15年美赛B题一等奖论文

15年美赛B题一等奖论文
15年美赛B题一等奖论文

For office use only

T1________________ T2________________ T3________________ T4________________ Team Control Number

32642

Problem Chosen

B

For office use only

F1________________

F2________________

F3________________

F4________________ 2015

Mathematical Contest in Modeling (MCM/ICM) Summary Sheet

(Attach a copy of this page to your solution paper.)

Type a summary of your results on this page. Do not include

the name of your school, advisor, or team members on this page.

Searching a crashed plane in the sea is a hard job, while searching a lost plane presumed crashed in the open sea is much harder. To help find a lost plane, we restore the whole process, divide it into three periods and construct models respectively.

The first model is a Stochastic Particle Simulation Model(SPSM), which describes the process that the plane loses contact with the ground and falls into the sea. Then we treat debris of the plane as separate particles and build a Drift Model based on Stochastic Particle Migration Model, which helps us to describe the motion of the debris of the plane and find the possible area containing the lost plane. Finally, we use BP-Artificial Neural Network Algorithm to choose the most suitable type of search planes and try to plan the optimal routine based on Time Homogeneous Markov Chain Model.

In the first period, we break it down into two models: Fly Model and Fall Model. In the Fly Model, considering the great uncertainty on the plane crash, we use SPSM to find the distributions of the position where the plane lost power. Also, we get the distributions of flight speed, fight course and flight duration in that position. Then we divided the crashed plane into two types: with gliding function and without gliding function. Each type of the plane falls down in different way.

In the second period, our goal is to simulate the motion of the debris in the water. We assume that the debris of the plane float on the surface, and it is small enough to ignore the affection of wave force. Based on the Leeway Model, we analyze its acceleration while considering the disturbance of environment at the same time. Then we check the model with data from National Oceanographic Data Center (NOAA) and get a good result.

In the third period, we should choose the most suitable type of search plane and plan the optimal search routine. Using BP-ANNs Model, we determine the input layer as some factors on sea states and the output layer as several factors on the performance of a search plane. The outputs we get are the criterion by which we choose the most suitable plane. Then we try to find the optimal routine based on Time Homogeneous Markov Chain Model.

We conduct Sensitive Analysis on the BP-ANNs and find that the model is robust. We also analyze our strengths and weaknesses and give a brief conclusion.

Contents

1Introduction6

1.1Restatement of the Problem (6)

1.2Literature Review (6)

1.3Our Work (7)

2Assumptions and Justi?cations7 3Notations8 4Model Overview9

5Models in Different Periods9

5.1Fly&Fall Period (9)

5.1.1Model for Fly Period (10)

5.1.2Model for Fall Period (11)

5.2Drift Period (14)

5.2.1Analysis and Assumptions (14)

5.2.2Build Drift Model (16)

5.2.3Numerical Calculation (19)

5.2.4Results (19)

5.3Choose&PlanPeriod (19)

5.3.1Model for Choose Period (20)

5.3.2Model for Plan Period (23)

6Sensitive Analysis25

6.1BP-ANNs (25)

7Strengths and Weaknesses26 8Conclusions26 9Non-technical Paper27

1Introduction

Plane Crash is the most severe type of aviation accidence and incidence.As forced landing is easier on the land than in the sea,most of the plane crash has happened in the sea.When a plane is lostand presumed crashed,we oftenuse satellites to help locate it?rstly.While the conditions in the sea are always extremely complex,satellites cannot work as effectively as work on a land problem.Also,rough location will lead to a wider search and available search facilities are limited.Thereby,the searching operationbecomes a reallybig challenge,let alone rescuing the survivors.In this paper, we will try to help tackle this problem by mathematic models.

1.1Restatement of the Problem

We are required to build a genetic mathematic model to help?nd a crashed plane in the open seathat can apply to different kinds of crashed planes and search planes.We discompose the problem into three sub-questions:

?Build a model that can predict all possible search areas and its probabilities;

?Build a model to plan the optimal search operation using different kinds of search planes;

?Try to apply models to several speci?c situations.

1.2Literature Review

Search theory originated in World War II.It is the study of how to most effectively employ limited resources when trying to?nd an object whose location is not precisely known.The goal is to deploy search assets to maximize the probability of locating the search object with the resources available.And maritime search is the most dangerous, and the most complicated part in the search and rescue(SAR)system,which involves many computational problems.

Since the U.S.Coast Guard?rst articulated its search planning doctrine in the form of a search and rescue manual helping for the SAR problem,there was a great de-velopment in the?eld.International Aeronautical and Maritime Search and Rescue Manual[11]published in1999uni?ed and standardized the national aviation and mar-itime search and planning method.And with the rapid development of the computer technology and automation technology,people began to use computers to help SAR.

There are two main factors that in?uenced the success of Maritime search.Firstly, the searchers have to search in the correct area;secondly,the searchers in the correct area must have the ability to detect the https://www.360docs.net/doc/9f10768156.html,ually the probability of success(POS) depends on the probability of containing(POC)and the probability of detecting(POD). Then we have a formula to calculate:

P OS=P OC×P OD(1)

According to the different types of conditions,there are several methods to?nd the correct area,like Analytical method and so on.For detecting,there are a lot of models to analyze the best searching path and the best resource allocation,like the"Inverse Cube"Model.However,it is still extremely hard to search and rescue in the actual life.

1.3Our Work

In this paper,we try to solve these sub-questions stated above by the following steps:In this paper,we try to solve these sub-questions stated above by the following steps: In the?rst step,we seek to a model to simulate the process from the time the plane sent its last signal to the time it fell into the sea.We can use the information in last signal from the plane to output the possible areas where the plane fell into the sea. Most importantly,our model should consider some uncertain scenarios in this process, for example,the type of the crashed plane.

In the second step,we try to approach the motion of the”crashed plane”in the water in order to?nd the possible search https://www.360docs.net/doc/9f10768156.html,ing the outputs from the?rst step and data about sea state,we can obtain outputs containing possible search areas of the crashed plane and their possibilities.

In the third step,we design a plan model to choose the most suitable type of search plane for the operation.We will consider sea stateto output an optimal choice of the search plane type.Then,we explore a model to optimize the search routine of the plane in the possible area.We inputthe locations and probabilities and get outputs of the optimal search routines.

We start the presentation with the section of assumptions and justi?cations,where we state the basic and well-justi?ed assumptions through this paper.We then list all notations that will be used in the paper andgive a brief overview of our models.Fol-lowing these,we present the models in detailone by one and apply them to a real data set to get some results.We then discuss the strengths and weaknesses in these models and further work remained to be done.Our paper is?nished by a clear conclusion for the whole process.After these,we attach a non-technical paper for the airlines to use in their press conferences concerning their plan for future searches.

2Assumptions and Justi?cations

To simplify the problem,we make the following basic assumptions,each of which is properly justi?ed.

?We need to?nd only one plane at the same https://www.360docs.net/doc/9f10768156.html,ually,two or more planes get crashed in the same sea area is a small probability event.

?There is no land or island near the area where the plane got crashed.From the requisition we learn that the plane may have crashed in open water,thus this is

a natural assumption.

?We assume that no signal would be sent out from any part of the plane.This means that all communication facilities are out of order,even the Flight Data Recorder(Black Box)cannot send signals.

?We regard the surface of the earth as a plane when we do the calculations.It is reasonable to ignore the radian of the earth’s surface since the radius of the earth is far larger than the displacement that might happen in thisproblem.

?last signal we have received from the plane is a ping signal.This kind of signal is sent automatically once an hour.

