05第五章 材料力学习题解答(弯曲内力)

合集下载

材料力学典型例题及解析 4.弯曲内力典型习题解析

材料力学典型例题及解析 4.弯曲内力典型习题解析

弯曲内力典型习题解析1 作图示简支梁的剪力图和弯矩图,并求出maxSF 和maxM。

解题分析:作剪力、弯矩图的基本方法是写出每一段梁上的剪力、弯矩方程,根据方程描点作图。

在能熟练地作剪力、弯矩图后,可采用如下简便作图法:在表中列出特殊截面(如有位移约束的截面、集中力作用截面等的剪力、弯矩值,再根据载荷集度与剪力、弯矩之间的微分关系判断各区段的内力图形状,连线相邻特殊截面对应的点。

下面按两种方法分别作图。

解I :1、求支反力qa F Ay =,qa F Cy 2=2、将梁分成AB 、BC 和CD 三个区段 以A 为原点,向右取x 坐标。

AB 段,如图d :qa F F Ay ==S ,()a x <<02qa(c)(b)(a)M(d)(e)MSSSM(f)题1图qax x F M Ay ==,()a x ≤≤0BC 段,如图e:)2()(S x a q a x q F F Ay −=−×−=,(a x a 2<<))/2()/2)((22a x q a x a x q x F M Ay +=−−+=,(a x a 2≤≤)CD 段,如图f:)()(S x a q F a x q F F Ay −=−−×−=,(a x a 32<<))/2()/2)((22a x q a x a x q x F M Ay +=−−+=,(a x a 32≤≤)3、按照步骤2所得各段梁的剪力、弯矩方程画出剪力图和弯矩图,如图b 和图c。

4、计算剪力和弯矩的最大值qa F 2maxS=, 2max23qa M=解II :1、计算支反力qa F Ay =,qa F Cy2=2、将梁分为AB 、BC 、CD 三个区段,计算每个区段起点和终点的力值。

3、根据载荷情况及微分关系,判断各力区的内力图形状,并以相应的图线连接起来,得到剪力图和弯矩图。

力区 A 截面 AB B 截面 BC C 截面 CD D 截面 载荷 F Ay 向上 q =0无集中力q =负常数 F 向下 q =负常数 F Dy 向上F S突跳F Ay水平(+)连续 下斜线(+) 突减F 下斜线(-) 突跳F DyM 0 上斜线 相切上凸抛物线转折上凸抛物线4、计算剪力弯矩最大值qa F 2maxS=, 2max23qa M=讨论:利用剪力弯矩方程作图时,注意坐标轴x 的正向一般由左至右。

材料力学课后答案

材料力学课后答案

由平衡方程,解得:
FBy 5KN; M B 13KN m
微分法画弯矩图
( M B 13KN m; M C M C 3KN m; M D 0)
2.根据强度要求确定 b
max WZ 2 bh 2 3 WZ b 6 3 M
弯矩图
M
(+)
x
3.绘制挠曲轴略图并计算wmax, A , B 令 dw 0 得 x l (0 x l ) 2 dx 所以 wmax w x l
2
挠曲轴略图
w
5ql 4 384 EI
x0
(-)
B
ql 3 24 EI
x
由式(3)知 A
max
M max ymax 176MPa IZ
max
M WZ
K
M max yK 132MPa IZ
3
5-5.图示简支梁,由 NO18 工字钢制成,在集度为q的均匀载荷作用下测得横截 4 面C底边的纵向正应变 =3.0 10 ,试计算梁内的最大弯曲正应力,已知刚的弹 FAy FBy 性模量E=200GPa,a=1m。
M yA Wy 6 M yA M zA 6M zA Wz 2b b 2 b (2b) 2
由 max 解得 b 35.6mm 故
h 2b 71.2mm
14
2.截面为圆形,确定d 由分析图及叠加原理可知: 在1,3区边缘某点分别有最大拉应力,最大压应力 其值均为:
I Z I Z 1 2 I Z 2 1.02 104 m4
2.画弯矩图 由平衡方程得 微分法画弯矩图
FCy 10KN; M C 10KN m

05第五章 材料力学习题解答(弯曲内力)

05第五章 材料力学习题解答(弯曲内力)

a
a
(i)
解:(a) (1) 求约束反力
qa
2qa qa
C
A
B
q
a
a
a
a
(j)
MA
A x
2P
C
M0=Pa
B
RA
∑Y = 0 RA − 2P = 0
RA = 2P
∑ M A = 0 M A − 2Pa + M0 = 0
(2) 列剪力方程和弯矩方程
M A = Pa
Q(x)
⎧= ⎨⎩=
RA RA
= −
2P 2P
q
M2
C
a
求内力
P=qa
B
Q2 = P + qa = 2qa
M2
=
−P
×
a

qa
×
a 2
+
M
=

1 2
qa 2
(b) (1)求约束反力
P=200N
1
23
A
1C
DB
RA 200
23
200 200
RD
∑ MD = 0 RA × 400 − P × 200 = 0
RA = 100N
(2) 截开 1-1 截面,取左段,加内力
=
x 0
∈ (0,a) x ∈(a,
2a]
上海理工大学 力学教研室
3
M
(x)
⎧= ⎨⎩ =
RA RA
× ×
x x
+ +
MA MA
= −
2Px − Pa 2P × (x − a)
=
Pa
(3) 画 Q 图和 M 图

材料力学05(第五章 弯曲内力)

