害物的扩散改善车间环境和防止大气污染,首先必须了解工业有害物产生的原因和散发的机理,认识各种工业有害物对人体及工农业生产的危害,明确室内外环境要求达到的控制目标(卫生标准和排放标准),提出改善空气环境的有效措施。
粉尘是占有害物质的大多数,粉尘是指粒径大小不等,能在空气中浮游的固体微粒。
粉尘的来源很广,冶金、机械、建材、轻工、电力等许多工业生产部门都会产生大量的粉尘。
粉尘对人体有很大的危害性,主要通过呼吸道进入人体,其次是经皮肤进入人体,通过消化道进入人体的情况较少。
粉尘对人体健康的危害同粉尘的性质、粒径大小、浓度、与人体持续接触的时间、车间的气象条件和进入人体的粉尘量等有关。
工业通风除尘设计
课程设计课题名称某企业生产车间除尘系统设计专业名称所在班级学生姓名学生学号指导教师目录1 前言 (1)2 车间简介 (1)3 车间除尘系统设计与计算 (2)3.1 确定除尘系统 (2)3.2 车间除尘系统风管的布置 (3)3.3 排风罩的选择 (3)3.3.1 抛光车间 (4)3.3.2 打孔车间 (4)3.4 车间风管材料和风管段面的选择 (4)3.4.1 抛光车间 (5)3.4.2 打孔车间 (5)3.5 弯头和三通 (5)3.6 净化装置及管道和风机的连接 (5)3.7 通风系统的水力计算 (8)3.7.1 抛光车间的水力计算 (8)3.7.2 打孔车间的水力计算 (13)4 结束语 (17)参考文献 (18)附录 (18)1前言在机械化工生产中,由于生产工艺的原因,难以避免的会产生各种各样的粉尘微粒或有害气体,如果工作人员长时间暴露在这些有害物质之中,就会危害人的健康,工人有可能因此患上职业病。
一旦有害物质随空气的流动扩散到周围环境中,就会使室外空气环境受到污染与破坏,危机周边环境和居民而造成更加严重的后果。
因此,工业通风对职业病的预防,环境保护及事故应急预案的制定有着及其重要的意义。
工业通风就是控制生产过程中产生的粉尘,有害气体,创造良好的生产环境和保护大气环境。
我们的除尘设计就是要以最合适的气流组织,最优化的管道敷设和最低的费用达到最好的除尘效果。
设计的内容包括风管和排风罩的布置和选择,管件的设置,以及,除尘设备和风机的选定。
2车间简介该企业生产车间如图1所示,有3个抛光间,1个打孔间。
每个抛光间有1台抛光机,每台抛光机有1个抛光轮,抛光间产生粉尘,粉尘的成分有:抛光粉剂、粉末、纤维质灰尘等(石棉粉尘)。
打孔间有2台打孔机。
抛光车间抛光的目的主要是为了去掉金属表面的污垢及加亮镀件。
抛光轮为布轮,其直径为D=200mm,抛光轮中心标高1.2m,工作原理同砂轮。
打孔车间打孔机在工作时,会产生较大颗粒的木块和刨花。
除尘器的设计
H——罩口至污染源距离,m;
K——考虑沿高度速度分布不均匀的安全系数,通常取K=
1.4
为减少横向气流的影响,最好靠墙布置,或在罩口四周加活动挡板。为使罩
口吸气速度均匀,集气罩的扩张角不应大于60°。
由罩口外气流分布特征可知,罩口加法兰边,可减少无效气流的 吸入量。基于这一原理,圆形或矩形侧吸罩的罩口还可以改进成如图 8.10所示的形式,以进一步提高集气效果,减少污染物外逸的可能性, 同时提高进气均匀性。
的等流速量面相半等径,分设别点为汇和的流,r量1 相为应rQ2 , 的速度为 和 v1,由v2连续性方程
Q 4r12v1 4r22v2
(8.1)
图 8.1 点汇气流分布
于是,速度比与半径比的关系为
v1 v2
r2 r1
2
(8.2)
由此可见,点汇外某点的速度该点至吸气口距离的平方成反比。吸
气口外气流速度衰减很快,因此在设计集气罩时,应尽量减少罩口到污染
8.1.2.4吹吸式集气罩
在外部集气罩的对面设置一排或条缝形吹气口,它和外部集气罩结
合起来称为吹吸式集气罩,如图8.6所示。喷吹气流形成一道气幕,把污染
物限制在一个很小的空间内,使之不外逸。同时还诱导污染气流向集气罩
运动。由于空气幕的作用,使室内空气混入量大大减少,又由于射流的速
度衰减较慢,因此控制距离远、耗风量少。此外,它还有抗衡向气流干扰
局部密闭罩是对局部产尘点进
行密闭,产尘设备及传动装置留在
罩外,便于观察和检修。罩的容积
小,抽风量少,经济性好。适用于
污染气流速度小,且连续散发的地 点。
图 8.3 密闭罩形式 a—局部密闭罩;b—整体密闭罩;c—大容积密闭罩