================================

3Notations

All variables and constants used in this paper are listed in1

Table1:Notations

Symbol De?nition Units m Mass of the plane kg

g Acceleration of gravity kg·m/s t pi Time interval of the plane contact with the base station s

t rl Time of the plane lost power s

x pl Abscissa of the last known position which the plane reported on km

y pl Ordinate of the last known position which the plane reported on km

x rl Abscissa of the actually last known position km

y rl Ordinate of the actually last known position km

P nd Probability of a normal distribution unitless P rd Probability of a uniform distribution unitless x nd Abscissa of the position where the plane lost power km

y nd Ordinate of the position where the plane lost power km

v pl Speed of the plane the last time it reported on km/s v rl Speed of the plane in fact when it lost contact km/s v nd Speed of the plane when it lost power km/s θpl Angle between the?ying direction and due east in the last report rad

θrl Angle between the?ying direction and due east in fact rad

h rl Height of the plane when it lost contact km

h nd Height of the plane when it lost power km

f and Force from wind when the plane lost power N

f gnd Force from gravity when the plane lost power N

x io Abscissa of the position where the plane crashed into the sea km

y io Ordinate of the position where the plane crashed into the sea km

t glide Time the plane glided in the air s

v p Horizontal speed of the plane when it fall down km/h f ow Wind force in the air when it fall down

ρGlide ratio of the plane unitless C Current force to the drift N

L Leeway(wind force)to the drift N

W Wind speed above the sea level N

v d Drift speed of the debris m/s

a Wind slope unitless

b Wind intercept unitless τRand disturbance of leeway coe?cient unitless σL Variance ofτunitless u Rand disturbance of the estimate of wind speed unitless σw Variance of u unitless w Rand disturbance of current speed coe?cient unitless σC Variance of w unitless L Estimate of L N

C Estimate of C N

W Estimate of W N

X Displacement of the drift m

4Model Overview

In the introduction section,we divided the solution into threesteps.We attempt to establish three models to?nish thethree steps in order.Now,wefocus on the three stepsand the models.

The?rst model allows us to get thelocations of possible fallen areas.The core point in this model is that we need to notice three kinds of uncertainty in our simulation: bias in the information from the last signal,plane’s motion after the signal and ways of falling after losing power.We will treat the plane’s possible conditions afterlosing power as stochastic particles and apply the Stochastic Particle Simulation model to to ?nd the most possible position.Then in the Fall Period,we use the output from Fly Period to?nd the point where the plane dropped into the water with the consideration on different types of planes.As the model deals with the falling process of a lost plane,we call it a"Fly&FallPeriod".

The second modelhelps us to simulate the motion of the plane’s debris in the sea. We will design the model based on hydrodynamics,considering the wind force,wave force and current force.We then apply the Stochastic Particle Migration-based Drift-Modelto get an overall drift displacement formulation.As the model deals with the drifting process of a lost plane,we call it a"Drift Period".

One part of the third steps views the problem of choosing the most suitable type of search planes in different sea state.We will select some important factors to describe the sea state of the possible areas and some other factorsto represent types of the search plane.We treat sea statefactors and factors on plane performance as input layer and output layer respectively to build an Arti?cial Neural Networks model.The model will output the optimal plane factorsand we can use them to choose the most suitable plane.The other part of the step deal with the optimize the search routines.Here we work out the problem by Time Homogeneous Markov Chain Model.As this part solves the choosingand planning problem,we can name it as"Choose&Plan Model". 5Models in Different Periods

In this section,we will present the several model for different period.We will start by the Fly&Fall Model to learn about the?rst step.Then we discuss the Drift Period when the plane’s debris drifts in the sea.We?nish this section investigating the Choose&Plan Period to choose a suitable type of search plane and make a routine plan.

5.1Fly&Fall Period

In this model,we attempt to simulate how the plane moved from the time it sent the last signal to the time it fell into the open water.To make the problem clearer,we divide it into two parts.

In the?rst part,we use Stochastic Particle Simulation to simulate the process be-fore losing power;in the second part,we will use basic physics model to simulate the

process considering different kinds of crashed planes after losing power.

In the second part,we predict the way of falling down for different kinds of planes and then get the possible areas where the plane fell into the water.

5.1.1Model for Fly Period

Stochastic Particle Simulation is largely used to generate a probability graph in multi-scenarios given the initial probability distributions.In this problem,before the plane lost its power,there were two random events withsome probability distributions and what we try to obtain is the location probability graph at the time the plane lost power. Thereby,Stochastic Particle Simulation can be applied here well.

Scenarios Analysis and Assumptions Since we only get hold of a small amount of information about the plane crashed.There is often more than one scenario about the plane disasters.These scenarios could happen in the following two phrases.

?The last signal would contain some information of the plane’s conditions at that time,such as the?ght height,velocity,position and?ght course,but bias often exists in the information.

?After sending the last signal,the movement of the plane is not determined.The plane may keep?ying and drop down at any time or lose power immediately.

Usually,all of the four?ight conditions reported in the last signal are treated biased in practical application and the time losing power is not certain.Thus,we make some assume that?ght height,velocity,position and?ight course from the last signal follow some known distributions respectively and the?ight duration after the last signal also follows a certain distribution.What’s more,we treat the signal sent by the plane as Ping Signal,a kind of signal sends by plane automatically at a certain time interval unless the plane has crashed.

Build theStochastic Particle Simulation Model In this section,we will apply the S-tochastic Particle Simulation to the problem by take some certain probability distributions into the model.We will employ several steps to?nish the simulation.

Step1:establish coordinate system Using the Last Known Position(LKP)as the origin,we establish coordinate system.

Step2:determine probability distributions In view of actual deviations,the last location from the plane can follow a three-dimensional Normal Distribution in the area.Mathematically, the probability density function is

f(r)=

1

2πσ

exp

?

r2

2σ2

.(2)

The?ying durationin LKPtrl should in a range of

0≤t rl

and follow aRandom Uniform Distribution.Similarly,the real?ght course thetarl and the ve-locity vrl in LKP followRandom Uniform Distribution in range of

θpl?0.5rad≤θrl≤θpl+0.5rad.

and

v pl?60nm/h≤v rl≤v pl+60nm/h.

respectively.

Step3:sample randomly The model will select sample randomly in the circle with a2sigma error radius generated by the above Normal Distribution to determine the initial position of the plane,(xrl,yrl).Then,select real?ight theta,velocity vrl and?ying durationtrl randomly in the Random Uniform Distribution stated above.(jiayigexiangzhishangyi yang de tushi) Step4:get one possible position where the plane lost power Using the selected initial posi-tion in the step3(xrl,yrl),the selected?ight course theta,velocity vrl and?ying duration trl, we can calculate one possible position where the plane have lost its power.

Step5:repeat Step2-4describe a way of locating one position where the plane lost its power. It is a location process only for one particle.If we repeat step2-4for N times,then the model can output a probability graph composed by N random particles.

Results We choose some reasonable and feasibledata to assign the distributions above and simulate the process for more enough times.Then,we can get an intuition on this model and this Fly&Fall period.

The assignments are as follows:

As for the normal distribution1.we assign sigma=80.And we repeat step2-4for1000 times.That is N=1000.

After step5,we use matlab to generate a stochastic particle scatter graph as the2shows. The original point is the LKP of the plane and its reported?ight course is vertical downward in this graph.Each spot represents a possible position where the plane lost power.We notice that the densest area is like a downward sector with the origin point as the center of the circle.

Then,we divide the whole area into an8*8gridding as the?gure3shows and count the spots in each grid.This makes it more obvious where the the probability is higher.The grid with42 spots owns the highest probability.Thus,we will choose the central point(-25,-150)in this grid as the most possible location where the the plane lost its power.We will use the information in this point as input in other parts below.

5.1.2Model for Fall Period

After the plane lost its power,it would de?nitely fall down from the sky to the sea in our problem. The methods of falling largely depend on the plane types.In our paper,we classify the crashed plane and predict the possible falling areas in the sea for different kinds of planes.

Figure1:Distribution of Stochastic Particle in a huge amount

Analysis and Assumptions We classify all crashed planes into two main types.One type is planes with gliding function and the other type is planes without that function.Gliding function helps the plane glide for some distance without power.Generally,an ordinary gilder can as long as the pilot want to survive.

Based on this classi?cation,we make some assumptions for each type to simplify our analy-sis.

?Planes without gliding function cannot reduce horizontal velocity on the condition that air resistance is neglected.

?Planes with gliding function will glide to reduce horizontal velocity,even ifair resistance is neglected.

The two assumptions are all reasonable.For the plane without gliding,its motion type can be treated as Parabolic Motion.The plane will drop into the water quickly almost without horizontal displacement and thus,the air resistance will have little effect on horizontal velocity. That’s the the justi?cation of the?rst assumption.As gliding function is designed to make the plane land softly,the second will be not hard to understand.