材料力学05(第五章 弯曲内力)
5 qa 3
0 x1 3a
Fs 2 qx2
1 2 M 2 qx2 2 0 x2 a
M
(d )
1 2 qa 2
例 简支梁受力如图a所示。试写出梁的剪力方程和 弯矩方程,并作剪力图和弯矩图。
解:1、求支座反力
1 l l M A 0 FB l q 2 4 0 FB 8 ql 3 l l l M B 0 FA l q 2 ( 2 4) 0 FA 8 ql 可利用平衡方程 Fy 0 对所求反力进行校核。
2、 校核弯矩图 Me =3qa2 A
FS a 5qa/3 8a/3 M C 3a
q
AC段
B
x 剪力=常量 弯矩图→斜率为 正值的斜直线
qa/3 x
弯矩值: 支座A:MA=0
5qa2/3 x
qa2/18 4qa2/3
C截面左侧:
M C
5 2 FA a qa 3
FS
5qa/3
8a/3
FS(x)
AC 段 CB 段
3 ql qx 8 1 ql 8
d FS ( x) dx
-q
0
d M ( x) d M 2 ( x ) M(x) d x2 dx 3 1 23 qlx qx ql qx -q 8 2 8 1 1 ql (l x) ql 0 8 8
对于该梁来说有
d FS x q 2 d M x dx q 2 dx d M x FS x dx
Fa FB l
2、列剪力方程和弯矩方程 ——需分两段列出
a
F
C
l
b
A FA AC段 A FA
x x
B FB

材料力学5弯曲内力部分

材料力学5弯曲内力部分

材料力学部分本部分主要内容:一材料力学绪论二轴向拉伸、压缩与剪切三扭转四平面图形的几何性质五弯曲六应力状态与强度理论七组合变形八压杆稳定本部分主要内容:(一)弯曲内力(二)弯曲应力(三)弯曲变形主要内容:一平面弯曲的概念和实例二受弯杆件的简化三剪力和弯矩四剪力方程和弯矩方程·剪力图和弯矩图五剪力、弯矩与分布荷载集度间的关系六弯曲内力部分习题及解答(一)弯曲内力一平面弯曲的概念及实例1. 弯曲: 杆受垂直于轴线的外力或外力偶矩矢的作用时,轴线变成了曲线,这种变形称为弯曲。

2. 梁:以弯曲变形为主的构件通常称为梁。

3.工程实例一平面弯曲的概念及实例4. 平面弯曲:杆发生弯曲变形后,轴线仍然和外力在同一平面内。

对称弯曲(如下图)——平面弯曲的特例。

非对称弯曲——若梁不具有纵对称面,或者,梁虽具有纵对称面但外力并不作用在对称面内,这种弯曲则统称为非对称弯曲。

本部分内容以对称弯曲为主,讨论梁的应力和变形计算。

一平面弯曲的概念及实例梁的支承条件与载荷情况一般都比较复杂,为了便于分析计算,应进行必要的简化,抽象出计算简图。

1. 构件本身的简化通常取梁的轴线来代替梁。

2. 载荷简化作用于梁上的载荷(包括支座反力)可简化为三种类型:集中力、集中力偶和分布载荷。

3. 支座简化二受弯杆件的简化①固定铰支座2个约束,1个自由度。

如:桥梁下的固定支座,止推滚珠轴承等。

②辊轴支座1个约束,2个自由度。

如:桥梁下的辊轴支座,滚珠轴承等。

二受弯杆件的简化③固定端3个约束,0个自由度。

如:游泳池的跳水板支座,木桩下端的支座等。

q (x )—分布力②悬臂梁二受弯杆件的简化③外伸梁[例] 求下列各图示梁的内力方程并画出内力图。

P Y )x (Q O ==解:①求支反力)L x (P M x Y )x (M O O -=-= ②写出内力方程PLM P Y O O == ;[例]:求图示梁内力图。

xy解:截面法求内力。

11110)(qax M M qax F mi A-=\=+=åxQqa Mqa 2x3qa2/2xqqaa a1122M AY A=S Y 0=S A M 0qa 21M 2qa 2A 2=-+2A qa 21M -=0=-+-A Y qa qa 0=A Y 四剪力方程和弯矩方程·剪力图和弯矩图一、剪力、弯矩与分布荷载间的微分关系对d x 段进行平衡分析,有:[]0d d 0=+-+=å)x (Q )x (Q x )x (q )x (Q Y )x (Q x )x (q d d =五剪力、弯矩与分布荷载集度间的关系及应用()()c x q dxx dQ ==讨论:特别地,当q=c :1、q=c>0 : 均布载荷向上,则Q 向右上方倾斜的直线2、q=c=0 : 没有均载荷,则Q 为水平直线3、q=c<0: 均布载荷向下,则Q 向右下方倾斜的直线五剪力、弯矩与分布荷载集度间的关系及应用q (x )M (x )+d M (x )Q (x )+d Q (x )Q (x )M (x )d x A0dM(x)][M(x)M(x)q(x)(dx)21Q(x)dx ,0)F (m2i A=+-++=å)Q(x dxdM(x)=弯矩图上某点处的切线斜率等于该点处剪力的大小。

《材料力学》第5章-梁弯曲时的位移-习题解

《材料力学》第5章-梁弯曲时的位移-习题解

第五章 梁弯曲时的位移 习题解[习题5-1] 试用积分法验算附录IV 中第1至第8项各梁的挠曲线方程及最大挠度、梁端转角的表达式。

解:序号1(1)写弯矩方程(2)写挠曲线近似微分方程,并积分 把边界条件:当0=x 时,0'=w,0=w 代入以上方程得:01=C,02=C。

故:转角方程为:x M EI EIw e ==θ',EIxM e =θ 挠曲线方程:221x M EIw e =, EI x M w e 22=(3)求梁端的转角和挠度 解:序号2(1)写弯矩方程(2)写挠曲线近似微分方程,并积分 把边界条件:当0=x 时,0'=w,0=w 代入以上方程得:01=C,02=C。

故:转角方程为:2'21Fx Flx EI EIw -==θ,)2(22x lx EIF-=θ 挠曲线方程:326121Fx Flx EIw -=,)3(62x l EIFx w -=(3)求梁端的转角和挠度解:序号3(1)写弯矩方程当a x ≤≤0时, Fx Fa x a F x M +-=--=)()( 当l x a ≤≤时, 0)(=x M(2)写挠曲线近似微分方程,并积分当a x ≤≤0时,把边界条件:当0=x 时,0'=w,0=w 代入以上方程得:01=C,02=C。

