纳米材料的粒度分析与形貌分析(ppt 42页)

合集下载

纳米材料的粒度分析与形貌分析

纳米材料的粒度分析与形貌分析
详细描述
随着粒度的减小,纳米材料的磁矫顽力通常会增加,这是因为小尺寸效应增强了磁畴壁的稳定性。此外,形貌对 纳米材料的磁各向异性也有重要影响,可以通过改变形貌来优化磁存储和磁传感器等应用中的性能。
THANKS FOR WATCHING
感谢您的观看
原料性质
原料纯度
原料中的杂质会影响纳米材料的生长过程,从而影响其粒度和形貌。高纯度的原料有利于获得粒度和形貌均匀的纳米 材料。
原料晶型
不同晶型的原料会生成不同结构和形貌的纳米材料。例如,采用硫化物原料制备的纳米材料多为立方状或球状,而采 用氧化物原料制备的纳米材料多为棒状或纤维状。
原料粒度
原料的粒度大小直接影响最终纳米材料的粒度和形貌。采用纳米级原料作为起始物,可以获得更小粒度 的纳米材料,同时也有利于保持形貌的规整性。
按维度分类
根据在纳米尺度上的维度数,纳米材 料可分为零维(0D)、一维(1D) 、二维(2D)等类型的纳米材料。
CHAPTER 02
粒度分析
粒度分析方法
激光散射法
利用激光照射纳米材料,通过 散射光的强度和分布测量粒径

小角X射线散射法
利用X射线照射纳米材料,通过 散射的X射线强度和角度测量粒 径。
纳米材料的粒度分析 与形貌分析
目 录
• 纳米材料的基本概念 • 粒度分析 • 形貌分析 • 纳米材料粒度与形貌的影响因素 • 粒度与形貌对纳米材料性能的影响
CHAPTER 01
纳米材料的基本概念
纳米材料定义
01
纳米材料是指在三维空间中至少 有一维处于纳米尺度范围(1100nm)或由它们作为基本单元 构成的材料。
量的重要手段。
粒度分析促进纳米科技发展
03

纳米材料的测试与表征ppt课件

纳米材料的测试与表征ppt课件

AFM的像
三、纳米资料的构造分析
• 不仅纳米资料的成份和形貌对其性能有重 要影响,纳米资料的物相构造和晶体构造 对资料的性能也有着重要的作用。
• 目前,常用的物相分析方法有X射线衍射分 析、激光拉曼分析以及微区电子衍射分析。
X射线衍射构造分析
• XRD 物相分析是基于多晶样品对X射线的衍射效应,对样 品中各组分的存在形状进展分析。测定结晶情况,晶相, 晶体构造及成键形状等等。 可以确定各种晶态组分的构 造和含量
纳米资料成份分析种类
光谱分析 主要包括火焰和电热原子吸收光谱AAS, 电感耦合等离 子体原子发射光谱ICP-OES, X-射线荧光光谱XFS 和X射线衍射光谱分析法XRD;
质谱分析 主要包括电感耦合等离子体质谱ICP-MS 和飞行时间二次 离子质谱法TOF-SIMS
能谱分析 主要包括X 射线光电子能谱XPS 和俄歇电子能谱法AES
光散射法粒度分析
• 丈量范围广,如今最先进的激光光散射粒度 测试仪可以丈量1nm~3000μm,根本满足 了超细粉体技术的要求
• 测定速度快,自动化程度高,操作简单,普通 只需1~1.5min
• 丈量准确,重现性好 • 可以获得粒度分布
激光相关光谱粒度分析法
• 经过光子相关光谱〔PCS〕法,可以丈量粒子的 迁移速率。而液体中的纳米颗粒以布朗运动为主, 其运动速度取决于粒径,温度和粘度等要素。在 恒定的温度和粘度条件下,经过光子相关光谱 〔PCS〕法测定颗粒的迁移速率就可以获得相应 的颗粒粒度分布
• 几个纳米到几十微米的薄膜厚度测定
外表与微区成份分析
• X射线光电子能谱 • 俄歇电子能谱 • 二次离子质谱 • 电子探针分析方法 • 电镜的能谱分析 • 电镜的电子能量损失谱分析