We also assume that:

?we treat the plane’s movement in vertical direction as a typical free falling processwith a stable acceleration of gravity,and

?air resistance need not to be considered in vertical direction,and

?the?ght course will remain stable after losing power

Figure2:Number distribution statistical chart of Stochastic Particle

Planes with Gliding Function Planes with gliding function are one type of plane that our model will recognize.In this paper,we will use the data about the gliding to predict the location where the plane has dropped into the water.

According to basic physics formulation,we can describe the gliding function using rou.And

the rou can be calculate by[24,p,25-2].Thus,if we the?ght height and rou are known,we can

get the length of the gliding and then the location problem looks much more easy.

After losing the power,the plane can keep gliding for a long way until it lands or drops

into the water.The gliding length is usually very big.According to plenty of empirical data,a typical glider owns a glide ratio about8~11andwe assume thatrou follows a Random Uniform Distribution with a range of[8,11].Then we select a random number in this range.

Take the selectedρand known?ght height into

L x

≈ρ

h

,we can calculate the gliding length.We assumed the?ght course will not change before.As

we already know the start location,we can get the position where the glider fell into the sea.

Here,our random and known values are as following:[table-szl-2]Using by above values,

we know in this situation,the gliding length is98.4km and the fall position(-19.8510km,173.3450km).

Planes without Gliding Function In this situation,we can abstract the motion from the

time the plane lost power to the time it drop into the water into a?at parabolic motion.

According to basic physics principle,we can get an equation group to calculate the length of this motion.Here are the equations:

Using the values of the start point of this stage stated in[table-szl-2],we can calculate the coordinate of the point where the particle dropped into the water.The length of this motion is 13.0095km and the coordinate of the last point is(-24.3191km,87.9911km).

5.2Drift Period

We will simulate the motion of the debris in the water and try to?nd the possible search areas with probabilities.To solve this problem,we will start with analysis of the problem and essential assumptions.Then we apply Stochastic Particle Migration model to our drift model.We?nish this section by using some real data to get some visible results.

5.2.1Analysis and Assumptions

The motion of debris in the sea is really complex in reality.In this paper,we will try to simplify the analysis with some reasonable assumptions.The followings are assumptions we make for this drift period.

?We assume that the debris is https://www.360docs.net/doc/9f10768156.html,ually,losing power is a main reason for air crash.And we assumed the plane haslost its power in the sky in previous discussions.

?We assume that the plane crashed at the moment it fell into the sea.Because of the pressure difference,a whole plane must crashed when it drop into the sea.Even if the plane becomes disintegrated in the air,the situation will be similar to this one.

?We assume the debris will?oat on the sea level.Lots of the plane components can ?oat in the sea,while some may sink.Floating debris is easier to be found by a search plane and the?nd can help us search for sunken ones.So we can assume that we should search the?oating debris?rst.

?We assume that the amount of the debris is n and it will not change.Though some of the debris may break up again,the situation will not change a lot.So we only discuss the simpler one here.

?We assume length of all debris is less than50m.It’s reasonable to make this as-sumption since it had been broken down into many pieces of debris

Force Analysis To understand the motion of debris,we should?gure out its force situation ?rst.Generally speaking,three main sources of force will affect the motion of debris:wind,wave and current.Now,we choose one debris as the object and try to analyze the the force situation of the object.

Based on the assumptions stated above,we can get the object’s acceleration equation,

(m+km )dV/dt=F a+F w+F c.(3)

from the Newton Second Law.We?nd that the wave force can be neglected when the length of the object is less than the wave length in previous studies.And the wave length is usually about50m.Thus,we can neglect the the wave force[1].The other forces satisfy

F a=1

2

C dρA a W2

a

and

F c=1

2

C cdρw A w L2

b

respectively[2].

At the beginning,the object has a high acceleration generate by external force.After a while, these forces reach a balance and the velocity can remain stable.Thereby,we can reach

F a+F c=0

.Then,we substitute

F a=1

2

C dρA a W2

a

and

F c=1

2

C cdρw A w L2

b

into

F a+F c=0

to get[3.7].It is not hard to?nd that the left part in the equation totally depends on the wave velocity vector Waand the right part depends on the relative velocity vector between the object and the water surrounding,lb.So as long as the information of wind?eld and attribute parameters are known,we can calculate lb.

Drift Velocity Analysis After the former analysis,we now try to obtain the drift velocity vector of the object.According the relative velocity formulation

V=V current+V relative

,we can calculate the drift velocity vector of the object vdrift as long as we know the current ve-locity vector vcurrent and the relative velocity between the object and surface current,vrelative. As we neglect the wave effect,we can presume vrelative and ld are equal[2].

Then,we can simplify the drift velocity vector expression of the object as

V=C+L.

.The drift model satisfy

X(t)?X(0)=

t

0V(s)ds=

t

[C(s)+L(s)]ds.(4)

Figure3:Resolution of leeway vector

Leeway Analysis Leeway is the amount of drift motion to leeward of an object?oating in the water caused by the component of the wind vector that is perpendicular to the object’s forward motion[3].Leeway here is a vector and its size is equal to the relative velocity between the object and surface current.

6depicts the decomposition of leeway.The downwind leeway componentld can be estimated by

L d=a d W+b d

and the cross leeway componentlc can be estimate by

L c=a c W+b c

.All coef?cients in the two regressions can obtain from Leeway Table from Allen’s work in 2005.We will use this data in our following calculation.

5.2.2Build Drift Model

In this section,we will build a Stochastic Particle Migration-based Drift Model(SPM-based DM)to simulate the drift process and?nd search areas.

Stochastic Particle Migration model treats each object as independent stochastic particle with all attributions of the objects and we employ this method to locate the object.Then we establish a Drift Model to describe the drift process.Thus we name the combined model as Stochastic Particle Migration-based Drift Model(SPM-based DM).

The drifting process of the object can be understood as a Markov Process.Mathematically, the process satis?es

P(X t+1|X t,X t?1,...,X1)=P(X i+1|X t)

.Then we can use the following differential equations to specify the process:

dX=V(X,t)dt+dX ,

(5)

dX =K1/2dw.[3.16]

DX’is a random disturbance and represents the possible errors in the data about sea state. Dwt is a random increment,following a normal distribution with known mean and variance. And K is a turbulence diffusion coef?cientwith a following expression:

T

K=σ2

v

.Whereσ2v is variance of the Perturbation Velocity Fields and

σ2

=<(dX /dt)2>

v

;T is the disturbance time,usually equaling to

T=dt/2

.

More assumptions We give some more assumptions that are only essential in the Stochastic Particle Migration-based Drift Model(SPM-based DM).

?Each object isindependent and they cannot affect others’motion.

?Two components of object’s velocity are independent.

?All disturbances here obey normal distribution.

?The disturbances in wind?eld and current?eld are not related.

These assumptions may not agree with the real situation,but they can help us simplify our model.That can make the model easy understanding,and what’s more,simple models can always present the most basic part of the motion.

Leeway Coef?cient The leeway coef?cients come from the linear regression of real experi-mental data and re?ects a character that the object drifts effected by wind.In order to measure the uncertainty in the experiments,we give a disturbance to the coef?cient.