故:转角方程为:2'21Fx Fax EI EIw -==θ,)2(22x ax EIF-=θ 挠曲线方程:326121Fx Fax EIw -=,)3(62x a EIFx w -=(3)求梁端的转角和挠度设集中力的作用点为C ,则:EI Fa a a a EI F a C 2)2(2)(22=-⋅==θθ EIFa a a EI Fa a w w C 3)3(6)(32=-== 由于CB 段没有外力作用,故该段没有变形,所以:EIFa B 22=θ)233(62)(3tan )(223a a x EIFa EI Fa a x EI Fa a x w w C C B +-=-+≈-+=θ )3(62a x EIFa w B -= 解:序号4(1)写弯矩方程 2)(21)(x l q x M --= (2)写挠曲线近似微分方程,并积分)("x M EIw -= 2")(21x l q EIw -=1322'6)()()(2)(2C x l q x l d x l q dx x l q EIw +--=---=-=⎰⎰ 当0=x 时,0'=w ,即:136)0(0C l q +--=,631ql C =66)(33'ql x l q EIw +--= 23433624)(6)()(6C x ql x l q x ql x l d x l q EIw ++-=+--=⎰ 当0=x 时,0=w 代入以上方程得:24240C ql +=,2442ql C -=24624)(434ql x ql x l q EIw -+-=故:转角方程为:66)(33'ql x l q EIw +--= 挠曲线方程:24624)(434ql x ql x l q EIw -+-=]4)[(24434l x l x l qEIw -+-=)4464(2443432234l x l x lx x l x l l q -++-+-= )46(244322x lx x l q +-= )46(24222x lx l qx +-= (3)求梁端的转角和挠度66)()(33'ql l l q EI l EIw B +--=θEIql B 63=θEIql l l l l ql EIw l EIw B 8)46(24)(4222=+⋅-==解:序号5(1)写弯矩方程l xl q x q -=0)(,lx l q x q )()(0-= lx l q x l l x l q x l x M 6)(3])()(21[)(300--=-⋅-⋅-⋅-=(2)写挠曲线近似微分方程,并积分)("x M EIw -= 30")(6x l lq EIw -=1403030'24)()()(6)(6C lx l q x l d x l l q dx x l l q EIw +--=---=-=⎰⎰ 当0=x 时,0'=w ,即:14024)0(0C l l q +--=,24301l q C =2424)(3040'l q l x l q EIw +--=23050304024120)(24)()(24C x l q l x l q x l q x l d x l l q EIw ++-=+--=⎰ 当0=x 时,0=w 代入以上方程得:250120)0(0C l l q +-=,120402l q C -=12024120)(403050l q x l q l x l q EIw -+-=故:转角方程为:2424)(3040'l q l x l q EIw +--=挠曲线方程:12024120)(403050l q x l q l x l q EIw -+-=)51010(120322320x lx x l l lx q EIw -+-=(3)求梁端的转角和挠度24)(30'l q EI l EIw B ==θ,EIl q B 2430=θ12024120)()(403050l q l l q l l l q EIw l EIw B -⋅+--==, EIl q w B 3040=解:序号6(1)写弯矩方程 l M R A B =(↑),lM R AA = (↓) x lM M x R M x M AA A A -=-=)( (2)写挠曲线近似微分方程,并积分)("x M EIw -= A AM x lM EIw -=" 12'2C x M x lM EIw A A +-=2123216C x C x M x l M EIw A A ++-=把边界条件:当0=x 时,0=w 代入以上方程得:02=C 。

《材料力学》 第五章 弯曲内力与弯曲应力

《材料力学》 第五章 弯曲内力与弯曲应力

第五章 弯曲内力与应力 §5—1 工程实例、基本概念一、实例工厂厂房的天车大梁,火车的轮轴,楼房的横梁,阳台的挑梁等。

二、弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线。

变形特点——杆轴线由直线变为一条平面的曲线。

三、梁的概念:主要产生弯曲变形的杆。

四、平面弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在梁的纵向对称平面内(通过或平行形心主轴且过弯曲中心)。

变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平面曲线。

五、弯曲的分类:1、按杆的形状分——直杆的弯曲;曲杆的弯曲。

2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。

3、按杆的横截面有无对称轴分——有对称轴的弯曲;无对称轴的弯曲。

4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。

5、按杆的横截面上的应力分——纯弯曲;横力弯曲。

六、梁、荷载及支座的简化(一)、简化的原则:便于计算,且符合实际要求。

(二)、梁的简化:以梁的轴线代替梁本身。

(三)、荷载的简化:1、集中力——荷载作用的范围与整个杆的长度相比非常小时。

2、分布力——荷载作用的范围与整个杆的长度相比不很小时。

3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。

(四)、支座的简化:1、固定端——有三个约束反力。

2、固定铰支座——有二个约束反力。

3、可动铰支座——有一个约束反力。

(五)、梁的三种基本形式:1、悬臂梁:2、简支梁:3、外伸梁:(L 称为梁的跨长) (六)、静定梁与超静定梁静定梁:由静力学方程可求出支反力,如上述三种基本形式的静定梁。

超静定梁:由静力学方程不可求出支反力或不能求出全部支反力。

§5—2 弯曲内力与内力图一、内力的确定(截面法):[举例]已知:如图,F ,a ,l 。

求:距A 端x 处截面上内力。

解:①求外力la l F Y l FaF m F X AYBY A AX)(F, 0 , 00 , 0-=∴==∴==∴=∑∑∑ F AX =0 以后可省略不求 ②求内力xF M m l a l F F F Y AY C AY s ⋅=∴=-==∴=∑∑ , 0)( , 0∴ 弯曲构件内力:剪力和弯矩1. 弯矩:M ;构件受弯时,横截面上存在垂直于截面的内力偶矩。