整体密闭罩是对产尘设备大部分或全部密闭,只有传动部分留在罩外。
工业通风课程设计-某企业加工车间通风除尘系统设计
工业通风课程设计-某企业加工车间通风除尘系统设计本课程设计旨在为某企业加工车间设计一个有效的通风除尘系统。
背景包括该企业加工车间存在的通风除尘问题以及对员工健康和生产环境的影响。
目标是通过设计一个高效可靠的通风除尘系统,改善车间空气质量,为员工提供良好的工作环境,并降低粉尘和污染物对产品质量的影响。
概述工业通风的基础知识,包括通风原理、通风系统组成部分等。
工业通风是指通过机械设备,通过改变空气流动方式,控制室内温度、湿度、洁净度等参数,以满足特定工业生产过程中对环境条件的要求的一种技术。
通风系统的设计与安装,可以有效改善工作环境,提高生产效率,保护工人健康,降低污染排放,实现节能减排。
通风的基本原理是通过输入新鲜空气,替换室内空气中的有害气体,调节室内温湿度,提供良好的工作环境。
通风系统主要由以下几个部分组成:进风口:通风系统的起始部分,通过进风口输入新鲜空气。
进风口应位于车间远离污染源的地方,可以通过过滤设备过滤空气中的颗粒物。
进风口:通风系统的起始部分,通过进风口输入新鲜空气。
进风口应位于车间远离污染源的地方,可以通过过滤设备过滤空气中的颗粒物。
送风管道:将新鲜空气从进风口输送到加工车间,通过合理布置送风管道,可以确保空气流动均匀,并且把新鲜空气送到需要的位置。
送风管道:将新鲜空气从进风口输送到加工车间,通过合理布置送风管道,可以确保空气流动均匀,并且把新鲜空气送到需要的位置。
送风管道:将新鲜空气从进风口输送到加工车间,通过合理布置送风管道,可以确保空气流动均匀,并且把新鲜空气送到需要的位置。
送风管道:将新鲜空气从进风口输送到加工车间,通过合理布置送风管道,可以确保空气流动均匀,并且把新鲜空气送到需要的位置。
排风口:通风系统的出口部分,将室内的污浊空气排出车间。
排风口应位于车间相对污染源较远的地方,也可以通过过滤设备净化排出的空气。
排风口:通风系统的出口部分,将室内的污浊空气排出车间。
排风口应位于车间相对污染源较远的地方,也可以通过过滤设备净化排出的空气。
通风管道设计计算
通风管道系统的设计计算在进行通风管道系统的设计计算前,必须首先确定各送(排)风点的位置和送(排)风量、管道系统和净化设备的布置、风管材料等。
设计计算的目的是,确定各管段的管径(或断面尺寸)和压力损失,保证系统内达到要求的风量分配,并为风机选举和绘制施工图提供依据。
进行通风管道系统水力计算的方法有很多,如等压损法、假定流速法和当量压损法等。
在一般的通风系统中用得最普遍的是等压法和假定流速法。
等压损法是以单位长度风管有相等的压力损失为前提的。
在已知总作用压力的情况下,将总压力按风管长度平均分配给风管各部分,再根据各部分的风量和分配到的作用压力确定风管尺寸。
对于大的通风系统,可利用等压损法进行支管的压力平衡。
假定流速法是以风管内空气流速作为控制指标,计算出风管的断面尺寸和压力损失,再对各环路的压力损失进行调整,达到平衡。
这是目前最常用的计算方法。
一、通风管道系统的设计计算步骤800m /h1500m /h 1234000m /h4除尘器657图6-8 通风除尘系统图一般通风系统风倌管内的风速(m/s)表6-10除尘通风管道最低空气流速(m/s)表6-111、绘制通风系统轴侧图(如图6-8),对个管段进行编号,标注各管段的长度和风量。
以风量和风速不变的风管为一管段。
一般从距风机最远的一段开始。
由远而近顺序编号。
管段长度按两个管件中心线的长度计算,不扣除管件(如弯头、三通)本身的长度。
2、选择合理的空气流速。
风管内的风速对系统的经济性有较大影响。
流速高、风管断面小,材料消耗少,建造费用小;但是,系统压力损失增大,动力消耗增加,有时还可能加速管道的磨损。
流速低,压力损失小,动力消耗少;但是风管断面大,材料和建造费用增加。
对除尘系统,流速多低会造成粉尘沉积,堵塞管道。
因此必须进行全面的技术经济比较,确定适当的经济流速。
根据经验,对于一般的通风系统,其风速可按表6-10确定。
对于除尘系统,防止粉尘在管道内的沉积所需的最低风速可按表6-11确定。
除尘系统设计及主要参数选择
对于圆形管道
L2 D 2
对于非圆形管道
L 2 4R 2
其中
R
F L