纳米粒子粒径评估方法PPT课件

纳米粒子粒径评估方法PPT课件

结果解读
01
根据观察到的图像和测量数据, 可以得出纳米粒子的平均粒径、 粒径分布等信息。
02
结果的准确性取决于样品的制备 、涂片的质量、观察条件以及测 量方法的准确性。
04
动态光散射法评估纳米粒 子粒径
工作原理
动态光散射法基于布朗运动原理, 通过测量纳米粒子在溶液中的散
射光强度的涨落来推算粒径。
小角X射线散射法
利用X射线照射纳米粒子,通过测量 散射光的角度分布,推算纳米粒子的 粒径和粒径分布。
X射线小角散射法
通过测量小角度范围内的X射线散射强 度,结合散射理论模型计算粒径。
透射电子显微镜法
高分辨透射电子显微镜法
利用高分辨透射电子显微镜观察纳米粒子的内部结构和晶格参数,结合晶格参数计算粒径。
实验设置
调整实验参数,包括X射线源、 探测器位置、散射角度等。
数据采集
进行实验,记录散射角度和强 度数据。
数据处理
利用数据处理软件,对采集的 数据进行分析和处理,推算出
纳米粒子的粒径。
结果解读
结果展示
通过图表或数据表格展示推算出的纳米粒子粒径 结果。
结果分析
对结果进行统计分析,评估粒径分布的均匀性、 分散性等指标。
结果应用
根据评估结果,指导纳米材料制备、优化及应用 领域的研究。
06
透射电子显微镜法评估纳 米粒子粒径
工作原理
透射电子显微镜法是一种利用 电子显微镜观察纳米粒子形貌 和粒径的方法。
当高能电子束穿透纳米粒子时, 会产生散射和衍射现象,通过 分析这些现象可以获得纳米粒 子的尺寸信息。
该方法具有较高的分辨率和精 度,能够准确地测量纳米粒子 的粒径分布和形貌特征。

纳米材料的形貌分析

纳米材料的形貌分析

第2章纳米材料的形貌分析2.1 前言2.1.1形貌分析的重要性材料的形貌尤其是纳米材料的形貌也是材料分析的重要组成部分,材料的很多重要物理化学性能是由其形貌特征所决定的。