材料力学弯曲变形答案

材料力学弯曲变形答案

第一章 绪论一、是非判断题1.1 材料力学的研究方法与理论力学的研究方法完全相同。

( ) 1.2 内力只作用在杆件截面的形心处。

( ) 1.3 杆件某截面上的内力是该截面上应力的代数和。

( ) 1.4 确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。

( ) 1.5 根据各向同性假设,可认为材料的弹性常数在各方向都相同。

( ) 1.6 根据均匀性假设,可认为构件的弹性常数在各点处都相同。

( ) 1.7 同一截面上正应力ζ与切应力η必相互垂直。

( ) 1.8 同一截面上各点的正应力ζ必定大小相等,方向相同。

( ) 1.9 同一截面上各点的切应力η必相互平行。

( ) 1.10 应变分为正应变ε和切应变γ。

( ) 1.11 应变为无量纲量。

( ) 1.12 若物体各部分均无变形,则物体内各点的应变均为零。

( ) 1.13 若物体内各点的应变均为零,则物体无位移。

( ) 1.14 平衡状态弹性体的任意部分的内力都与外力保持平衡。

( )1.15 题1.15图所示结构中,AD 杆发生的变形为弯曲与压缩的组合变形。

( )1.16 题1.16图所示结构中,AB 杆将发生弯曲与压缩的组合变形。

( )二、填空题1.1 材料力学主要研究 受力后发生的 ,以及由此产生的 。

1.2 拉伸或压缩的受力特征是 ,变形特征是 。

1.3 剪切的受力特征是 ,变形特征是 。

1.4 扭转的受力特征是 ,变形特征是 。

B题1.15图题1.16图1.5 弯曲的受力特征是 ,变形特征是 。

1.6 组合受力与变形是指 。

1.7 构件的承载能力包括 , 和 三个方面。

1.8 所谓 ,是指材料或构件抵抗破坏的能力。

所谓 ,是指构件抵抗变形的能力。

所谓 ,是指材料或构件保持其原有平衡形式的能力。

1.9 根据固体材料的性能作如下三个基本假设 , , 。

材料力学课后习题答案5章

材料力学课后习题答案5章
(b)
保留有限量,略去一阶和二阶微量后,得
足标 C 系指梁微段右端面的形心,对题图(b)亦同。 根据题图 b,由
∑F
略去微量 qdx 后,得
y
=0 ,FS左 + qdx − FS右 = 0
FS右 = FS左
仍据题图 b,由
(c)
∑M
C
=0 ,M 右 − M e − qdx(
dx ) − FS左 dx − M 左 = 0 2
11l 处有 FS2 = 0 , M 2 有极大值,其值为 24 121 2 M 2 max = M max = ql 1152
(d)解:1.建立剪力、弯矩方程
8
图 5-9d 坐标如图 5-9d(1)所示,由截面法易得剪力、弯矩方程分别为
q( x1 ) ⋅ x1 qx 2 =− 1 2 l ql FS2 = − + qx2 4 qx 3 M1 = − 1 3l q 2 ql l M 2 = x2 − ⋅ ( + x2 ) 2 4 6 FS1 = −
2 q0l q 0 x2 FS = − + 4 l q x3 ql M = 0 x2 − 0 2 4 3l
l (0 ≤ x2 ≤ ) 2 l (0 ≤ x2 ≤ ) 2
(e) (f)
3.画剪力、弯矩图 依据式(c)和(e)可绘剪力图,如图 5-9b(2)所示;依据式(d)和(f)可绘弯矩图,如图 5-9b(3) 所示。 (c)解:1.求支反力
=0 ,FS左 + F + qdx − FS右 = 0
保留有限量,略去微量 qdx 后,得
FS右 − FS左 = F
为了更一般地反映 F 作用处剪力的突变情况(把向下的 F 也包括在内) ,可将上式改写为

材料力学第2版 课后习题答案 第5章 弯曲内力

材料力学第2版 课后习题答案 第5章 弯曲内力

qa qa
qa
1 qa
qa
2
(a)Q 图
1 qa 2 8
(b)Q 图
1 qa 2 2
(c)Q 图
1 qa 2 2
3qa 2
1 qa 2 2
(a)M 图
qa 2
(b)M 图
qa 2
(c)M 图
8KN
qa
5KN
1KN
8KN
(d)Q 图
1 qa 2 2
3 qa 2 2
(e)Q 图
3KN
(f)Q 图
qa 2 1 KN ⋅ m 4
M3 = 0
(f) Q1 = 10KN
Q2 = 10KN
Q3 = 10KN
M1 = 5KN ⋅ m M 2 = 5KN ⋅ m
M 3 = −10KN ⋅ m
5-2 试写出下列各梁的剪力方程和弯矩方程,并作剪力图和弯矩图,确定|Fmax|和|Mmax|。
解 :( a) Q(x) = 3M 0 l
Qmax
2
8
2
4
0.5a
qa
1 qa
2
(j)Q 图
3a
5 ql
8
8
(k)Q 图
3P 4
(l)Q 图
1 qa 2
1 ql 2
1 Pa
2
128
4
qa 2
(j)M 图
1 ql 2 8
(k)M 图
(l)M 图
1 Pa 2
5-3 利用 q、 FS 、M 的微分关系作出下列各梁的剪力图和弯矩图,并求出| FSmax |和|Mmax|。
1 qa 2 4
(a)M 图
qa
(b)Q 图