2、局部阻力损失
2
2
3、管道的总压力损失
总压力损失
2 L m D 2
m=1.15-1.20
四、除尘设备的选择
通风除尘系统中的主要设备如下:
吸尘罩 风机 管网系统 除尘器 烟囱 输灰装置 电气设备及仪表等
一、排气吸尘罩的设置
(1)应根据生产工艺及排尘特点,对污染源分别采取局部密闭、 整体密闭或其它形式的控制方式。 (2)为了有效的捕集粉尘,应将排气吸尘罩设置在污染源的上方 或附近,而且罩体应具有足够的密闭性,罩内应维持负压。 (3)吸尘罩的结构和形式应在满足生产的前提下,保持一定容积, 而且罩内气流方向与污染物流动方向相一致。 (4)在工艺允许的条件下,排气吸尘罩的开口面积尽可能缩小, 罩口处风速一般取0.5~3m/s,以防止物料或系统能量的损失。 (5)排气罩要重量轻,操作灵活,启闭方便,一般要设置调节阀 门和检查孔。为了进行除尘系统的风量调整还应在支、干管上设 测孔。
P Pt 1 TP0 T0 P
其中φ——风机性能波动系数,无样本时取φ=0.1 (3)电动机的选择
P
Q0 H 0 K 102m 3600
P ——电动机功率 Q ——选择风机的计算风量 m3/h H ——选择风机的计算风压 Pa ——全压效率 ——风机的机械效率,与传动方式有关,电动机直联 =1, 联轴器直联 =0.98,三角皮带传动 =0.95。 K——电机容量储备系数
除尘系统设计程序简介 及主要参数的设计
除尘器管道设计规范
除尘器管道设计规范篇一:除尘器管道的设计原则除尘器管道的设计原则一、除尘通风管道的分类除尘通风系统通常叫通风网路,简称风网。
风网一般有两种形式,一种是单独风网,它是一部机器或一个吸点单独用一台通风机进行吸风的网路(如图1#)。
另一种是集中风网,它是两个或两个以上的吸点共用一台通风机进行吸风的网路(如图2#)。
集中风网在现实中应用较为普遍。
二、单独风网与集中风网的比较。
单独风网管道一般比较简单,风量容易调节和控制。
但是设备投资较大,每台机器设置一台风机和电机,相对增加了占地面积和安排的困难。
集中风网管道动力消耗、设备造价和维护费用都比较经济,粉尘处理和回收较简单。
但集中风网运行调节比较困难,当一个风网吸点的风量发生变化时,就会影响到整个网路。
单独风网与集中风网各有优缺点,在应用中需要根据实际情况而确定。
三、集中风网的组合原则(单独风网略过。
)1、组合在同一风网中的机器设备内吸出的粉尘在品质上应该是相类似的。
各机器设备的工艺任务是不同的,它们产生的粉尘在品质与价值上也就不一样。
例如(在饲料加工厂),在清理车间中初步清理时所形成的粉尘大都是泥、沙等无机粉尘利用价值低;而后来清理时产生的粉尘则含有一些皮壳和破碎原料等有机物质,有一定的利用价值,因此前后清理过程的吸风在可能条件下应分开装设。
2、机器工作的间隙时间应该相同即组合在同一网中的机器设备,工作的时间应该相同。
这样可以使通风机的符合保持稳定。
如果风网中的机器或吸点因不时停歇而关闭吸风时,则会造成其它风管中风速的频繁变化,从而影响工艺效果。
对于相互交错进行工作的机器设备也可接在同一风网上,但它们的风量应该相同。
3、管道设计力求简单经济合理这个原则要求组合在同一风网中的机器之间的距离要短;为防止粉尘在管道内沉积,风管尽可能垂直铺设,尽量减少弯曲和水平部分。
4、风机的安放位置合适风机一般应安装在除尘器之后(采用吸气式),以减少粉尘对风机的磨损。
当然,上面几个原则有时有相互的,例如,吸出物相同的机器在组合成一个风网时,有时管道配置却并不简单。
大气污染控制工程—车间除尘系统设计
目录1 -1 设计任务书.....................................................................................1 -1.1 设计目的.................................................................................1.2 设计任务与要求 ............................................................................1 -1 -1.3 