第五章弯曲内力习题答案

合集下载

弯曲内力习题与答案

弯曲内力习题与答案

弯曲力1. 长l的梁用绳向上吊起,如图所示。

钢绳绑扎处离梁端部的距离为x。

梁由自重引起的最大弯矩|M|max为最小时的x值为:(A) /2l;(B) /6l;(C…) 1)/2l。

l;(D) 1)/22. 多跨静定梁的两种受载情况如图(a)、(b)所示。

下列结论中哪个是正确的?(A) 两者的剪力图相同,弯矩图也相同;(B) 两者的剪力图相同,弯矩图不同;(C) 两者的剪力图不同,弯矩图相同;(D….) 两者的剪力图不同,弯矩图也不同。

3. 图示(a)、(b)两根梁,它们的(A) 剪力图、弯矩图都相同;(B…) 剪力图相同,弯矩图不同;(C) 剪力图不同,弯矩图相同;(D) 剪力图、弯矩图都不同。

4. 图示梁,当力偶M e的位置改变时,有下列结论:(A) 剪力图、弯矩图都改变;(B…) 剪力图不变,只弯矩图改变;(C) 弯矩图不变,只剪力图改变;(D) 剪力图、弯矩图都不变。

5. 图示梁C截面弯矩M C = ;为使M C =0,则M e= ;为使全梁不出现正弯矩,则M e≥。

6. 图示梁,已知F、l、a。

使梁的最大弯矩为最小时,梁端重量P= 。

7. 图示梁受分布力偶作用,其值沿轴线按线性规律分布,则B端支反力为,弯矩图为 次曲线,|M |max 发生在 处。

8. 图示梁,m (x )为沿梁长每单位长度上的力偶矩值,m (x )、q (x )、F S (x )和M (x )之间的微分关系为:S d ();d F x x = d ()d M x x = 。

9. 外伸梁受载如图,欲使AB 中点的弯矩等于零时,需在B 端加多大的集中力偶矩(将大小和方向标在图上)。

10. 简支梁受载如图,欲使A 截面弯矩等于零时,则=e21e /M M 。

1-10题答案:1. C 2. D 3. B 4. B 5. 28e2M ql -;42ql ;22ql 6. ⎪⎭⎫⎝⎛-a l a F 24 7. m 0/2;二;l /28. q (x );F S (x )+ m (x ) 9. 10. 1/211-60题. 作图示梁的剪力图和弯矩图。

材料力学课后答案

材料力学课后答案

由平衡方程,解得:
FBy 5KN; M B 13KN m
微分法画弯矩图
( M B 13KN m; M C M C 3KN m; M D 0)
2.根据强度要求确定 b
max WZ 2 bh 2 3 WZ b 6 3 M
弯矩图
M
(+)
x
3.绘制挠曲轴略图并计算wmax, A , B 令 dw 0 得 x l (0 x l ) 2 dx 所以 wmax w x l
2
挠曲轴略图
w
5ql 4 384 EI
x0
(-)
B
ql 3 24 EI
x
由式(3)知 A
max
M max ymax 176MPa IZ
max
M WZ
K
M max yK 132MPa IZ
3
5-5.图示简支梁,由 NO18 工字钢制成,在集度为q的均匀载荷作用下测得横截 4 面C底边的纵向正应变 =3.0 10 ,试计算梁内的最大弯曲正应力,已知刚的弹 FAy FBy 性模量E=200GPa,a=1m。
M yA Wy 6 M yA M zA 6M zA Wz 2b b 2 b (2b) 2
由 max 解得 b 35.6mm 故
h 2b 71.2mm
14
2.截面为圆形,确定d 由分析图及叠加原理可知: 在1,3区边缘某点分别有最大拉应力,最大压应力 其值均为:
I Z I Z 1 2 I Z 2 1.02 104 m4
2.画弯矩图 由平衡方程得 微分法画弯矩图
FCy 10KN; M C 10KN m

弯曲内力例题(0509)