材料力学cl05弯曲内力

材料力学cl05弯曲内力
凡是以弯曲为主要变形的杆件,通常称为梁。

楼板

q
l
23:29 1
P 栏杆 a
A 阳台梁
B
M e Pa
q
A
23:29
P B
2
23:29
3
上海长江大桥架起"世界第一梁"
上海长江大桥第53号至54号桥墩间,架起“百米长梁”。这一箱梁长 105米、宽16米、高5米,重2300吨,为世界第一。 “百米长梁”超越东海 大桥“梁式大桥”70米的跨度,实现了桥梁史上的一大突破。 上海长江大桥跨江段长10公里,全桥长16.5公里,双向6车道,设计时 速100公里。整个隧桥工程在2009年完工。
(剪力 FS的实际方向与假设方 向相反,为负剪力)
M C FAy 2a 2qa a M1 0 M C FAy 2a 2qa a M1 2qa2
(弯矩M的实际方向与假设方向相同,为正弯矩)
23:29 14
如以右侧梁作为研究对象,则:
FSc q 2a FBy qa
Fs1
Fs 4
4 由 M A 0 得 RB 7qa 4 5qa Fs1 RA 4 2
5qa M 2 M1 R A a 4
Fs 2
Fs 3
23:29
(FS4的实际方向与假设方 向相反,为负剪力)
qa FS 3 Fs 2 RA qa 42 3qa M 3 R A 2a qa a 2 3qa 5qa 2 Fs 4 qa RB , M4 4 4
23:29
9
§4-3
梁的内力及其求法
a
P
A
x
l

材料力学考研题解_第五章弯曲内力

材料力学考研题解_第五章弯曲内力

5-15 .....................................................................................................................................................14
5-10 .......................................................................................................................................................9
5-8 .........................................................................................................................................................4
(也可用左侧题号书签直接查找题目与解)
5-3 试证明,在集中力 F 作用处(图 a),梁微段的内力满足下列关系:
FS右-FS左 = F , M 右 = M 左 而在矩为 Me 的集中力偶作用处(图 b),则恒有
FS右 = FS左 , M 右 − M 左 = M e
证明:根据题图 a,由
题 5-3 图
解:根据题图中所给的 FS 图和 M 图,并依据三个微分关系和两个突变关系,可画梁的
外力图,示如图 5-5a 和 b。
2
图 5-5
5-7 图示外伸梁,承受均布载荷 q 作用。试问当 a 为何值时梁的最大弯矩值(即| M |

材料力学第五章

材料力学第五章
思考:
FSC
q0 x q ( x) l
是否可以将梁上的分布荷载全部用静力等效后的 合力代替来求截面C的内力?
§5-3 剪力和弯矩
例题 解: 1. 确定支反力 Fy 0 FAy FBy 2 F
M
FAy 2. 用截面法研究内力 FSE ME FAy FBy
A
0
FBy 3a Fa 2 F a F 5F FBy FAy 3 3 F 5F F 0 F 2 F F y SE SE 3 3 a 5F 3a M 0 2 F M O E 2 3 2 3Fa ME 2
a
F
b
A
FAY
x1
C x2
l
B
FBY
例题5-3 图示简支梁C点受集中力作用。 试写出剪力和弯矩方程,并画 出剪力图和弯矩图。 解:1.确定约束力 M A=0, M B=0
FS
Fb / l
FAy=Fb/l
FBy=Fa/l
Fa / l
Fab / l


M
2.写出剪力和弯矩方程 =Fb / l 0 x1 a x AC FS x1 M x1 =Fbx1 / l 0 x1 a FS x2 = Fa / l a x2 l CB M x2 =Fal x2 / l a x2 l
FCy
D
FBy 29kN
§5-2
受弯杆件的简化
q =20kN/m F MA Me=5kN· m C A B FAx D E K FBy FAy 1m 3m 1m 1m
AB梁
F F
0.5m
x y
0 0 0
FAx 0

2019年最新-材料力学第5章弯曲内力-精选文档

2019年最新-材料力学第5章弯曲内力-精选文档

页 退出
材料力学
出版社 理工分社
5.3剪力和弯矩 根据平衡方程,可以求得静定梁在载荷作用下的支座反力,于是作用于梁上 的外力均为已知量,进一步就可以研究梁横截面上的内力。以如图5.11(a) 所示的简支梁为例,F1,F2为作用于梁上的载荷,FAy和FBy为两端的支座反力 。为了显示出梁横截面上的内力,沿截面m—m假想地把梁分成两部分,并以 左段为研究对象(见图5.11(b))。由于原来的梁处于平衡状态,所以左段梁 仍应处于平衡状态。作用于左段梁上的力,除外力F1和FAy外,在m—m截面上 还有右段梁作用于它的内力。显然,为了保持左段梁的平衡,m—m截面的内 力必然存在两个分量:平行于截面的力Q和位于载荷作用平面内的力偶矩M。 其中,Q称为横截面m—m上的剪力,M称为横截面m—m上的弯矩。剪力和弯矩 统称为弯曲内力。
页 退出
材料力学
出版社 理工分社
图5.7
页 退出
材料力学
出版社 理工分社
(2)固定铰支座 固定铰支座是光滑铰链约束的一种形式,即用联接件(如销钉等)连接的两个 钻有同样大小孔的构件中有一个是固定在地面或机架上的,如图5.8(a)所示 ,其简图如图5.8(b)所示。它限制支座处的梁截面沿径向的相对移动,但允 许截面绕铰链中心转动。因此,其约束力包含水平反力Fx和垂直反力Fy两个 分量(见图5.8(c)),且通过铰链中心。径向轴承、平面止推轴承等都可简化 为固定铰支座。
页 退出
材料力学
出版社 理工分社
图5.8
页 退出
材料力学
出版社 理工分社
(3)固定端 固定端约束中,构件的一端完全固定在另一物体上(见图5.9(a)),其等效力 系及其简化分别如图5.9(b)、(c)所示。它同时限制支座处梁截面的移动和 转动。因此,其约束力包含水平反力FAx、垂直反力FAy和约束力偶MA(见图 5.9(d))。水坝的下端支座(见图5.6)、三爪卡盘等都可简化为固定端。