If there are n particles,one of the particle j has following leeway coef?cient disturbance formulations:

?a j=a+τj/20.(6)

?b

=b+τj/2.(7)

j

τj∈N(0,σL)j=1,2,···,n.(8)τj is the disturbance of the coef?cient following a known normal distribution.The mean is zero and the deviance sigmaL is accessible in Allen’s work in2005.In the simulation process, we will select ajianandbjian randomly.Thus,we can get the estimate leeway of object j with the following expression:

?L

j

=(a+τj/20)W+(b+τj/2),j=1,2,···,n.[3.23](9)

Wind Field andCurrent Field Disturbance The data about wind?eld and current?eld is available in external database,including their standard errors.We select the10m-wind velocity over the sea and0.5m-current velocity to re?ect the sea state.According to earlier study,we get

W10=W z(10/z)1/7

.With conditions that wind and current?eld disturbances are independent and obey a known normal distribution,we can get10m-wind disturbance as

?W j =||W+u

j

||

,

u

j

∈N(0,σW)j=1,2,···,n .Take

?W j =||W+u

j

||

into

?L

j

=(a+τj/20)W+(b+τj/2),j=1,2,···,n

respectively,we can obtain the estimate value of leeway:

?L

j

=(a+τj/20)?W j+(b+τj/2),j=1,2,···,n.(10) The estimate current velocity is

?C j =||C+w

j

||

and

w

j

∈N(0,σC)j=1,2,···,n

.If we take

?L

j

=(a+τj/20)?W j+(b+τj/2),j=1,2,···,n and

?C j =||C+w

j

||

into

X(t)?X(0)=

t

0V(s)ds=

t

[C(s)+L(s)]ds

,we can reach to a Stochastic Particle Migration-based Drift Model(SPM-based DM).Math-ematically,we can us the following formulation to describe it:

X j(t)?X j0=

t

0V j(s)ds=

t

[?C j(s)+?L j(s)]ds.(11)

5.2.3Numerical Calculation

Here,we conduct a numerical calculation as the?gure shows below.

Figure4:Steps of predicting random particles drift trajectories

5.2.4Results

In this section,we try togive some numerical results of the model,using real or estimate data sets from previous studies or opendatabases.After substituting data,the distribution of the objects is showed in the following graph.Particles in the dark area are more that these in the white area.According to the distribution,we can?nd the area with high probability to?nd the debris.

This graph represents a400km2open sea area,so we divide this area into a2*2griding. Thus the darker grid is more possible to?nd the debris of the plane.

5.3Choose&PlanPeriod

After we have the possible search areas and their probabilities,we change to focus on how to choose suitable types of search planes and?nd the optimal search routine.In this section,we will divided this problem into two optimization situations and establish models to solve them.

Figure5:Distribution of Stochastic Particle in the sea

5.3.1Model for Choose Period

What we try to solve in this period is mainly an optimization problem.Now,we will employ theBP-Arti?cialNeural Networksalgorithm to?nd the most suitable type of search plane.

BP-Arti?cialNeural Networks are a family of statistical learning algorithms inspired by biological neural networksand are used to estimate or approximate functions that can depend on a large number of inputs and are generally unknown[4].Typical BP-ANNs contain three layers: input layer,hidden layer and output layer.Each of them connects with the upper layer and next layer,just like the synapses connect the layers of neurons.The synapses store parameters called "weights"that manipulate the data in the calculations.In the learning process,we give both the inputs and outputs of the model to the system and it will learn to get reasonable weights. Then,the model can be used in new input data without output.

The BP-Arti?cial Neural Networks algorithm is suitable in this problem.As both the inputs and outputs are combined by several factors,this is clearly a combinatorial optimization prob-lem.We should give each input parameter speci?c and feasible weight.Thus the BP-Arti?cial Neural Networks algorithm is applicable in this situation and can satisfy our requirement. Build BP-Arti?cial Neural Networks According to the analysis above,we now try to build BP-Arti?cial Neural Networks for the choosing problem.We determine the input layer has?ve neurons,the hidden layer has three neurons and the output layer has six neurons.

Each input layer neurons represents one piece of information of sea state.The meanings and value rangesof these neurons are as follows.

?Wind Force measures the wind level over the sea.Nine is the highest level,while?ve is the lowest one.

?Wave Height measures the height level of wave on the sea.Ten is the highest level,while three is the lowest one.

?Visibility measures level of eyeshot over the sea.Three is highest level,while zero is the lowest one.

?Temperaturerepresents the temperature level over the sea.Zero means low temperature, while one means high temperature.

?Water Area means the distance level of the search areas.Zero means that the search area is an offshore area,one means that the search area is far away from offshore.

These factors can describe the sea state in almost all essential aspects that might affect the search operation.So these factors are necessary enough and simple in some degree.

Eachoutput layer neurons represents performance of the search plane in one?eld.The mean-ingsof these neurons are as follows

?Speed means the highest speed of a search plane.

?Endurance means how long the?ght can last.The time will include the outward and return process.

?Anti-wind Ability measures the search plane’s ability of resisting the wind over the sea.

?Detecting Capacityrepresents different electronics and sensors with different detect abili-ty that the search planes are equipped.

?Main Powermeasures the main engine power of the search plane.

?Communication Function measures the communication ability with satellites,ground platforms or other other planes.

All these factors are essential in our model.Search planes with high level performance seem better than planes with poor performance.However,we don’t need such high level performance in some situations and the plane’s performance will be prevented by bad sea state.So these output factors can help us?nd the most suitable type of plane instead of the best one.

Search Ability,Search Dif?culty and Search Effect are factors that we need consider in the search operation.Thus we set these three factors as the hidden layer.

The?gurex show our networkstructure.Each circle represents a neuron and the lines among the neurons represent their connections.

Learning Process Learning process is a crucial part of the BP-ANNs.In this progress,we give the networks a set of data containing both the input values and the output values.We run the networks to a huge number of times to let the network"learn"weights between different parameters.

To solve this problem,we use a known data set from Weihong Yu’s previous work as train sample and let the network learn for?times to make it satisfy the required accuracy.Part of the

Figure6:schematic diagram of BP-ANNs

Figure7:compare the outputs from neutal network with real values sample is recorded in the following table.After the learning process,the networks will memory this experience as connection weights and use these weights in decision process.

The graph1-3describe the similarity between the real values and estimated value from our BP-ANNs.We can?nd that our neutral networks have good learning effect.Thus,we can say that this model can be used in this problem.

Results Here we input a set of value of factors on weather state of ocean(8,10,1,0,1)andthe networks output a ser of values of factors on the search plane(0.8002,-1.1842,-0.2814,1.0149, 0.8604,0.3605).The factors range and meaning has been stated above.This input(8,10,1,

2013年美赛MCM题目A评委点评中文翻译

介绍 今年的焦点问题是如何实现质量和数量的平衡。 在质量方面,尽可能使热量均匀地分布。目标是降低或避免矩形烤盘四个边角发生热量聚集的情况。所以解决热量均匀分布这方面的问题,使用圆形烤盘是最佳的选择。 在数量方面,应该使烤盘充分的占据烤箱的空间。所以我们的目的是使用尽可能多的烤盘来充分占据烤箱的空间,此时矩形烤盘是最佳选择。对于这方面的问题的解决,就要考虑烤盘在烤箱水平截面上所占的比率。 在这个评论中,我们首先描述判断步骤,然后再讨论队伍对于三个问题的求解。下一个话题就是论文的灵敏度和假设,紧随其后讨论确定一个给定方法的优势和劣势。最后,我们简短的讨论一下参考和引用之间的区别。 过程 第一轮的判别被称为“分流轮”。这些初始轮的主要思想是确定论文应被给予更详细的考虑。每篇论文应该至少阅读两次。在阅读一篇论文的时候,评审的主要问题是论文是否包含所有必要的成分,使它成为一个候选人最详细的阅读。在这些初始轮中,评审的时间是有限制的,所以我们要尽量让每一篇论文得到一个好的评判。如果一篇论文解决了所有的问题,就会让评审觉得你的模型建立是合理的。然后评审可能会认为你的论文是值得注意的。有些论文在初轮评审中可能会得到不太理想的评论。 特别值得注意的是,一篇好的摘要应该要对问题进行简要概述,另外,论文的概述和方法,队员之间应该互相讨论,并且具体的结果应该在某种程度上被阐述或者表达出来。在早期的几轮中,一些小细节能够有突出的表现,包括目录,它更便于评委看论文,同时在看论文的时候可能会有更高的期待。 问题求解也很重要。 最后,方法和结果要清晰简明的表达是至关重要的。 另外,在每个部分的开始,应该对那个部分进行一个概述。 在竞赛中,建模的过程是很重要的,同时也包括结论的表达。如果结果没有确切和充分的表达,那么再好的模型和再大努力也是没有用的。 最后的回合 最后一轮阅读的第一轮开始于评委会会议。在这个会议中,评委将进行讨论,他们会分享他们各自认为的问题的关键方面。然后每个评委阅读大量的论文。这些论文来自以前判断轮中平均分配的,论文的分数是各种各样从低到高排列的。 这些论文检查结束之后,评委们又聚到一起讨论,讨论他们认为一篇好的论文应该包括什么。评委们都知道团队们要在限制的时间里完成比赛,这额外的步骤的目的是补偿队伍的局限性和限制强迫队里的成员。 一旦评委同意了一套最低标准,最后回合开始。每一篇论文都被阅读很多次。随着回合的进展,论文的数量逐渐减少,条目越来越多地受到审查.。此外,投入每一篇论文的时间持续上升,在最后一轮,论文仍然是给予最高水平的关注。评审花在论文上的时间增加了,多个评委可以同时阅读同一份论文的复印件.。到了这个时候,论文通常保持优秀的摘要和良好的书面。然后,评委完全集中在建模过程和数学完整性的论文上。 问题 今年的问题可以归结于三个不同的问题。 第一个问题是确定一个给定形状的布朗尼烤盘的热分布情况。

