六年级数学上册(人教版)配套教学学案:5.11教材分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全新修订版教学设计

(学案)

六年级数学上册

老师的必备资料

家长的帮教助手

学生的课堂再现

人教版

第五单元圆

一、教学内容

1.圆的认识

2.圆的周长

3.圆的面积

4.扇形的认识

二、教学目标

1.使学生认识圆,学会用圆规画圆,掌握圆的基本特征。

2.使学生会利用直尺和圆规,在教师指导下设计一些与圆有关的图案。

3.使学生通过实践操作,理解圆周率的意义,理解和掌握圆的周长计算公式,并解决一些相应的实际问题。

4.引导学生探索并掌握圆的面积计算公式,并解决一些简单的实际问题。

5.使学生认识扇形,掌握扇形的一些基本特征。

6.使学生经历尝试、探究、分析、反思等过程,培养数学活动经验,在解决一些与圆有关的数学问题的过程中,提高问题解决的能力。

7.使学生在推导圆的周长与面积的计算公式过程中体会和掌握转化、极限等数学思想。

8.通过生活实例、数学史料,感受数学之美,了解数学文化,提高学习兴趣。

三、主要变化与具体编排

(一)主要变化

1.改变圆的各部分名称的引入方式。

实验教材在引入圆时,先让学生利用圆形杯盖、圆柱体物体、三角板上的圆

孔描出圆,再把圆剪下来,通过多次对折等方式引出圆心、半径、直径等概念;

在认识了圆的半径和直径的特点之后,再专门教学用圆规画圆的方法。

考虑到学生在生活中已经具备初步的用圆规画圆的知识,本次修订时,对于“你能想办法在纸上画一个圆吗”这一问题,教材同时给出了用杯盖、三角尺上的

圆孔、圆规画圆的方法,符合真实的学情。接下来,利用圆规画圆的方法引出圆

心、半径、直径等概念,水到渠成,这样的引入方式也能更好地体现圆“一中同

长”的本质特征。接下来,通过让学生用圆规画几个大小不同的圆,探讨直径、

半径的特点,在这一过程中,使学生进一步熟练掌握用圆规画圆的方法。

2.增加圆心决定圆的位置、半径决定圆的大小的内容。

“圆,一中同长也”,这是《墨子》中对圆的定义。只要确定了“中”和“长”,圆的位置与大小就确定下来了。解析几何中圆的解析式(x-a)2+(y-b)2=r2中也很

好地体现了这一点。圆心决定圆的位置、半径决定圆的大小这一事实,过去虽然

没在教材中明确指出,但实际上学生已经在自觉应用了。例如,用圆规画圆时,

不可避免地会遇到“针尖定在哪儿”“画多大的圆”等问题,如果要画半径是3cm的圆,针尖到纸边缘的距离必须大于3cm,才能在纸上画出一个完整的圆来。在本

册教材中,接下来还要安排利用圆设计图案的内容,在设计图案的过程,学生会

时时处处遇到“要画一个多大的圆”“这个圆的圆心应该在哪儿”等问题。因此,教

材增加这一部分内容,能帮助学生在应用知识的过程中更好地认识圆的数学特征。

3.正文中降低圆的对称性的篇幅,新增利用圆设计图案的内容。

由于在“轴对称图形”的相关内容中,已经对圆的对称性有过比较充分的探讨,所以,本单元不再单独编排圆的对称性的例题,只在相关练习中加以巩固。

在修订过程中,新增了利用圆设计图案的内容。先让学生模仿教材上提供的步骤,画出美丽的图案,再放手让学生试着画出教材上提供的图案。在这一过程中,需要用到用圆规画圆的方法,需要观察这些图案是由哪些图形组成的,是如

何组成的。需要学生对圆心位置的确定、半径大小的确定、圆的对称性等知识加

以综合应用,一方面,帮助学生进一步了解圆的特征,另一方面,使学生充分体

会数学的对称美、和谐美。

例如,下面左图中大圆内部的每个“水滴”是由三个半圆围成的,其中两个半圆的直径是大圆半径的一半,还有一个半圆的直径是大圆的半径,除此之外,还

要关注这些半圆的圆心位置在哪里。右图中,大圆的内部有八个小圆,这些圆的

直径都是大圆的半径,依次排列在大圆的八等分线上,互相重叠,形成了美丽的

图案。

教学时,还可以让学生自由创作出更多的作品。此外,还可以借助这些图案,复习轴对称、平移、旋转等图形变换的知识。由于这一内容的操作性、综合性、

探究性都很强,也可以把它设计成一个“综合与实践”活动。

4.增加求圆与外切正方形、内接正方形之间面积的内容。

在“圆的面积”部分,增加了解决实际问题的内容,即求圆与外切正方形、内接正方形之间的面积。要求学生利用图形之间的关系,灵活计算这两部分的面积,并在“讨论”环节进一步得出更为一般化的结论。

要计算正方形的面积,首先要求出正方形的边长,这是比较常规的思路。例

如,求圆的外切正方形的面积时,观察到正方形的边长和圆的直径相等,所以很

容易求出来。但在求圆的内接正方形的边长时却遇到了困难,圆的直径和正方形的对角线相等,但没有办法直接求出正方形的边长。此时,教材引导学生改变观

察角度,把正方形分割成两个三角形,这两个三角形的底是圆的直径,高是圆的

半径,很容易求出其面积。在解决几何问题时,经常会有这种“山重水复疑无路,柳暗花明又一村”的情形。有时,换一个角度看问题,会发现一个全新的世界。

经历这样的问题解决过程,有助于提高学生多角度分析问题的意识和能力。

解决了圆半径是1m的特殊问题后,教材在“回顾与反思”环节,进一步讨论半径为r的情况,使学生发现,圆的外切正方形面积是4r2,外切正方形与圆之间

的面积是0.86r2,内接正方形的面积是2r2,圆与内接正方形之间的面积是 1.14r2。这些结果中隐藏着很多有意思的数学事实,如:外切正方形的面积始终是内接正

方形面积的2倍,外切正方形与内接正方形之间的面积正好是2r2,即和内接正方形面积相等,等等。

5.“扇形”由选学变为正式教学内容。

扇形的内容是学习扇形统计图的必要基础,根据《标准(2011年版)》对相关内容的调整,此次修订把这部分内容由选学变为正式教学内容。

相关文档
最新文档