设计资料.................................................................................3 -2 设计说明书.....................................................................................3 -2.1 集气罩的设计 ..............................................................................3 -2.1.1 设计原则 ............................................................................3 -2.1.2 集气罩尺寸参数的确定 ................................................................4 -2.1.3 控制点控制速度ᵉᵉ的确定 ............................................................5 -2.1.4 排风量的确定 ........................................................................6 -2.2 除尘器的选型与设计 ........................................................................6 -2.2.1 除尘器类型比选 ......................................................................2.2.2 除尘器的选型 ........................................................................7 -7 -2.3 管道系统设计及计算 ........................................................................7 -2.3.1管道设计原则 .........................................................................8 -2.3.2 管道的初步设计 ......................................................................8 -2.3.3 管径与管内流速的确定 ................................................................9 -2.3.4 弯头的设计 ..........................................................................2.3.5 三通的设计计算 ......................................................................9 -10 -2.3.6 管段长度的确定 ......................................................................2.4 压损平衡设计 ..............................................................................10 -10 -2.4.1 管段压损计算 ........................................................................12 -2.4.2 压力校核 ............................................................................12 -2.4.3 除尘系统总压力损失 ..................................................................12 -2.5 风机的选择与校核 .........................................................................13 -2.6 烟囱的设计计算 ............................................................................14 -2.7设计结果概要 .............................................................................14 -2.7.1通风系统水力计算表 ..................................................................14 -2.7.2平面布置图 ..........................................................................14 -2.7.3除尘器三视图 ........................................................................15 -3 设计评述.......................................................................................15 -4 参考文献.......................................................................................1 设计任务书1.1 设计目的通过对大气污染净化系统的工艺设计,初步掌握大气污染净化系统设计的基本方法,培养利用已经学过的理论知识综合分析问题,并提高解决实际问题的能力、绘图能力、以及正确使用设计手册的能力。
5通风管道的设计计算
29
图5-7 管件制作和连接的优劣比较
30
5)通风机的进口和出口
要尽量避免在接管处产生局部涡流,通风 机的进口和出口风管布置方法可采用图58所示。
图5-8 风机进出口的管道连接
21
表5-2 几种罩口的局部阻力系数和流量系数
22Βιβλιοθήκη 风管系统的出口处,气流排入大气。当空气由 风管出口排出时,气流在排出前具有的能量将 全部损失掉。
对于出口无阻挡的风管,这个能量消耗就等于 动压,所以出口局部阻力系数ζ =1;
若在出口处设有风帽或其它构件时,ζ >1,风 管出口的局部阻力大小等于ζ >1的部分的数值。
2)流量当量直径
设某一圆形风管中的气体流量与矩形风管的气 体流量相等,并且单位长度摩擦阻力也相等, 则该圆形风管的直径就称为此矩形风管的流量 当量直径,以DL表示。
根据推导,流量当量直径可近似按下式计算。
DL 1.275
a3 b3 ab
在常用的矩形风管的宽、高比条件下,其误差在5%左右。
在通风空调工程中,常采用不同材料制作风管, 各种材料的粗糙度K见下表所示
风管材料
薄钢板或镀锌钢板
塑料板 矿渣石膏料 矿渣混凝土板
绝对粗糙度 (mm)
0.15~0.18 0.01~0.05
1.0 1.5
风管材料
胶合板 砖砌体 混凝土 木板
绝对粗糙度 (mm)
1.0 3.0~6.0 1.0~3.0 0.2~1.0
如果受到安装位置的限制,需要在风机出口处 直接安装弯管时,弯管的转向应与风机叶轮的 旋转方向一致。
除尘管道设计注意事项
主要瞧您就是输送什么介质了,如果就是一般粉尘(非易燃),如非矿粉尘或者水泥类似的粉体,除尘风管的风速可参考我们设计院采用的标准:一般倾斜管道风速(12-16m/s)、垂直管道风速(8-12m/s)、水平管道(18-22m/s)。
对于膨胀节的选择可以先通过计算膨胀节的膨胀量,热胀位移△L=α* Δt * L(mm)式中α——管线胀系数Δt ——温差L——管道长度一个完整的除尘系统包括吸尘罩、通风管道、除尘器、风机四个部分。
通风管道(简称管道)就是运送含尘气流的通道,它将吸尘罩、除尘器及风机等部分连接成一体。
管道设计就是否合理,直接影响到整个除尘系统的效果。
因此,必须全面考虑管道设计中的各种问题,以获得比较合理、有效的方案。
1、管道构件1、1弯头弯头就是连接管道的常见构件,其阻力大小与弯管直径d、曲率半径R以及弯管所分的节数等因素有关。