对于纳米材料,其性能不仅与材料颗粒大小还与材料的形貌有重要关系。

如颗粒状纳米材料与纳米线和纳米管的物理化学性能有很大的差异。

因此,纳米材料的形貌分析,是纳米材料研究的重要内容。

形貌分析的主要内容是分析材料的几何形貌,材料的颗粒度,及颗粒度的分布以及形貌微区的成份和物相结构等方面。

2.1.2形貌分析的种类和适用范围纳米材料常用的形貌分析方法主要有:扫描电子显微镜、透射电子显微镜、扫描隧道显微镜和原子力显微镜。

扫描电镜和透射电镜形貌分析不仅可以分析纳米粉体材料还可以分析块体材料的形貌。

其提供的信息主要有材料的几何形貌,粉体的分散状态,纳米颗粒大小及分布以及特定形貌区域的元素组成和物相结构。

扫描电镜对样品的要求比较低,无论是粉体样品还是大块样品,均可以直接进行形貌观察。

扫描电镜分析可以提供从数纳米到毫米范围内的形貌像,观察视野大,其分辩率一般为6纳米,对于场发射扫描电子显微镜,其空间分辩率可以达到0.5纳米量级。

透射电镜具有很高的空间分辩能力,特别适合纳米粉体材料的分析。

其特点是样品使用量少,不仅可以获得样品的形貌,颗粒大小,分布以还可以获得特定区域的元素组成及物相结构信息。

透射电镜比较适合纳米粉体样品的形貌分析,但颗粒大小应小于300nm,否则电子束就不能透过了。

对块体样品的分析,透射电镜一般需要对样品进行减薄处理。

扫描隧道显微镜主要针对一些特殊导电固体样品的形貌分析。

可以达到原子量级的分辨率,但仅适合具有导电性的薄膜材料的形貌分析和表面原子结构分布分析,对纳米粉体材料不能分析。

扫描原子力显微镜可以对纳米薄膜进行形貌分析,分辨率可以达到几十纳米,比STM差,但适合导体和非导体样品,不适合纳米粉体的形貌分析。

总之,这四种形貌分析方法各有特点,电镜分析具有更多的优势,但STM和AFM具有可以气氛下进行原位形貌分析的特点。

《纳米粒度分析》课件

《纳米粒度分析》课件

优势
纳米粒度分析提供了快速、 准确的粒度数据。
局限性
纳米粒度分析受样品性质 和仪器限制。
Байду номын сангаас
发展趋势
纳米粒度分析将越来越广 泛应用于多个行业和领域。
参考文献
列出本课件中所引用的相关研究和文献。
讨论样品制备、仪器选择、数据分析和常见误差及排除方法。
1 样品制备
2 仪器选择
样品制备对纳米粒度分析结果有重要影响。
合适的仪器选择是确保准确分析的关键。
3 数据分析
4 常见误差及排除方法
正确的数据解析是得出可靠结果的前提。
介绍常见的误差来源和排除方法。
总结
概述纳米粒度分析的优势、局限性和未来发展趋势。
应用
纳米粒度分析广泛应用于材料科学、化学、 生物医学等领域。
纳米粒度分析方法
介绍纳米粒度分析的三种常见方法。
1
动态光散射(DLS)
通过测量光散射来分析纳米颗粒的尺寸和分布。
2
静态光散射(SLS)
使用静态光散射技术来获得纳米颗粒的尺寸数据。
3
激光粒度仪
利用激光光散射原理进行粒度分析的仪器。
DLS技术
DLS技术的原理、实验流程和数据分析。
原理
DLS利用光散射的强度和 频率变化来分析颗粒的尺 寸分布。
实验流程
包括样品制备、仪器设置 和数据采集。
数据分析
使用相关函数等方法解析 DLS测量数据。
SLS技术
SLS技术的原理、实验流程和数据分析。
原理
通过测量散射光强度的变化来分析纳米颗粒的尺寸。
实验流程
包括样品制备、仪器设置和数据采集。
数据分析
使用散射理论和数据拟合等方法进行数据分析和粒度计算。

纳米材料的粒度分析与形貌分析PPT(42张)

纳米材料的粒度分析与形貌分析PPT(42张)

• 对于纳米材料体系的粒度分析,首先要分清是对颗粒的一次粒度还是 对二次粒度进行分析。 • 一次粒度的分析主要采用电镜的直观观测,根据需要和样品的粒度 范围,可依次采用扫描电镜(SEM)、透射电镜(TEM)、扫描隧道电镜
(STM)、原子力显微镜(AFM)观测,直观得到单个颗粒的原始粒径及
形貌。 • 由于电镜法是对局部区域的观测,所以,在进行粒度分布分析时,需 要多幅照片的观测,通过软件分析得到统计的粒度分布。电镜法得到 的一次粒度分析结果一般很难代表实际样品颗粒的分布状态。 • 纳米材料颗粒体系二次粒度统计分析方法,按原理分较先进的三种典 型方法是:高速离心沉降法、激光粒度分析法和电超声粒度分析法。
3. 扫描电子显微镜(Scanning electron microscopy, SEM)
4. 热分析
5. 扫描探针显微技术(scanning probe microscopy, SPM)
5.1 扫描隧道电子显微镜 STM
5.2 原子力显微镜 AFM
1986年,原子力显微镜AFM的出现弥补 了STM只能直接观察到导体和半导体的不 足,可以以极高分辨率研究绝缘体表面。其 横向分辨率可达2nm,纵向分辨率为1nm。 这样的横向、纵向分辨中都超过了普通扫描 电锐的分辨率.而且AFM对工作环境和样 品制备的要求比电镜要求少得多。
3.2 X射线荧光光谱分析方法(XFS)
• 原理: X射线荧光的能量或波长是特征性的, 与元素有一一对应关系。 • 用途:定性和半定量
• 表面分析方法: X射线光电子能谱(XPS)分析方法 俄歇电子能谱(AES)分析方法 电子衍射分析方法 二次离子质谱(SIMS)分析方法等 • 获得信息: 纳米材料表面化学成分、分布状态与价态、 表面与界面的吸附与扩散反应的状况等进 行测定

(完整版)纳米材料粒度分析

(完整版)纳米材料粒度分析

纳米材料粒度分析一、实验原理纳米颗粒材料(粒径<100nm )是纳米材料中最重要的一种,可广泛用于纳米复合材料制备中的填料、光催化颗粒、电池电极材料、功能性分散液等。