2014年数学建模美赛题目原文及翻译

2014年数学建模美赛题目原文及翻译 作者:Ternence Zhang 转载注明出处:https://www.360docs.net/doc/9f10768156.html,/zhangtengyuan23 MCM原题PDF: https://www.360docs.net/doc/9f10768156.html,/detail/zhangty0223/6901271 PROBLEM A: The Keep-Right-Except-To-Pass Rule In countries where driving automobiles on the right is the rule (that is, USA, China and most other countries except for Great Britain, Australia, and some former British colonies), multi-lane freeways often employ a rule that requires drivers to drive in the right-most lane unless they are passing another vehicle, in which case they move one lane to the left, pass, and return to their former travel lane. Build and analyze a mathematical model to analyze the performance of this rule in light and heavy traffic. You may wish to examine tradeoffs between traffic flow and safety, the role of under- or over-posted speed limits (that is, speed limits that are too low or too high), and/or other factors that may not be

美赛E题解法思路.doc

E题解法思路,2018年美赛题 采用气候统计模型 此题容易获奖,只要在网上收集世界各国的GDP,人口,气温,降水,粮食产量等数据,建立统计回归模型,就能解决下面的几个问题。 任务1:开发一个模型来确定一个国家的脆弱性,同时测量气候变化的影响。您的模型应该识别一个状态是脆弱的、脆弱的还是稳定的。它还应查明气候变化如何通过直接手段或间接影响脆弱性,因为它影响其他因素和指标。 解法思路,采用气候脆弱性统计模型 任务2:选择的前10名最脆弱国家的脆弱状态指标确定(https://www.360docs.net/doc/9f10768156.html,/fsi/data/)和确定了气候变化可能对国家的脆弱性增加。使用你的模型来显示,如果没有这些影响,状态可能会更脆弱。 解法思路,采用最脆弱气候统计模型 任务3:把你的模型运用到另一个不在前10位的状态来衡量它的脆弱性,看看气候变化会以什么方式以及何时促使它变得更脆弱。确定任何明确的指标。你如何定义一个临界点并预测一个国家什么时候能到达它?解法思路,采用脆弱气候统计模型 任务4:用你的模型说明哪些国家驱动的干预措施可以减轻气候变化的风险,防止一个国家成为脆弱的国家。解释人类干预的效果并预测该国干预的总成本。 解法思路,采用干预气候统计模型 任务5:您的模型将在较小的“国家”(如城市)或更大的“国家”(如大洲)上工作吗?如果没有,您将如何修改您的模型? 解法思路,采用局部气候统计模型 2018 ICM 问题E:气候变化如何影响区域不稳定? 气候变化的影响,包括增加的干旱、冰川萎缩、动植物范围的变化以及海平面的上升,已经开始实现,并因地区而异。政府间气候变化专门委员会指出,气候变化的净破坏成本可能是显著的。许多这些影响将改变人类的生活方式,并有可能导致社会和政府结构的削弱和崩溃。因此,不稳定的政府,可能导致脆弱的国家。 脆弱的国家是国家政府不能或不愿意为其人民提供基本必需品的地方。就这个问题而言,“国家”指的是一个主权国家或国家。作为一个脆弱的国家,增加了一个国家人口遭受自然灾害、减少耕地、不可预测的天气和气温升高等气候冲击的脆弱性。不可持续的环保措施,迁移,和资源短缺,这是常见的在发展中国家,可能进一步加剧,国弱治理(施瓦兹和兰达尔,2003;gleditsch特性,并buhaug,2013)。可以说,叙利亚和也门的干旱进一步加剧了已经脆弱的国家。环境压力本身并不一定引发暴力冲突,但有证据表明,当它与薄弱的治理和社会分裂相结合时,它能引发暴力冲突。这种融合可以提高暴力的恶性循环,通常沿潜在的民族和政治分歧(krakowka,Heimel,和加尔加诺2012)。 您的任务如下: 任务1:开发一个模型来确定一个国家的脆弱性,同时测量气候变化的影响。您的模型应该识别一个状态是脆弱的、脆弱的还是稳定的。它还应查明气候变化如何通过直接手段或间接影响脆弱性,因为它影响其他因素和指标。

年美赛d题题目翻译

问题D:优化机场安全检查站乘客吞吐量 继2001年9月11日美国发生恐怖袭击事件后,全世界的机场安全状况得到显着改善。机场有安全检查站。在那里,乘客及其行李被检查爆炸物和其他危险物品。这些安全措施的目的是防止乘客劫持或摧毁飞机,并在旅行期间保持所有乘客的安全。然而,航空公司有既得利益,通过最小化他们在安全检查站排队等候并等待他们的航班的时间,来保持乘客积极的飞行体验。因此,在最大化安全性和最小化对乘客的不便之前存在对立。 在2016年,美国运输安全局(TSA)受到了对极长线路,特别是在芝加哥的奥黑尔国际机场的尖锐批评。在此公众关注之后,TSA投资对其检查点设备和程序进行了若干修改,并增加了在高度拥堵的机场中的人员配置。虽然这些修改在减少等待时间方面有一定的成功,但TSA在实施新措施和增加人员配置方面花费了多少成本尚不清楚。除了在奥黑尔机场的问题,还有在其他机场,包括通常排队等待时间较短的机场,会出现不明原因和不可预测的排队拥挤情况的事件。检查点排队状况的这种高度变化性对于乘客来说可能是极其不利的,因为他们面临着不必要地早到达或可能赶不上他们的预定航班的风险。许多新闻文章,包括[1,2,3,4,5],描述了与机场安全检查站相关的一些问题。 您的内部控制管理(ICM)团队已经与TSA签订合同,审查机场安全检查站和人员配置,以确定潜在的干扰乘客吞吐量的瓶颈。他们特别感兴趣的解决方案是,既增加检查点吞吐量,减少等待时间的变化,同时保持相同的安全和安全标准。 美国机场安全检查点的当前流程如图1所示。 区域A: 乘客随机到达检查站,并等待队列,直到安全人员可以检查他们的身份证明和登机文件。 区域B: 然后乘客移动到打开检查的队列;根据机场的预期活动水平,可能开放更多或更少的线路。 一旦乘客到达这个队列的前面,他们准备所有的物品用于X射线检查。乘客必须去除鞋子,皮带,夹克,金属物体,电子产品和带液体容器,将它们放置在单独的X射线箱中;笔记本电脑和一些医疗设备也需要从其袋中取出并放置在单独的容器中。 他们的所有物品,包括包含上述物品的箱子,通过传输带在X射线机中移动,其中一些物品被标记,供安全人员(D区)进行额外的搜索或筛选。 o同时乘客排队通过毫米波扫描仪或金属探测器检查。 o未能通过此步骤的乘客接受安全官员(D区)的轻击检查。 区域C:

2013年美赛A题

最终的布朗尼锅 摘要 关键字:

目录 引言 题目背景 近年来,电烤箱普遍采用远红外加热技术,使电烤箱的技术含量增加,耗能降低,深受广大用户的欢迎。利用红外线加热物体,就是利用辐射波长与物体接收波长一致时,物体吸收大量的红外能,从而加剧物体内部的分子运动,使之加热升温。加热时间短,能耗低,使用方便。 但是,当我们使用矩形烤盘烘烤食物时,热传导方程,加上一些边界条件,导致方形烤盘热量集中在的四个角上,因此四个角上的物体会因过度受热(以及在较小程度的边缘处)而变焦。如果用圆形烤盘,热量会平均分布在整个外围边缘,在外围的物体就不会过度受热。然而,由于大多数的烤箱都是矩形的,所以用圆形的烤盘就不能较好的利用烤箱的空间。给烘烤食物的朋友带来了很大的不便。为什么角部的食物肉容易烤焦,以及选择哪种形状的烤盘,,这是令人很费解的问题。 电烤箱工作原理 电烤箱利用电热元件所发出的辐射热来烘烤食品,利用它我们可以制作烤鸡、烤鸭、烘烤面包、糕点等。根据烘烤食品的不同需要,电烤箱的温度一般可在50-250℃范围内调节。 电烤箱主要由箱体、电热元件、调温器、定时器和功率调节开关等构成。其箱体主要由外壳、中隔层、内胆组成三层结构,在内胆的前后边上形成卷边,以隔断腔体空气;在外层腔体中充填绝缘的膨胀珍珠岩制品,使外壳温度大大减低;同时在门的下面安装弹簧结构,使门始终压紧在门框上,使之有较好的密封性。电烤箱的加热方式可分为面火(上加热器加热)、底火(下加热器加热)和上下同时加热三种。 电烤箱技术参数 温度范围室温-200℃(300℃) 温度稳定度±0.5℃ 温度分布均匀度±2℃(特佳) 排气烟道叶片式设计可调出风量 符号和定义 l:多边形边长 L: 多边形周长 k: 周长与面积的比 G:单位圆的周长 C: 单位椭圆周长 a: 椭圆的长半轴 b: 椭圆的短半轴 假设 1、烤箱内温度同一层表分布均匀且稳定 2、烤箱内风扇使空气及时流通 3、假设烤盘之间相互不影响 4、假设各层之间相互不影响 5、假设烤盘的深度影响忽略不计 6、假设烤箱内垂直分布的热辐射场为递增

2013年美赛B题原文及翻译

2013年美赛B题原文及翻译 PROBLEM B: Water, Water, Everywhere Fresh water is the limiting constraint for development in much of the world. Build a mathematical model for determining an effective, feasible, and cost-efficient water strategy for 2013 to meet the projected water needs of [pick one country from the list below] in 20 25, and identify the best water strategy. In particular, your mathematical model must address stora ge and movement; de-salinization; and conservation. If possible, use your model to discuss the economic, physical, a nd environmental implications of your strategy. Provide a non-technical position paper to governm ental leadership outlining your approach, its feasibility and costs, and why it is the “best water stra tegy choice.” Countries: United States, China, Russia, Egypt, or Saudi Arabia 国家: 美国、中国、俄罗斯、埃及或沙特阿拉伯 淡水资源是世界很多大部分国家发展的瓶颈。 为2013年建立一个数学模型,来确定一个有效的、可行的和有成本效益的水策略(从下面的列表选择一个国家),以满足2025年的水需求,并且确定最佳的水策略。 特别是,你的数学模型必须解决该国的水资源存储量和流动规律、去盐碱化(海水淡水化处理等)、水资源保护等问题。如果可能的话,用你的模型来讨论你的策略在经济、物理(地理等)和环境等方面的影响。 提供一个非技术立场报告给政府领导概述你的方法,其可行性和成本,以及为什么它是“最好的水策略选择。”

美赛C题

翻译 问题C:数据的财富 在其创建的在线市场中,亚马逊为客户提供了对购买进行评分和评价的机会。个人评级-称为“星级”-使购买者可以使用1(低评级,低满意度)到5(高评级,高满意度)的等级来表示他们对产品的满意度。此外,客户可以提交基于文本的消息(称为“评论”),以表达有关产品的更多意见和信息。其他客户可以根据这些评论提交有帮助或无帮助的等级(称为“帮助等级”),以协助他们自己的产品购买决策。公司使用这些数据来深入了解其参与的市场,参与的时间以及产品设计功能选择的潜在成功。 阳光公司计划在在线市场上推出和销售三种新产品:微波炉,婴儿奶嘴和吹风机。他们已聘请您的团队担任顾问,以识别过去客户提供的与其他竞争产品相关的评分和评论的关键模式,关系,度量和参数,以: 1)告知其在线销售策略; 2)识别潜在重要的设计特征,以提高产品的吸引力。Sunshine Company过去曾使用数据为销售策略提供信息,但他们以前从未使用过这种特殊的组合和数据类型。Sunshine Company 特别感兴趣的是这些数据中的基于时间的模式,以及它们是否以有助于该公司制造成功产品的方式进行交互。 为了给您提供帮助,Sunshine的数据中心为您提供了该项目的三个数据文件:hair_dryer.tsv,microwave.tsv和pacifier.tsv。这些数据代表在数据指示的时间段内,在亚马逊市场上出售的微波炉,婴儿奶嘴和吹风机的客户提供的评分和评论。还提供了数据标签定义的词汇表。提供的数据文件包含您应用于此问题的唯一数据。 要求 1.分析提供的三个产品数据集,以使用数学证据来识别,描述和支持有意义的定量和/或定性模式,关系,量度和参数,这些数据将在有助于评估阳光的星级,评论和帮助等级之内和之间公司在其三项新的在线市场产品中取得了成功。 2.使用您的分析解决阳光公司市场总监的以下特定问题和要求: a.一旦三种产品在在线市场上出售后,就可以根据评级和评论确定最能为Sunshine Company 跟踪的数据度量。 b.在每个数据集中识别并讨论基于时间的度量和模式,这些度量和模式可能表明产品在在线市场中的声誉在上升或下降。 c.确定最能表明潜在成功或失败产品的基于文本的度量和基于评级的度量的组合。 d.特定星级会引起更多评论吗?例如,在看到一系列低星级评级之后,客户是否更有可能撰写某种类型的评论? e.诸如“热情”,“失望”之类的基于文本的评论的特定质量描述符是否与评分水平紧密相关? 3.写一两页的信给阳光公司市场总监,总结您团队的分析和结果。包括针对您的团队最有信心地推荐给市场总监的结果的具体理由。 您的提交应包括: ?一页的摘要表 ?目录

2013年美赛真题题目

现在需要他们的解决方案文件太solutions@https://www.360docs.net/doc/9f10768156.html,为Word或PDF附件的电子邮件提交电子副本(汇总表和解决方案)队(由学生或者指导教师)。 COMAP的提交截止日期为2013年2月4日美国东部时间下午8:00,必须在收到您的电子邮件。 主题行 COMAP是你的控制 示例:COMAP 11111 点击这里下载PDF格式的完整的竞赛说明。 点击这里下载Microsoft Word中的格式汇总表的副本。 *请务必变更控制之前选择打印出来的页面的数量和问题。 团队可以自由选择之间MCM问题MCM问题A,B或ICM问题C. COMAP镜像站点:更多: https://www.360docs.net/doc/9f10768156.html,/undergraduate/contests/mcm/ MCM:数学建模竞赛 ICM:交叉学科建模竞赛 2013年赛题 MCM问题

问题A:终极布朗尼潘 当在一个矩形的锅热烘烤时的4个角落中浓缩,并在拐角处(以及在较小程度上在边缘处):产品会过头。在一个圆形盘的热量被均匀地分布在整个外缘和在边缘处的产品不过头。然而,因为大多数烤炉使用圆形平底锅的形状是矩形的是效率不高的相对于使用在烘箱中的空间。 开发一个模型来显示横跨平底锅平底锅不同形状 - 矩形之间的圆形和其他形状的外边缘的热量分布。 假设 1。的宽度与长度之比的W / L的形状是矩形的烘箱。 2。 - 每个盘必须具有的区域A的 3。最初,两个机架在烤箱,间隔均匀。 建立一个模型,可用于选择最佳的泛类型(形状)在下列情况下: 1。适合在烤箱的锅,可以最大限度地提高数(N) 2。最大限度地均匀分布热量(H),泛 3。优化的组合的条件(1)和(2)式中的权重p和(为1 - p)被分配的结果来说明如何随不同的值的W / L和p。 在除了MCM格式解决方案中,准备一到两页的广告片的新布朗尼美食杂志突出自己的设计和结果。 问题B:水,水,无处不在