曲率半径R越大,阻力越小。
但当R大于2~2、5d时,弯管阻力不再显著降低,而占用的空间则过大,使系统管道、部件及设备不易布置,故从实用出发,在设计中R一般取1~2d,90°弯头一般分成4~6节。
1、2三通在集中风网的除尘系统中,常采用气流汇合部件——三通。
合流三通中两支管气流速度不同时,会发生引射作用,同时伴随有能量交换,即流速大的失去能量,流速小的得到能量,但总的能量就是损失的。
为了减小三通的阻力,应避免出现引射现象。
设计时最好使两个支管与总管的气流速度相等,即V1+V2=V3,则两支管与总管截面直径之间的关系为d1^2+d2^2=d3^2。
三通的阻力与气流方向有关,两支管间的夹角一般取15°~30°,以保证气流畅通,减少阻力损失。
三通不能采用T形连接,因为T形连接的三通阻力比合理的连接方式大4~5倍。
另外,尽量避免使用四通,因为气流在四通干扰很大,严重影响吸风效果,降低系统的效率。
1、3渐扩管气体在管道中流动时,如管道的截面骤然由小变大,则气流也骤然扩大,引起较大的冲击压力损失。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
除尘系统中通风管道设计应注意的几个问题
一个完整的除尘系统包括吸尘罩、通风管道、除尘器、风机四个部分。
通风管道(简称管道)是运送含尘气流的通道,它将吸尘罩、除尘器及风机等部分连接成一体。
管道设计是否合理,直接影响到整个除尘系统的效果。
因此,必须全面考虑管道设计中的各种问题,以获得比较合理、有效的方案。
1、管道构件
1.1弯头弯头是连接管道的常见构件,其阻力大小与弯管直径
d、曲率半径R以及弯管所分的节数等因素有关。
曲率半径R越大,阻力越小。
但当R大于2~2.5d时,弯管阻力不再显著降低,而占用的空间则过大,使系统管道、部件及设备不易布置,故从实用出发,在设计中R一般取1~2d,90°弯头一般分成4~6节。
1.2三通在集中风网的除尘系统中,常采用气流汇合部件——三通。
合流三通中两支管气流速度不同时,会发生引射作用,同时伴随有能量交换,即流速大的失去能量,流速小的得到能量,但总的能量是损失的。
为了减小三通的阻力,应避免出现引射现象。
设计时最好使两个支管与总管的气流速度相等,即V1=V2=V3,则两支管与总管截面直径之间的关系为d12+d22=d32。
三通的阻力与气流方向有关,两支管间的夹角一般取15°~30°,以保证气流畅通,减少阻力损失。
三通不能采用T形连接,因为T形连接的三通阻力比合理的连
接方式大4~5倍。
另外,尽量避免使用四通,因为气流在四通干扰很大,严重影响吸风效果,降低系统的效率。
1.3渐扩管气体在管道中流动时,如管道的截面骤然由小变大,则气流也骤然扩大,引起较大的冲击压力损失。
为减小阻力损失,通常采用平滑过渡的渐扩管。
渐扩管的阻力是由于截面扩大时,气流因惯性作用来不及扩大而形成涡流区所造成的。
渐扩角а越大,涡流区越大,能量损失也越大。
当a超过45°时,压力损失相当于冲击损失。
为了减小渐扩管阻力,必须尽量减小渐扩角a,但a越小,渐扩管的长度也越大。
通常,渐扩角a以30°为宜。
1.4管道与风机的接口及出口风机运转时会产生振动,为减小振动对管道的影响,在管道与风机相接的地方最好用一段软管(如帆布软管)。
在风机的出口处一般采用直管,当受到安装位置的限制,需要在风机出口处安装弯头时,弯头的转向应与风机叶轮的旋转方向一致。
管道的出口气流排入大气,当气流由管道口排出时,气流在排出前所具有的能量将全部损失掉。
为减少出口动压损失,可把出口作成渐扩角不大的渐扩管,出口处最好不要设风帽或其它物件,同时尽量降低排风口气流速度。
2、管道配件
2.1清扫孔清扫孔一般设于倾斜和水平管道的侧面,异形管、三通、弯管的附近或端部。
清扫孔的制作应严密、不漏风。
2.2调节阀门集中式除尘系统阻力不平衡的情况在运行中是
难免的,因此,在与吸尘罩连接的垂直管段上设调节阀门。
常见的调
节阀门有蝶阀斜插板阀等,在吸入段管道上,一般不容许采用直插板阀,因为它容易引起管道堵塞。
作为调节风量用。
无论是斜插板或蝶阀,都必须装设在垂直管段上。
因为阀板前后产生强烈的涡旋,粉尘很容易沉积,如果这类阀板装在斜管或水平管段上,沉积粉尘还会妨碍阀板的开关或堵塞管道。
