一次函数大题难题提高题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)求A、B两点的坐标;(用b表示)
(2)图中有全等的三角形吗?若有,请找出并说明理由。
(3)求MN的长.
16.如图1,在等腰梯形ABCO中,AB∥CO,E是AO的中点,过点E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.现把梯形ABCO放置在平面直角坐标系中,使点O与原点重合,OC在x轴正半轴上,点A,B在第一象限内.
14.小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min才乘上缆车,缆车的平均速度为18Байду номын сангаас m/min.设小亮出发x min后行走的路程为y m.图中的折线表示小亮在整个行走过程中y与x的函数关系.
18.李明从家出发到出现故障时的速度为米/分钟;
19.李明修车用时分钟;
20.求线段BC所对应的函数关系式(不要求写出自变量的取值范围).
一位数学老师参加本市自来水价格听证会后,编写了一道应用题,题目如下:节约用水、保护水资源,是科学发展观的重要体现.依据这种理念,本市制定了一套节约用水的管理措施,其中规定每月用水量超过 (吨)时,超过部分每吨加收环境保护费 元.下图反映了每月收取的水费 (元)与每月用水量 (吨)之间的函数关系.
26.求该药品的稳定价格与稳定需求量.
27.价格在什么范围内,该药品的需求量低于供应量?
28.由于该地区突发疫情,政府部门决定对药品供应方提供价格补贴来提高供货价格,以利提高供应量.根据调查统计,需将稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量.
29.(本题10分)某班师生组织植树活动,上午8时从学校出发,到植树地点植树后原路返校,如图为师生离校路程s与时间t之间的图象.请回答下列问题:
(1)求在运动过程中形成的△OPQ面积S与运动时间t之间的函数关系,并写出自变量t的取值范围;
(2)在OA上(点O、A除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;
(3)如图2,现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.
(1)求点E的坐标及线段AB的长;
(2)点P为线段EF上的一个动点,过点P作PM⊥EF交OC于点M,过M作MN∥AO交折线ABC于点N,连结PN,设PE=x.△PMN的面积为S.
①求S关于x的函数关系式;
②△PMN的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;
(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC.现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2).设运动时间为t秒,运动后的直角梯形为E′D′G′H′(如图3);试探究:在运动过程中,等腰梯ABCO与直角梯形E′D′G′H′重合部分的面积y与时间t的函数关系式.
13.小明在上物理实验课时,利用量筒和体积相同的小球进行了如下操作:
请根据示意图中所给信息,解答下列问题:
(1)放入一个小球后,量筒中水面升高cm;
(2)求放入小球后,量筒中水面的高度 (cm)与小球个数 (个)之间的函数关系式(不要求写出自变量的取值范围);
(3)若往量筒中继续放入小球,量筒中的水就会溢出.问:量筒中至少放入几个小球时有水溢出?
6.如图,直线y= x+m(m≠0)交x轴负半轴于点A、交y轴正半轴于点B且AB=5,过点A作直线AC⊥AB交y轴于点C.点E从坐标原点O出发,以0.8个单位/秒的速度沿y轴向上运动;与此同时直线l从与直线AC重合的位置出发,以1个单位/秒的速度沿射线AB方向平行移动.直线l在平移过程中交射线AB于点F、交y轴于点G.设点E离开坐标原点O的时间为t(t≥0)s.
(3)在(2)的条件下,将△BEF绕点B逆时针旋转得到△BE′F′,使点E的对应点E′落在线段AB上,点F的对应点是F′,E′F′交x轴于点G,连接PF、QG,当t为何值时, ?
3.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为x h,两车之间的距离为y km,图中的折线表示y与x之间的函数关系.根据图象解决以下问题:
2.如图,在平面直角坐标系中,点O为坐标原点,A点的坐标为(3,0),以OA为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从O点出发沿OC向C点运动,动点Q从B点出发沿BA向A点运动,P,Q两点同时出发,速度均为1个单位/秒。设运动时间为t秒.
(1)求线段BC的长;
(2)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F。设线段EF的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围:
⑴小亮行走的总路程是____________㎝,他途中休息了________min.
⑵①当50≤x≤80时,求y与x的函数关系式;
②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?
15.如图,直线 与 轴负半轴、 轴正半轴分别交于A、B两点,正比例函数 的图像与直线AB交于点Q,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=10,BN=3,
17.甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线 、线段 分别表示甲、乙两车所行路程 (千米)与时间 (小时)之间的函数关系对应的图象(线段 表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题:
(1)求乙车所行路程 与时间 的函数关系式;(4分)
(1)填空:A、C两港口间的距离为km, ;
(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;
(3)甲、乙两船同在行驶途中,若两船距离不超过10 km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.
12.(1)证明:不论 取什么值,直线 :y= x- 都通过一个定点;
(2)以A(0,2)、B(2,0)、O(0,0)为顶点的三角形被直线 分成两部分,分别求出当 =2和 =- 时,靠近原点O一侧的那部分面积.
23.求点B的坐标
24.求等边 的边长(用的代数式表示),并求出当等边 的顶点 运动到与原点 重合时的值;
25.如果取 的中点 ,以 为边在 内部作如图2所示的矩形 ,点 在线段 上.设等边 和矩形 重叠部分的面积为 ,请求出当 秒时, 与的函数关系式,并求出 的最大值.