粒径(或粒度)是纳米颗粒材料的一个非常重要的指标。

测试颗粒粒径的方法有许多种,其中,电子显微镜法和激光光散射法均可用纳米材料粒度的测试,电子显微镜法表征纳米材料比较直观,可观察到纳米颗粒的形态,但需要通过统计计数(一般需统计1000个以上颗粒的粒径)方法来得到颗粒粒径,比较烦琐费时,尤其是在纳米颗粒的粒径分布较宽时,统计得到的粒径及粒径分布误差将增大。

激光光散射法得到的纳米颗粒粒径具有较好的统计意义,制样简单,测试速度快,但激光光散射法无法观察到颗粒形态,在测试非球形颗粒时测试误差也较大。

因此,上述两种纳米材料的测试方法各有优缺点。

本实验选用激光光散射法测试纳米材料的粒径及粒径分布。

所用仪器为Beckman-coulter N4 Plus 型激光粒度分析仪。

图1为N4 Plus 型激光粒度分析仪的测量单元组成图,主要由HeNe 激光光源、聚焦透镜、样品池、步进马达、光电倍增管(PMT)、脉冲放大器和鉴别器(PAD)、数字自相关器、6802微处理器和计算机组成。

图1 N4 Plus 型激光粒度测试仪的测量单元组成图N4 Plus 型激光粒度分析仪的测量原理主要基于颗粒的布朗(Brownian)运动和光子相关光谱(Photon Correlation Spectroscopy, PCS)现象。

在溶液中,粒子由热导致与溶剂分子发生随机碰撞所产生的运动称为布朗运动,由于布朗运动,粒子在溶液中可发生扩散移动。

在恒定温度及某一浓度下,粒子的平移扩散系数与颗粒的粒径成反比,即符合Stokes-Einstein 方程:d3Tk D B πη=(1)式中k B 为玻尔兹曼常数(1.38×10-16erg/︒K),T 为温度(︒K),η为分散介质(或稀释剂)粘度(poise),d 为颗粒粒径(cm)。

纳米材料形貌分析p-形貌分析概要共32页文档

纳米材料形貌分析p-形貌分析概要共32页文档

END
纳米材料形貌分析p-形貌分析 概要
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结
15、机会是不守纪律的。——雨果
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃

纳米粒子粒径评估方法ppt课件

纳米粒子粒径评估方法ppt课件
反馈控制是本系统的核心工作 机制。
量子森林 该图是由托斯藤-兹欧姆巴在德国实验室中捕获的图像,它展示了锗硅量
子点——仅高15纳米,直径为70纳米。
通过使用千万亿分之一秒的激光脉冲撞击蓝宝石表面,蓝宝石被加热了 ,表面留下了一道浅细的陷坑之后,这块蓝宝石再次被撞击加热,就产 生了图中可见的内部梯级结构
其优点是可以直接观察颗粒是否团聚。
缺点是取样的代表性差,实验结果的重复性差,测 量速度慢。
5.1.1透射电镜观察法注意的问题
测得的颗粒粒径是团聚体的粒径。
在制备超微粒子的电镜观察样品时,首先需用超声 波分散法,使超微粉分散在载液中,有时候很难使它们 全部分散成一次颗粒,特别是纳米粒子很难分散,结果 在样品 Cu网上往往存在一些团聚体,在观察时容易把 团聚体误认为是一次颗粒。
因此,精确测定晶粒度时,应当从测量的半高宽度BM中扣除二类 畸变引起的宽化. 在大多情况下,很多人用谢乐公式计算晶粒度时未扣除二类畸变引 起的宽化.
1.用X射线衍射法测定溶胶-凝胶法制备的ZnO微粉 的晶型时,发现位于31.73o, 36.21o,62.81o的三个最 强衍射峰发生的宽化,这说明了什么?三个衍射峰 的半峰宽分别为0.386 o,0.451 o和0.568 o, 试计算 ZnO微粉中晶粒粒径。
谢乐公式计算晶粒度时注意的问题
① 选取多条低角度X射线衍射线(2θ≤50)进行计算,然后求得平均粒 径. 这是因为高角度衍射线的Ka1与Ka2线分裂开,这会影响测量线宽化 值;
② 粒径很小时,扣除第二类畸变引起的宽化. 例如d为几纳米时,由于表面张力的增大,颗粒内部受到大的压
力,结果颗粒内部会产生第二类畸变,这也会导致X射线线宽化.
的平均晶粒度.