2.3测定孔除尘系统在这行前应进行启动调节,运行过程中也要进行空气动力性能测定,因此管道上要事先留出调节和测试用的测定孔。
测定孔的开设位置尽可能避开气流的涡流区,一般设置在:(1)与吸尘罩连接的管段上:(2)除尘器前后的管段上;(3)风机进出口管段上,(4)对除尘器应设在能够显示出设备本身的压力损失的部位。
2.4法兰盘除尘管道一般用钢板焊接制作,采用法兰盘式连接,便于拆卸清理。
法兰盘中的衬垫可用胶皮或在水中泡湿的和在干性油内煮过并涂了铅丹油的厚纸垫。
输运不超过70℃的正常湿度的空气的管道可以用厚纸垫,超过70℃则用石棉厚纸垫或石棉绳。
3、管道布置
(1) 管道布置力求简单,尽可能垂直或倾斜装设,倾斜角一般不得小于50°,使管道内的积尘能自然滑下。
(2) 分支管与水平管或主干管连接时,一般从管道的上面或侧面接入。
(3) 管道一般采用圆形截面,因为方形、矩形截面管道四角会产生涡流,易积粉尘。
最小直径一般不小于100mm,以防管道堵塞。
(4) 管道不宜支承在设备上(如通风机外壳),应设支、吊架。
钢制管道水平安装时,其固定件的间距,当管径不超过360mm时,不大于4m;超过360mm时,不大于3m。
当垂直安装时,其固定件的间距不大于4m,拉绳和吊架不允许直接固定在法兰盘上。
(5) 为减轻风机的磨损,宜将除尘器装置置于风机之前。
以上是管道设计应注意的几个问题。
在实际设计中,管道的直径、风速和流量,还要根据实际情况进行阻力计算,在保证使用效果的前提下,使输运气流的能耗最小。
旋风除尘器选型原则和步骤
1、选型原则
①旋风式除尘器净化气体量应与实际需要处理的含尘气体量
一致。
选择旋风式除尘器直径时应尽量小些,如果要求通过
的风量较大,可采用几个小直径的旋风除尘器并联为宜。
②旋风式除尘器入口风速要保持18~23m/s,过低时除尘效率
下降:过高时阻力损失及耗电量均要增加,且除尘效率提高不明显。
③所选择的旋风式除尘器的阻力损失小,动力消耗少,且结构简单、维护简便。
④旋风式除尘器能捕集到的最小粉尘粒子应稍小于被处理气体中的粉尘粒度。
⑤当含尘气体温度很高时,要注意保温,避免水分在除尘器内凝结。
假如粉尘不吸收水分、露点为30~50℃时,除尘器的温度最少应高出30℃左右,假如粉尘吸水性较强(如水泥、石膏和含碱
粉尘等)、露点为20~50℃时,除尘器的温度应高出露点温度40~50℃。
⑥旋风除尘器结构的密闭要好,确保不漏风。
尤其是负压操作,更应注意卸料锁风装置的可靠性。
⑦易燃易爆粉尘(如煤粉)应设有防爆装置。
防爆装置的通常做法是在入口管道上加一个安全防爆阀门。
⑧当粉尘黏性较小时,最大允许含尘质量浓度与旋风筒直径有关,即直径越大其允许含尘质量浓度也越大。
具体的关系见表。
2、选型步骤
旋风除尘器的选型计算主要包括类型和筒体直径及个数的确定等内容。
一般步骤和方法如下所述。
①除尘系统需要处理的气体量。
当气体温度较高、含尘量较大时,其风量和密度发生较大变化,需要进行换算。
若气体中水蒸气含量较大时,亦应考虑水蒸气的影响。
②根据所需处理气体的含尘质量浓度、粉尘性质及使用条件等初步选择除尘器类型。
③根据需要处理的含尘气体量Q,按下式算出除尘器直径:或根据需要处理气体量算出除尘器进口气流速度(一般在12~
25m/s之间),由选定的含尘气体进口速度和需要处理的含尘气体量算出除尘器入口截面积,再由除尘器各部分尺寸比例关系选出除尘器。
当气体含尘质量浓度较高,或要求捕集的粉尘粒度较大时,应选用较大直径的旋风除尘器;当要求净化程度较高,或要求捕集微细尘粒时,可选用较小直径的旋风除尘设备并联使用。
④必要时按给定条件计算除尘器的分离界
限粒径和预期达到的除尘效率,也可直接按有关旋风除尘器性能表选取,或将性能数据与计算结果进行核对。
⑤除尘器必须选用气密性好的卸料器,以防器体下部漏风,影响效率急剧下降。
除尘器底部设置如图所示的集尘箱和空心隔离锥(图中D为除尘器筒体直径)可减少漏风和涡流造成的二次扬尘,使除尘效率有较大的提高。
⑥旋风除尘器并联使用时,应采用同型号旋风除尘器,并需合理地设计连接风管,使每个除尘器处理的气体量相等,以免除尘器之间产生串流现象,降低效率。
彻底消除串流的办法是为每一除尘器设置单独的集尘箱。
⑦旋风除尘器一般不宜串联使用。
必须串联使用时,应采用不同性能的旋风除尘器,并将低效者设于前面。