如图所示,某地区对某种药品的需求量 (万件),供应量 (万件)与价格x(元/件)分别近似满足下列函数关系式: , ,需求量为0时,即停止供应;当 时,该药品的价格称为稳定价格,需求量称为稳定需求量.
(1)求直线AC的解析式;
(2)直线l在平移过程中,请直接写出△BOF为等腰三角形时点F的坐标;
(3)直线l在平移过程中,设点E到直线l的距离为d,求d与t的函数关系.
7.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为 ,两车之间的距离为 ,图中的折线表示 与 之间的函数关系.
(1)求师生何时回到学校?
(2)如果运送树苗的三轮车比师生迟半小时出发,与师生同路匀速前进,早半小时到达植树地点,请在图中,画出该三轮车运送树苗时,离校路 程s与时间t之间的图象,并结合图象直接写出三轮车追上师生时,离学校的路程;
(3)如果师生骑自行车上午8时出发,到植树地点后,植树需2小时,要求14时前返回到学校,往返平均速度分别为每时10km、8km.现有A、B、C、D四个植树点与学校的路程分别是13km、15km、17km、19km,试通过计算说明哪几个植树点符合要求.
(3)直接写出不等式k x-4≥k x的解集。
5.已知:如图1,△OAB是边长为2的等边三角形,OA在x轴上,点B在第一象限内;△OCA是一个等腰三角形,OC=AC,顶点C在第四象限,∠C=120°.现有两动点P、Q分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一个点也随即停止.
根据图象进行以下探究:
(1)请解释图中点B的实际意义;
(2)求慢车和快车的速度;
(3)求线段BC所表示的 与 之间的函数关系式,并写出自变量 的取值范围;
8.(7分)如图,一次函数y=- x+3的图象与x轴和y轴分别交于点A和B ,再将△AOB沿直线CD对折,使点A与点B重合.直线CD与x轴交于点C,与AB交于点D.
参考答案
1.(1) (2)y没有最大值,理由见解析(3)EF平移至如图2所示位置时,四边形ABEF的周长最小,此时点E的坐标为( ,0)
(1)求线段AB的长;
(2)当 为何值时, ACD的面积等于 AOB面积的 ;
(3)当 为何值时, ACD是等腰三角形.
10.如图,直线 : 与 轴交于点 (4,0),与 轴交于点 ,长方形 的边 在 轴上, , .长方形 由点 与点 重合的位置开始,以每秒1个单位长度的速度沿 轴正方向作匀速直线运动,当点 与点 重合时停止运动.设长方形运动的时间为 秒,长方形 与△ 重合部分的面积为 .
(1)求直线 的解析式;
(2)当 =1时,请判断点 是否在直线 上,并说明理由;
(3)请求出当 为何值时,点 在直线 上;
(4)直接写出在整个运动过程中 与 的函数关系式.
11.在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,与B港的距离分别为 、 (km), 、 与x的函数关系如图所示.
1.已知点A(3,4),点B为直线x=-1上的动点,设B(-1,y).
(1)如图1,若点C(x,0)且-1<x<3,BC⊥AC,求y与x之间的函数关系式;
(2)在(1)的条件下,y是否有最大值?若有,请求出最大值;若没有,请说明理由;
(3)如图2,当点B的坐标为(-1,1)时,在x轴上另取两点E,F,且EF=1.线段EF在x轴上平移,线段EF平移至何处时,四边形ABEF的周长最小?求出此时点E的坐标.
请你解答下列问题:
21.将m看作已知量,分别写出当0<x<m和x>m时, 与 之间的函数关系式;
22.按上述方案,一家酒店四、五两月用水量及缴费情况如下表所示,那么,这家酒店四、五两月的水费分别是按哪种方案计算的?并求出 的值.
月份
用水量 (吨)
水费 (元)
四月
35
59.5
五月
80
151
如图1,在平面直角坐标系中,已知点 ,点 在 正半轴上,且 .动点 在线段 上从点 向点 以每秒 个单位的速度运动,设运动时间为秒.点M、N在 轴上,且 是等边三角形.
(1)慢车的速度为km/h,快车的速度为km/h;
(2)解释图中点D的实际意义并求出点D的坐标;
(3)求快车出发多少时间时,两车之间的距离为300km?
4.一次函数y=k x+b的图像经过点(0,-4)且与正比例函数y=k x的图象交于点(2,-1).
(1)分别求出这两个函数的表达式;
(2)求这两个函数的图象与x轴围成的三角形的面积;
(1)点A的坐标为,点B的坐标为。
(2)求OC的长度;
(3)在x轴上有一点P,且△PAB是等腰三角形,不需计算过程,直接写出点P的坐标.
9.如图,已知一次函数 的图象与 轴和 轴分别相交于A、B两点,点C在线段BA上以每秒1个单位长度的速度从点B向点A运动,同时点D在线段AO上以同样的速度从点A向点O运动,运动时间为 ,其中一点到达终点时,另一点也随之停止运动.
(2)求两车在途中第二次相遇时,它们距出发地的路程;(4分)
(3)乙车出发多长时间,甲、乙两车相距80千米?(写出解题过程)(4分)
为响应环保组织提出的“低碳生活”的号召,李明决定不开汽车而改骑自行车上班.有一天,李明骑自行车从家里到工厂上班,途中因自行车发生故障,修车耽误了一段时间,车修好后继续骑行,直至到达工厂(假设在骑自行车过程中匀速行驶).李明离家的距离y(米)与离家时间x(分钟)的关系表示如下图:
相关文档
最新文档