3.1纳米微粒结构与形貌

3.1纳米微粒结构与形貌

|(△ EC - △ ES)/ △ ES|=15%
——如果是自由表面,其最近邻原子间距和结合能 都随着微粒尺寸的减小而降低,降低的主要原因是 由于纳米微粒大的比表面积引起。 ——如果改变纳米微粒的表面原子成键情况(比如 将纳米微粒镶嵌在高熔点基体中,形成非自由表
面微粒),如何变化?
1.实验方法
非晶样品热处理.
表面积这使得微粒具有高的表面能微粒为了降低高的表
面能,需使表面积变小使晶格发生收缩
表面积变小使得微粒内部产生应变能而应变能则是阻碍微
粒进一步收缩. 当两种作用达到平衡时, 即产生稳定的纳米微粒。
纳米微粒的晶格已经发生收缩!ቤተ መጻሕፍቲ ባይዱ
金纳米微粒晶格畸变和结合能的形状效应
——北京科技大学学报.Vol.29No.Feb.2007
P (
①纳米微粒表面受压应力
1 r1

1 r2
)
居多
②纳米微粒表面原子的最 近邻数低于体内
导致非键电子对的 排斥力降低。→→
原子间距减小
空间点阵的分布规律,形象反映了原子(离子、分子)在晶体 中排列的规律,因此原子间距减小,反过来表现为点阵收缩。
纳米微粒形状的平衡与稳定(定性解释)
从块状晶体中取出一个纳米数量级的微粒微粒具有大的比