[MCM]2014年美赛MCM题目原文及翻译

PROBLEM A: The Keep-Right-Except-To-Pass Rule In countries where driving automobiles on the right is the rule (that is, USA, China and most other countries except for Great Britain, Australia, and some former British colonies), multi-lane freeways often employ a rule that requires drivers to drive in the right-most lane unless they are passing another vehicle, in which case they move one lane to the left, pass, and return to their former travel lane. Build and analyze a mathematical model to analyze the performance of this rule in light and heavy traffic. You may wish to examine tradeoffs between traffic flow and safety, the role of under- or over-posted speed limits (that is, speed limits that are too low or too high), and/or other factors that may not be explicitly called out in this problem statement. Is this rule effective in promoting better traffic flow? If not, suggest and analyze alternatives (to include possibly no rule of this kind at all) that might promote greater traffic flow, safety, and/or other factors that you deem important. In countries where driving automobiles on the left is the norm, argue whether or not your solution can be carried over with a simple change of orientation, or would additional requirements be needed. Lastly, the rule as stated above relies upon human judgment for compliance. If vehicle transportation on the same roadway was fully under the control of an intelligent system –either part of the road network or imbedded in the design of all vehicles using the roadway –to what extent would this change the results of your earlier analysis? 问题A:除非超车否则靠右行驶的交通规则 在一些汽车靠右行驶的国家(比如美国,中国等等),多车道的高速公路常常遵循以下原则:司机必须在最右侧驾驶,除非他们正在超车,超车时必须先移到左侧车道在超车后再返回。 建立数学模型来分析这条规则在低负荷和高负荷状态下的交通路况的表现。你不妨考察一下流量和安全的权衡问题,车速过高过低的限制,或者这个问题陈述中可能出现的其他因素。这条规则在提升车流量的方面是否有效?如果不是,提出能够提升车流量、安全系数或其他因素的替代品(包括完全没有这种规律)并加以分析。 在一些国家,汽车靠左形式是常态,探讨你的解决方案是否稍作修改即可适用,或者需要一些额外的需要。 最后,以上规则依赖于人的判断,如果相同规则的交通运输完全在智能系统的控制下,无论是部分网络还是嵌入使用的车辆的设计,在何种程度上会修改你前面的结果?

美赛历年题目_pdf

马剑整理 历年美国大学生数学建模赛题 目录 MCM85问题-A 动物群体的管理 (3) MCM85问题-B 战购物资储备的管理 (3) MCM86问题-A 水道测量数据 (4) MCM86问题-B 应急设施的位置 (4) MCM87问题-A 盐的存贮 (5) MCM87问题-B 停车场 (5) MCM88问题-A 确定毒品走私船的位置 (5) MCM88问题-B 两辆铁路平板车的装货问题 (6) MCM89问题-A 蠓的分类 (6) MCM89问题-B 飞机排队 (6) MCM90-A 药物在脑内的分布 (6) MCM90问题-B 扫雪问题 (7) MCM91问题-B 通讯网络的极小生成树 (7) MCM 91问题-A 估计水塔的水流量 (7) MCM92问题-A 空中交通控制雷达的功率问题 (7) MCM 92问题-B 应急电力修复系统的修复计划 (7) MCM93问题-A 加速餐厅剩菜堆肥的生成 (8) MCM93问题-B 倒煤台的操作方案 (8) MCM94问题-A 住宅的保温 (9) MCM 94问题-B 计算机网络的最短传输时间 (9) MCM-95问题-A 单一螺旋线 (10) MCM95题-B A1uacha Balaclava学院 (10) MCM96问题-A 噪音场中潜艇的探测 (11) MCM96问题-B 竞赛评判问题 (11) MCM97问题-A Velociraptor(疾走龙属)问题 (11) MCM97问题-B为取得富有成果的讨论怎样搭配与会成员 (12) MCM98问题-A 磁共振成像扫描仪 (12) MCM98问题-B 成绩给分的通胀 (13) MCM99问题-A 大碰撞 (13) MCM99问题-B “非法”聚会 (14) MCM2000问题-A空间交通管制 (14) MCM2000问题-B: 无线电信道分配 (14) MCM2001问题- A: 选择自行车车轮 (15) MCM2001问题-B 逃避飓风怒吼(一场恶风...) .. (15) MCM2001问题-C我们的水系-不确定的前景 (16) MCM2002问题-A风和喷水池 (16) MCM2002问题-B航空公司超员订票 (16) MCM2002问题-C (16) MCM2003问题-A: 特技演员 (18)

美赛历年赛题及其翻译

2015年: A题 一个国际性组织声称他们研发出了一种能够阻止埃博拉,并治愈隐性病毒携带者的新药。建立一个实际、敏捷、有效的模型,不仅考虑到疾病的传播、药物的需求量、可能的给药措施、给药地点、疫苗或药物的生产速度,而且考虑你们队伍认为重要的、作为模型一部分的其他因素,用于优化埃博拉的根除,或至少缓解目前(治疗)的紧张压力。除了竞赛需要的建模方案以外,为世界医学协会撰写一封1-2页的非技术性的发言稿,以便其公告使用。 B题 回顾马航MH370失事事件。建立一个通用的数学模型,用以帮助失联飞机的搜救者们规划一个有效的搜索方案。失联飞机从A地飞往B地,可能坠毁在了大片水域(如大西洋、太平洋、印度洋、南印度洋、北冰洋)中。假设被淹没的飞机无法发出信号。你们的模型需要考虑到,有很多种不同型号的可选的飞机,并且有很多种搜救飞机,这些搜救飞机通常使用不同的电子设备和传感器。此外,为航空公司撰写一份1-2页的文件,以便在其公布未来搜救进展的新闻发布会上发表。 2014美赛A题翻译 问题一:通勤列车的负载问题 在中央车站,经常有许多的联系从大城市到郊区的通勤列车“通勤”线到达。大多数火车很长(也许10个或更多的汽车长)。乘客走到出口的距离也很长,有整个火车区域。每个火车车厢只有两个出口,一个靠近终端, 因此可以携带尽可能多的人。每个火车车厢有一个中心过道和过道两边的座椅,一边每排有两个座椅,另一边每排有三个座椅。 走出这样一个典型车站,乘客必须先出火车车厢,然后走入楼梯再到下一个级别的出站口。通常情况下这些列车都非常拥挤,有大量的火车上的乘客试图挤向楼梯,而楼梯可以容纳两列人退出。 大多数通勤列车站台有两个相邻的轨道平台。在最坏的情况下,如果两个满载的列车同时到达,所有的乘客可能需要很长时间才能到达主站台。 建立一个数学模型来估计旅客退出这种复杂的状况到达出站口路上的时间。假设一列火车有n个汽车那么长,每个汽车的长度为d。站台的长度是p,每个楼梯间的楼梯数量是q。 使用您的模型具体来优化(减少)前往主站台的时间,有如下要求: 要求1. 一个满载乘客的火车,所有乘客都要出火车。所有乘客都要出楼梯抵达出主站台的路上。 要求2. 两个满载列车的乘客都要出车厢(所有乘客出到一个公用站台), 所有乘客都要出楼梯抵达出主站台的路上。 要求3.如果你能重新设计楼梯沿着站台的位置,那么这些楼梯应放置在哪,以缩短一列或两列火车的乘客出站所用的时间? 要求4.乘客到达出主站台的路上所用的时间跟构建楼梯的台阶数有怎样的关系? 要求5. 如果楼梯可以容纳K个人,那么时间会如何变化?k是大于1的整数

2013年小美赛c题特等奖1162队B题

第二届“认证杯”数学中国 数学建模国际赛 承诺书 我们仔细阅读了第二届“认证杯”数学中国数学建模国际赛的竞赛规则。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们允许数学中国网站(https://www.360docs.net/doc/9f10768156.html,)公布论文,以供网友之间学习交流,数学中国网站以非商业目的的论文交流不需要提前取得我们的同意。 我们的参赛队号为:1162 我们选择的题目是:PROBLEM B:Hermit Crabs Evolve Employment Pattern of Human 参赛队员(签名) : 队员1:万方平 队员2:姜冰心 队员3:邢思雨 参赛队教练员(签名):