《材料力学》第五章课后习题参考答案

《材料力学》第五章课后习题参考答案

错误原因及避免方法
错误原因
1. 对材料力学的基本原理理解不深入,导致选择错误的公式或方法进行 计算。
2. 计算过程中出现数值错误或单位不统一等问题,导致结果偏差较大。
错误原因及避免方法
• 对计算结果缺乏分析和讨论,无法判断其 合理性和准确性。
错误原因及避免方法
01
避免方法
02
03
04
1. 加强对材料力学基本原理 的学习和理解,掌握各种公式 和方法的适用范围和条件。
题目一
分析并比较不同材料在拉伸过程中的力学行为差异。
题目二
讨论材料疲劳破坏的机理及影响因素。
要求
掌握材料在拉伸过程中的应力-应变曲线,理解弹性模量 、屈服强度、抗拉强度等概念,能够运用所学知识分析不 同材料的力学行为。
要求
了解材料疲劳破坏的基本概念,掌握疲劳破坏的机理和影 响因素,能够运用所学知识分析实际工程中的疲劳破坏问 题。
知识点综合运用
弹性力学基础
运用弹性力学的基本原理,分析 材料在弹性阶段的力学行为,计
算弹性模量等参数。
塑性力学基础
运用塑性力学的基本原理,分析材 料在塑性阶段的力学行为,理解屈 服强度、抗拉强度等概念。
疲劳破坏理论
运用疲劳破坏的基本理论,分析材 料在交变应力作用下的力学行为, 讨论疲劳破坏的机理和影响因素。
加强实践应用
除了理论学习外,我还计划通过 实践应用来加深对材料力学的理 解。例如,可以尝试利用所学知 识解决实际工程问题,或者参加 相关的实验和课程设计等。
拓展相关学科领域
材料力学是一门基础学科,与其他学 科领域有着密切的联系。因此,我计 划拓展相关学科领域的学习,如结构 力学、弹性力学等,以便更全面地了 解材料的力学性能和工程应用。

材料力学习题册答案-弯曲内力

材料力学习题册答案-弯曲内力

第四章梁的弯曲内力判断题1. 若两梁的跨度、承受载荷及支承相同,但材料和横截面面积不同,则两梁的剪力图和弯矩图不一定相同。

(X )2. 最大弯矩必然发生在剪力为零的横截面上。

(X )3. 若在结构对称的梁上作用有反对称载荷,(V )4. 简支梁及其承载如图4-1所示,假想沿截面m-m将梁截分为二。

若取梁左段为研究对象,则该截面上的剪力和弯矩与q、M无关;若以梁右段为研究对象,则该截面上的剪力和弯矩与F无关。

(X )则截面C上的剪力F SC=F ,弯矩M C =2Fa3. 梁段上作用有均布载荷时,剪力图是一条斜直线,而弯矩图是一条抛物线。

4. 当简支梁只受集中力和集中力偶作用时,则最大剪力必发生在集中力作用处c1. 梁在集中力偶作用的截面处,它的内力图为( C )cA Fs图有突变,M图无变化;B Fs图有突变,M图有转折;C M 图有突变,Fs图无变化;D M图有突变,Fs图有转折。

填空题2•图4-3所示外伸梁ABC,承受一可移动载荷 F ,若F、I均为已知,为减小梁的最大弯矩值,则外伸段的合理长度a= _J/3 ________ 。

图4-2 图4-3则该梁具有对称的剪力图和反对称的弯矩图。

1•图4-2所示为水平梁左段的受力图,选择题2. 梁在集中力作用的截面处,它的内力图为(B )cA Fs有突变,M图光滑连续;B Fs有突变,M图有转折;C M图有突变,凡图光滑连续;D M图有突变,Fs图有转折。

3. 在图4-4所示四种情况中,截面上弯矩M为正,剪力Fs为负的是(B )cf s (C)图4-44.梁在某一段内作用有向下的分布力时,则在该段内,M 图是一条(A )。

A 上凸曲线;B 下凸曲线;C 带有拐点的曲线 ;D 斜直线。

5•多跨静定梁的两种受载情况分别如图4-5 ( a )、( b )所示,以下结论中( A )是正确的。

力 F靠近铰链。

tli >弯矩图 图4-6F. FsI A)A C 6. 图4-5Fs 图和M 图完全相同Fs 图不同,M 图相同 两者的两者的 若梁的剪力图和弯矩图分别如图AB 段有均布载荷 AB;D4-6 ( a ) Fs 相同对图不同; Fs 图和M 图均不相同。

材料力学习题解答[第五章]

材料力学习题解答[第五章]

5-1构件受力如图5-26所示。

试:(1)确定危险点的位置;(2)用单元体表示危险点的应力状态(即用纵横截面截取危险点的单元体,并画出应力)。

题5-1图解:a) 1) 危险点的位置:每点受力情况相同,均为危险点;2)用单元体表示的危险点的应力状态见下图。

b) 1) 危险点的位置:外力扭矩3T与2T作用面之间的轴段上表面各点;2)应力状态见下图。

c) 1) 危险点:A点,即杆件最左端截面上最上面或最下面的点;2)应力状态见下图。

d) 1)危险点:杆件表面上各点;2)应力状态见下图。

5-2试写出图5-27所示单元体主应力σ1、σ2和σ3的值,并指出属于哪一种应力状态(应力单位为MPa)。

10题5-2图AAT(a)(c)(d)364dFlπτ=a) b) c) d)a) b) c)解: a) 1σ=50 MPa, 2σ=3σ=0,属于单向应力状态b) 1σ=40 MPa, 2σ=0, 3σ=-30 MPa ,属于二向应力状态 c) 1σ=20 MPa, 2σ=10 MPa, 3σ=-30 MPa ,属于三向应力状态5-3已知一点的应力状态如图5-28所示(应力单位为MPa )。