6
a

3
a

2
相同质量下,比较
的大小
设质量为 g a g
3


2 a
2( 3 4
g

1 3

)
r 2 a
3g
3
4 1 r

3
3
g

0 . 62 3 RS A 定
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 体相元素组成分析方法: 原子吸收、原子发射、ICP质谱(破坏性) X射线荧光与衍射分析方法 (非破坏性)
3.2 X射线荧光光谱分析方法(XFS)
• 原理: X射线荧光的能量或波长是特征性的, 与元素有一一对应关系。
• 用途:定性和半定量
• 表面分析方法: X射线光电子能谱(XPS)分析方法 俄歇电子能谱(AES)分析方法 电子衍射分析方法 二次离子质谱(SIMS)分析方法等
米材料样品分散在样品台上,然后通过电 镜放大观察和照相。通过计算机图像分析 程序就可以把颗粒大小、颗粒大小的分布 以及形状数据统计出来。
• 分辨率 :6nm左右,场发射扫描电镜0.5nm
• 制样 :溶液分散 或 干粉制样
• 样品要求: 有一定的导电性能
对于非导电性样品:表面蒸镀导电层如表面 镀金,蒸碳等。
2.2 形貌分析的主要方法
• 扫描电子显微镜(SEM) • 透射电子显微镜(TEM) • 扫描隧道显微镜(STM) • 原子力显微镜(AFM)
3. 成分分析
3.1 成分分析方法与范围
类型(对象): 微量样品分析和痕量成分分析
取样量
待测成分的含量
(分析目的): 体相元素成分分析 表面成分分析 微区成分分析等方法
• 获得信息: 纳米材料表面化学成分、分布状态与价态、 表面与界面的吸附与扩散反应的状况等进 行测定
3.3 电子能谱分析
• X射线光电子能谱和俄歇电子能谱分析方法 • 原理: 基于材料表面被激发出来的电子所具有的
特征能量分布(能谱)而对材料表面元素进行分 析的方法。 • 区别:两者的主要区别是所采用的激光源不同,X 射线光电子能谱用X射线作为激发源,而俄歇电子 能谱则采用电子束作为激发源。
• 纳米材料颗粒体系二次粒度统计分析方法,按原理分较先进的三种典 型方法是:高速离心沉降法、激光粒度分析法和电超声粒度分析法。
1.2.2.电镜观察粒度分析
• 最常用的方法,不仅可以进行纳米颗粒大 小的分析,也可以对颗粒大小的分布进行 分析,还可以得到颗粒形貌的数据。
• 扫描电镜 和 透射电镜 • 主要原理:通过溶液分散制样的方式把纳
1.2. 粒度分析的种类和适用范围
• 筛分法、显微镜法、沉降法 • 激光衍射法、激光散射法、光子相干光谱
法、电子显微镜图像分析法、基于布朗运 动的粒度测量法和质谱法
其中激光散射法和光子相干光谱法由于具有速度快、测量范 围广、数据可靠、重复性好、自动化程度高、便于在线测量 等测量而被广泛应用。
其测量颗粒最小粒径可以达到20nm和1nm。
或不对称的颗粒用长、宽、高的某种平均值来表示,称为几何 粒径。由于几何粒径计算繁锁,可以通过测量其比表面积、光 波衍射等性质来测定的等效直径称为等当直径(当量直径) 。
比表面粒径--利用吸附法、透过法和润湿热法测定粉末的比 表面积,再换算成具有相同比表面积的均匀球形颗粒的直径。
纳米颗粒的粒径测量方法很多。下面介绍几种常用的方法。
• 对于纳米材料体系的粒度分析,首先要分清是对颗粒的一次粒度还是 对二次粒度进行分析。
• 一次粒度的分析主要采用电镜的直观观测,根据需要和样品的粒度 范围,可依次采用扫描电镜(SEM)、透射电镜(TEM)、扫描隧道电镜 (STM)、原子力显微镜(AFM)观测,直观得到单个颗粒的原始粒径及 形貌。
• 由于电镜法是对局部区域的观测,所以,在进行粒度分布分析时,需 要多幅照片的观测,通过软件分析得到统计的粒度分布。电镜法得到 的一次粒度分析结果一般很难代表实际样品颗粒的分布状态。
1.2.1 显微镜法
• 光学显微镜 • 0.8-150μm
• 电子显微镜 • 小于0.8μm ,1nm-5μm范围内的颗粒
• 图像分析技术因其测量的随机性、统计性 和直观性被公认为是测量结果与实际粒度 分布吻合最好的测试技术。
• 优点:直接观察颗粒形状,可以直接观察 颗粒是否团聚。
• 缺点:取样代表性差,实验重复性差,测 量速度慢。
④二次颗粒;是指人为制造的粉料团聚粒子。例如制备陶瓷的工 艺过程中所指的“造粒”就是制造二次颖粒。
纳米微粒一般指一次颗粒。它的结构可以为晶态、非晶态和准晶 态。可以是单相、多相或多晶结构。
1. 纳米材料的粒度分析
⑤颗粒尺寸的定义 对球形颗粒来说颗粒尺寸(粒径)即指其直径。 规则球形颗粒用球的直径或投影圆的直径表示。形状不规则
获得信息:
• X射线光电子能谱法(XPS)能够提供样品 表面的元素含量与形态,其信息深度约为 3-5nm。
• 俄歇电子能谱是利用电子枪所发射的电子 束逐出的俄歇电子对材料表面进行分析的 方法,而且是一种灵敏度很高的分析方法, 其信息深度为1.0--3.0nm,绝对灵敏度可达 到10-3个单原子层,是一种很有用的分析方 法。
• 微区成分分析方法: 透射电子显微镜和扫描电子显微镜 与能谱相结合
4. 纳米材料的结构分析
4.1. 纳米材料的结构特征
纳米结构晶体或三维纳米结构(如等轴微晶); 二维纳来米结构(如纳米薄膜); 一维纳米结构(如纳米管); 零维原子簇或簇组装(如粒径不大于2nm的纳米粒子)
纳米材料包括晶体、膺晶体、无定形金属、陶瓷和化合物等
一般在10 nm以下的样品不能蒸金,因为颗粒 大小在8 nm左右,会产生干扰,应采取蒸碳 方式。
• 扫描范围 : 扫描电镜:1来自nm到毫米量级透射电镜: 1—300 nm之间
2. 纳米材料的形貌分析
2.1 形貌分析的重要性
对于纳米材料,其性能不仅与材料颗粒大 小还与材料的形貌有重要关系。
形貌分析主要内容是分析材料的几何 形貌、材料的颗粒度、颗粒的分布以及形 貌微区的成分和物相结构等方面。
第六章 纳米材料的表征与检测技术
• 成分分析 • 形貌分析 • 粒度分析 • 结构分析 • 表面界面分析
1. 纳米材料的粒度分析
1.1 粒度分析的概念
①晶粒:是指单晶颗粒,即颗粒内为单相,无晶界。 ②一次颗粒:是指含有低气孔率的一种独立的粒子。
③团聚体:是由一次颗粒通过表面力或固体桥键作用而形成的更 大的颗粒。团聚体内含有相互连接的气孔网络。团聚体可分为硬 团聚体和软团聚体两种,团聚体的形成过程使体系能量下降。
相关文档
最新文档