第二届“认证杯”数学中国 数学建模国际赛 编号专用页 参赛队伍的参赛队号:(请各个参赛队提前填写好):1162 竞赛统一编号(由竞赛组委会送至评委团前编号): 竞赛评阅编号(由竞赛评委团评阅前进行编号):

Discussion of the Feasibility of the Vacancy Chain December9,2013 Summary Rousseau once said Man was born free,and he is everywhere in chains. However,it is not trying to spread a pessimistic world outlook.Instead,it is through interaction among people that our society can make progress. Just like hermit crabs would group together to exchange shells so that every individual can get a larger size of home.Our human society also exists similar phenomenon which is called vacancy chain.However,allo-cating shells among is relatively a easy job,how to exchange job among people is a rather dif?cult problem. In order to address problems above.We conclude three sub-problems and its solution in our paper:1)Figure out the conditions need to meet so that vacancy chain can function as a tool to optimize every individual can bene?t.2)Build a model to evaluate ones competencies and propose an algorithm as social strategies to exchange jobs in vacancy chains so that everyone bene?ts.3)Develop a inequality to answer how many job appli-cants do need to satisfy both employers and employees and run our model to predict the change of HR expends for some enterprise customers within the next5years. In the?rst sub-problem,we discuss the different effects of differen-t organizational hierarchies on vacancy chains.Then we successfully?g-ure out that hierarchical organizational forms with less middle managers than straight pyramis are most likely to be regulated by vacancy chain-s.And fortunately,most enterprises’organizational forms are similar to it.That is to say,vacancy chain can be applicable to most cases.Next,in second sub-problemswe propose a linear equation as a evaluating function and get a overall score for every individual which represents one’s com-petencies.Then,based on the overall scores,we use a greedy algorithm to exchange jobs among people in vacancy chain.Peoples qualities will be compatible with the job requirement.In this case every individual will get the most appropriate job.Finally,in the third sub-problemsince vacancy chain also has its cost like replacement cost and training cost.We will not allow the total cost outweigh its bene?ts.So we will propose a inequation that need to meet so that the cost will not outweigh the bene?ts.That is to 1

2013年数学建模美赛B题论文

2013建模美赛B题思路 摘要 水资源是极为重要生活资料,同时与政治经济文化的发展密切相关,北京市是世界上水资源严重缺乏的大都市之一。本文以北京为例,针对影响水资源短缺的因素,通过查找权威数据建立数学模型揭示相关因素与水资源短缺的关系,评价水资源短缺风险并运用模型对水资源短缺问题进行有效调控。 首先,分析水资源量的组成得出影响因素。主要从水资源总量(供水量)和总用水量(需水量)两方面进行讨论。影响水资源总量的因素从地表水量,地下水量和污水处理量入手。影响总用水量的因素从农业用水,工业用水,第三产业及生活用水量入手进行具体分析。 其次,利用查得得北京市2001-2008年水量数据,采用多元线性回归,建立水资源总量与地表水量,地下水量和污水处理量的线性回归方程 y?=-4.732+2.138x1+0.498x2+0.274x3 根据各个因数前的系数的大小,得到风险因子的显著性为r x1>r x2>r x3(x1, x2,x3分别为地表水、地下水、污水处理量)。 再次,利用灰色关联确定农业用水、工业用水、第三产业及生活用水量与总用水量的关联程度r a=0.369852,r b= 0.369167,r c=0.260981。从而确定其风险显著性为r a>r b>r c。 再再次,由数据利用曲线拟合得到农业、工业及第三产业及生活用水量与年份之间的函数关系,a=0.0019(t-1994)3-0.0383(t-1994)2-0.4332(t-1994)+20.2598; b=0.014(t-1994)2-0.8261t+14.1337; c=0.0383(t-1994)2-0.097(t-1994)+11.2116; D=a+b+c;预测出2009-2012年用水总量。 最后,通过定义缺水程度S=(D-y)/D=1-y/D,计算出1994-2008的缺水程度,绘制出柱状图,划分风险等级。我们取多年数据进行比较,推测未来四年地表水量和地下水量维持在前八年的平均水平,污水处理量为近三年的平均水平,得出2009-2012年的预测值,并利用回归方程 y?=-4.732+2.138x1+0.4982x2+0.274x3 计算出对应的水资源总量。通过预测的总用水量,水资源总量和缺水程度公式 S=(D-y)/D=1-y/D 计算出2009-2012年的缺水程度,根据划分的风险等级,判断出2009-2012年水资源风险等级均为中风险。

2013年美赛题目英文和翻译

2013 Contest Problems MCM PROBLEMS PROBLEM A: The Ultimate Brownie Pan When baking in a rectangular pan heat is concentrated in the 4 corners and the product gets overcooked at the corners (and to a lesser extent at the edges). In a round pan the heat is distributed evenly over the entire outer edge and the product is not overcooked at the edges. However, since most ovens are rectangular in shape using round pans is not efficient with respect to using the space in an oven. Develop a model to show the distribution of heat across the outer edge of a pan for pans of different shapes - rectangular to circular and other shapes in between. Assume 1. A width to length ratio of W/L for the oven which is rectangular in shape. 2. Each pan must have an area of A. 3. Initially two racks in the oven, evenly spaced. Develop a model that can be used to select the best type of pan (shape) under the following conditions: 1. Maximize number of pans that can fit in the oven (N) 2. Maximize even distribution of heat (H) for the pan 3. Optimize a combination of conditions (1) and (2) where weights p and (1- p) are assigned to illustrate how the results vary with different values of W/L and p. In addition to your MCM formatted solution, prepare a one to two page advertising sheet for the new Brownie Gourmet Magazine highlighting your design and results. 问题A:终极布朗尼潘 当在一个矩形的锅烘烤时热量会在4个角落集中,并使产品在拐角

2013年美赛论文c题论文

基于主成分-有向复杂网络的地球健康的评价及动态预测 摘要 地球是一个庞大而复杂的生态系统,评价并预测其健康状况一直是一个难题。本文建立了分析各国家(节点)健康状况的主成分分析模型;基于生态系统的复杂性,进一步构建了一个反映各节点间交互影响的有向复杂网络模型;进而采用灰色预测模型对地球健康状况进行动态预测。 (1)计算每个节点的健康指数。因为地球上的国家较多和地球健康指数影响指标较多,本文选取21个国家作为分析地球的节点、11个地球健康指标。采用主成分分析法对21个节点以及全球的11个指标进行综合分析,把11个指标抽象成5个主成分进行健康指数的求解。我们以2000年的进行验证,结果显示五个主成分的累积贡献率高达92%,结果可靠。我们同时对各个节点的综合值Z (健康指数)进行排名,排名靠前的是美国、澳大利亚、加拿大等发达国家,排名靠后的是Morocco、Egypt Arab Rep. China、Kenya等发展中国家且生态保护较差的国家。 (2)分析节点间的交互影响。建立有向复杂网络来考虑各节点间的相互影响,选取8个典型国家来构成类似生物圈的“小世界”,用8个国家节点的健康指数进行逐步回归来确定网络的边和权重。在考察网络的基本特征参数后,通过边的权重来求得各节点的权重值。最后我们用修正后的网络加权模型和主成分分析模型结果对比,二者相互验证,说明模型的合理性。最后将模型推广到地球生态系统。 (3)未来地球健康状况的动态预测。我采用灰色预测中的GM(1,1)模型对世界的健康指数进行10年的动态预测,预测结果的相对误差小于5%,预测精度较高。预测的十年结果见表11。 对于模型的预警,我们通过给定健康指数的最低值a作为临界点,把GM(1,1)预测的结果与a比较,小于a则就警报。对于a的确定可以查找本文中11个指标的限定,通过限定值确定a的大小。对于政策的影响,我们选取中国和世界的人口增长率为对象进行了分析,证明政策对地球生态有一定的潜在影响。 关键词健康指数有向复杂网络主成分分析逐步回归动态预测 一、问题重述

相关文档
最新文档