试用解析法求指定斜截面上的正应力和切应力。

题5-3图解:a) 取水平轴为x 轴,则根据正负号规定可知: x σ=50MPa , y σ=30MPa , x τ=0, α=-30 带入式(5-3),(5-4)得 ατασσσσσα2sin 2cos 22x yx yx --++==45MPaατασστα2cos 2sin 2x yx +-== -8.66MPab) 取水平轴为x 轴,根据正负号规定:x σ= -40MPa , y σ=0 , x τ=20 MPa , α=120带入公式,得:240sin 20240cos 20402040---++-=ασ=7.32MPa x τ= 240cos 20240sin 2040+--=7.32MPac) 取水平轴为x 轴,则x σ= -10MPa , y σ=40MPa , x τ= -30MPa,α=30代入公式得:60sin )30(60cos 2401024010----++-=ασ=28.48MPa x τ= 60cos 3060sin 24010---=-36.65MPaa)b)c)5-4已知一点的应力状态如图5-29所示(应力状态为MPa )。

材料力学第五章

材料力学第五章
FS FS (x) M M (x) 上两式分别称为梁的剪力方程和弯矩方程,为了形象地描述剪力、弯矩 沿梁轴线的变化,常将剪力、弯矩方程用图线表示。这种图线分别称为剪力 图和弯矩图。
例5-2 求图5-9所示简支梁各截面内力,并作内力图。 (a)
(c) (d)
(b)
图5-9
(e)
解 (1)求约束力。注意固定铰 A 处 FAx 0 ,故梁 AB 受力如图 5-9(a) 所示。
材料力学
第五章 弯曲内力与强度计算
一 平面弯曲的概念与实例
二 梁的内力——剪力与弯矩

剪力图与弯矩图

载荷集度、剪力与弯矩间的关系

纯弯曲时梁横截面上的正应力

梁的弯曲正应力强度条件及其应用

弯曲切应力

提高梁的弯曲强度的措施
第一节 平面弯曲的概念与实例
直杆在垂直于其轴线的外力或位于其轴线所在平面内的外力偶作用下, 杆的轴线将由直线变成曲线,这种变形称为弯曲。承受弯曲变形为主的杆 件通常称为梁。
(a)
(b) (c)
图5-12
解 (1)由静力平衡方程求出支座约束力。
FA
Me L
(方向向上)
FB
Me L
(方向向下)
(2)列剪力方程和弯矩方程。
FS ( x)
FA
Me L
(0 x L)
(a)
由于力偶在任何方向的投影皆等于零,所以无论在梁的哪一个横截面上,
剪力总是等于支座约束力 FA (或 FB )。所以在梁的整个跨度内,只有一个剪 力方程式(a)。
设 a x2 a b ,左段受力如图 5-9(c)所示。 由平衡方程求得
FS2 FAy F 0

材料力学:第五章 弯曲内力

材料力学:第五章 弯曲内力

回顾: 剪力、弯矩的计算步骤(截断法,静力平衡方程 )
(1) 分析整个梁静力平衡, 求约束处支反力 (2) 假想地将梁切开,并任选一段为研究对象
(3) 画受力图(三种力: 约束力、外载荷、内力),FS 与 M 宜均设为正 (4) 列静力平衡方程,
剪力与弯矩图
剪力图与弯矩图:表示 FS 与 M 沿杆轴(x轴)变化情况的图线
回顾:
弯梁内力:剪力、弯矩
外力主 矢FS’
外力 主矩M’
弯矩M 剪力FS
剪力-作用线位于所切横截面的内力 弯矩-矢量位于所切横截面的内力偶矩
弯曲内力
回顾:
剪力、弯矩的正方向记忆 2
回顾:
剪力、弯矩的正负符号规定
剪力
使微段沿顺时针方 向转动的剪力为正
弯矩
使微段弯曲呈凹 形的弯矩为正
使横截面顶 部受压的弯 矩为正
剪力、弯矩计算方法 1:平衡方程法
由截断梁的静力平衡方程求内力 对截断梁列出外力、内力平衡方程
例 题: 剪力、弯矩计算
例 5-1 集中力F及外力偶矩Me作用在外伸梁AD上,计算横截
面E、横截面A+与 D-的剪力与弯矩。
例 题: 剪力、弯矩计算
例 5-1 集中力F及外力偶矩Me作用在外伸梁AD上,计算横截
固定端
支反力 FRx , FRy与矩 为 M 的支反力偶
强度校核的前提:
剪力与弯矩计算 应力计算
弯梁内力:剪力、弯矩
外力主 矢FS’
外力 主矩M’
弯矩M 剪力FS
剪力-作用线位于所切横截面的内力 弯矩-矢量位于所切横截面的内力偶矩
弯曲内力
剪力、弯矩的正方向记忆 2
剪力、弯矩的正负符号规定
3. 剪力FS 图: 水平直线 4. 弯矩M 图: 斜线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Q1
A
M1
C
RA 求内力
Q1 = −RA = −100N M1 = −RA × 0.2 = −20Nm
(3) 截开 2-2 截面,取左段,加内力
Q2
A
D
M2
RA 求内力
Q2 = −RA = −100N M2 = −RA × 0.4 = −40Nm
(4) 截开 3-3 截面,取右段,加内力 Q3
P=200N
A
C
D
PP
RA
l
解:(1) 分析最大弯矩发生的截面:两种情况
Q
(+) x
(-)
B
RB Q
(+)
x (-)
M
Mmax
(+)
M
Mmax
(+)
x
x
最大弯矩发生在集中力作用的截面上;
(2) 求约束反力
∑ MB = 0 − RA × l + P × (l − x) + P × (l − x − d ) = 0
上海理工大学 力学教研室
2
2P
M0=Pa
A
B C
a
a
(a)
q
A
C
B
a
a
(b)
P
2P
A
C
D
B
a
a
a
(c)
q
A
C
B
a/2
a/2
(e)
M0
2M0
A
C
B
a
a
(d)
P
6P
A
C
D
B
a
a
a
(f)
q
q=30kN/m P=20kN q=30kN/m
A
C
B
a/2
a
(g)
A
C
1m
D
1m 1m (h)
EB 1m
q
A
C
B
q
q Q1
求内力
A
M1
C
Q1 = −qa
M1
=
−qa
×
1 2
a
=

1 2
qa2
(3) 截开 2-2 截面,取左段,加内力
q
Q2
A
M2
CD
求内力
RC
Q2
=
−qa

RC
=

3 qa 2
M2 = −RC × a − (q × a) ×1.5a = −2qa2
5.3. 设图示各梁的载荷P、q、m和尺寸a皆为已知。(1)列出梁的剪力方程和弯矩方程(a、b); (2)作剪力图和弯矩图;(3)判定⏐Q⏐max和⏐M⏐max。
RC
=
9 2
P
∑Y = 0 RC + RB − P − 6P = 0
RB
=
5 2
P
(2) 直接画 Q 图和 M 图
7P/2
Q
(+)
(-)
xPຫໍສະໝຸດ (-)5P/2M
5Pa/2
(+) x
(-)
Pa
(3) 最大剪力和最大弯矩值
(g) (1) 求约束反力
Qmax
=7P 2
q
M max
= 5 Pa 2
A
C
B
上海理工大学 力学教研室
(2) 直接画 Q 图和 M 图
RE = 40 kN
Q
30kN
10kN
(+)
(+)
(-)
(-)
x
10kN
30kN
上海理工大学 力学教研室
8
M
(-)
(-)
x
5kNm
15kNm
15kNm
(3)最大剪力和最大弯矩值
Qmax = 30kN Mmax = 15kNm
(i)
(1) 求约束反力
q
A
C
B
MB
q
a
a
RB
∑MB = 0
qa ×
3 2
a

qa ×
1 2
a

MB
=
0
MB = qa2
∑Y = 0 RB − qa + qa = 0
RB = 0
(2) 直接画 Q 图和 M 图
Q
x (-)
qa
M
(-)
qa2/2
x qa2
(3) 最大剪力和最大弯矩值
Qmax = qa Mmax = qa2
(j) (1) 直接画 Q 图和 M 图
3m
1kN/m
4m
D 1kN
A
RAH
RD
RAV
∑ M A = 0 −1× 4 × 2 − 8 ×1 +1×1 + RD × 3 = 0
MB = 5 kN
∑ X = 0 1× 4 − RAH −1 = 0
RAH = 3 kN
∑Y = 0 RAV − 8 + RD = 0
RAV = 3 kN
(2) 分析 AB、BC 和 CD 的受力
q
M2
C
a
求内力
P=qa
B
Q2 = P + qa = 2qa
M2
=
−P
×
a

qa
×
a 2
+
M
=

1 2
qa 2
(b) (1)求约束反力
P=200N
1
23
A
1C
DB
RA 200
23
200 200
RD
∑ MD = 0 RA × 400 − P × 200 = 0
RA = 100N
(2) 截开 1-1 截面,取左段,加内力
MB = 4 kN.m
BC 杆
N 'B = QB = 1kN Q 'B = N B = 3kN M 'B = MB = 4kNm
∑ X = 0 N 'B − NC = 0
NC = 1 kN
∑Y = 0 Q 'B − 8 + QC = 0
QC = kN
∑ MC = 0 − M 'B − Q 'B× 3 + 8× 2 − MC = 0
M
(
x
)
⎧ ⎪⎪ ⎨ ⎪ ⎪⎩
= =
− 1 qx2 2
−qa × (x
x∈ − a)
2
[0,
a] x∈
[a,
2a)
(3) 画 Q 图和 M 图
Q
上海理工大学 力学教研室
x (-)
qa
4
M
qa2/2
(-)
x 3qa2/2
(4) 最大剪力和最大弯矩值
(c) (1) 求约束反力
Qmax = qa
P
M max
a/2
RCB
B
a
RB
7
∑MB = 0

RC
×
a
+
⎛ ⎜⎝
q
×
3 2
a
⎞ ⎟⎠
×
3 4
a
=
0
RC
=
9 qa 8
∑Y = 0
RC
+
RB


3 2
a
=
0
RB
=
3 qa 8
(2) 直接画 Q 图和 M 图
Q
5qa/8
(+) (-)
qa/2
(-)
x
3qa/8
M
9qa2/128
(+)
x
(-)
qa2/8
(3) 最大剪力和最大弯矩值
B
200 200 200
q 1 M=qa2 P=qa
A
C 2D
B
2
1
a
a
a
(c)
(d)
解:(a)
(1) 截开 1-1 截面,取右段,加内力
P=qa
Q1
q
M1
C
B
a
求内力
Q1 = P + qa = 2qa
M1
=
−P
×
a

qa
×
a 2
=

3 2
qa2
(2) 截开 2 截面,取右段,加内力 M=qa2
Q2
RA
=
2P l
⎛ ⎜⎝
l

d 2

x
⎞ ⎟⎠
(3) 求 C 截面上的弯矩
MC
=
RA
×
x
=
2P l
⎛ ⎜⎝
l

d 2

x
⎞ ⎟⎠
x
dMC dx
=
2P l
⎛ ⎜⎝
l

d 2

2
x
⎞ ⎟⎠
=
0
x= l −d 24
M max C
=
2P l
⎛ ⎜⎝
l

d 2

l 2
+
d 4
⎞⎛ ⎟⎠ ⎜⎝
l 2

d 4
⎞ ⎟⎠
a
a
(i)
解:(a) (1) 求约束反力
qa
2qa qa
C
A
B
q
a
a
a
a
(j)
MA
A x
2P
C
相关文档
最新文档