弯曲内力例题(0509)
max

M max 及其所
P
y
m=Pa
1、列出梁的剪力方程和弯矩方程
AB段:
A
x
x a
B a
C
x
FQ ( x) 0
(0 x a )
M ( x) m Pa (0 x a)
材料力学
弯曲内力/剪力方程和弯矩方程 剪力图和弯矩图 BC段: m=Pa P
FQ ( x) P
( a x 2a )
弯矩 立柱弯矩图为抛物线,左侧受压,1、2截面的弯矩值为
M1 0,
qa2/2
3
qa/2
4
2M4 0
qa/2
1
FAy
材料力学
M
FAx
1 2 1 2 M 2 qa a qa qa , 2 2 1 2 M 3 qa , M 4 0 2
作弯矩图。
弯曲内力/平面刚架内力图
x 3.1m
1 M E F 3.1 FAy 2.1 q 2.12 2
(-)
材料力学
1.41kN.m (+)
-3kN.m
(-)
-2.2kN.m
1.41kN.m M D左 2.2kN.m
q
P qa q
qa qa
a
FQ
a
a 2qa qa
M
qa 2 qa / 2
材料力学
弯曲内力/剪力和弯矩
M1 2qa
A
2
q
M 2 2qa2
B
C
a a 4a
FAy
FBy
取左段梁为研究对象:
取右段梁为研究对象:
FQc FAy q 2a qa

05第五章 材料力学习题解答(弯曲内力)

05第五章 材料力学习题解答(弯曲内力)

a
a
(i)
解:(a) (1) 求约束反力
qa
2qa qa
C
A
B
q
a
a
a
a
(j)
MA
A x
2P
C
M0=Pa
B
RA
∑Y = 0 RA − 2P = 0
RA = 2P
∑ M A = 0 M A − 2Pa + M0 = 0
(2) 列剪力方程和弯矩方程
M A = Pa
Q(x)
⎧= ⎨⎩=
RA RA
= −
2P 2P
q
M2
C
a
求内力
P=qa
B
Q2 = P + qa = 2qa
M2
=
−P
×
a

qa
×
a 2
+
M
=

1 2
qa 2
(b) (1)求约束反力
P=200N
1
23
A
1C
DB
RA 200
23
200 200
RD
∑ MD = 0 RA × 400 − P × 200 = 0
RA = 100N
(2) 截开 1-1 截面,取左段,加内力
=
x 0
∈ (0,a) x ∈(a,
2a]
上海理工大学 力学教研室
3
M
(x)
⎧= ⎨⎩ =
RA RA
× ×
x x
+ +
MA MA
= −
2Px − Pa 2P × (x − a)
=
Pa
(3) 画 Q 图和 M 图

第5章-弯曲内力例题详解

第5章-弯曲内力例题详解

剪力弯矩最大值: 剪力弯矩最大值
FS max = qa
M max
4. 讨论
作用处, 在 Me 作用处,左右横截面 上的剪力相同, 上的剪力相同,弯矩值突变
单辉祖,材料力学教程
M 右 − M左 = Me
5
例 5-4 载荷可沿梁移动,求梁的最大剪力与最大弯矩 载荷可沿梁移动, 解:1. FS 与 M 图 :
3. 画剪力与弯矩图 剪力图:
FS1 = bF l FS2 = − aF l
弯矩图: 弯矩图
M1 =
bF x1 l
M2 =
aF x2 l Fab = l
最大值: 最大值
FS,max
bF = (b > a 时) l
M max
4. 讨论
作用处, 在 F 作用处 左右横截面上 的弯矩相,
∑M
A
= 0,
∑F
y
=0
FAx = qa, FCy = FAy = qa/2
2. 建立内力方程 BC 段:
qa FS1 = − , 2
qa M1 = x1 2
AB 段:
FS2 = qx 2 ,
qa q 2 M 2 = a − x2 2 2 qa FN2 = 2
单辉祖,材料力学教程
14
3. 画内力图
FSA+ = − FAy = −2F
单辉祖,材料力学教程
M A+ = M e − FAy ⋅ ∆ = Fl
M D− = F ⋅0=0 =
1
FSD− = F
例 题
例 5-2 建立剪力与弯矩方程,画剪力与弯矩图 建立剪力与弯矩方程,
FAy = bF l FBy = aF l
解:1. 支反力计算 : 2. 建立剪力与弯矩方程

材料力学5弯曲内力部分

材料力学5弯曲内力部分

材料力学部分本部分主要内容:一材料力学绪论二轴向拉伸、压缩与剪切三扭转四平面图形的几何性质五弯曲六应力状态与强度理论七组合变形八压杆稳定本部分主要内容:(一)弯曲内力(二)弯曲应力(三)弯曲变形主要内容:一平面弯曲的概念和实例二受弯杆件的简化三剪力和弯矩四剪力方程和弯矩方程·剪力图和弯矩图五剪力、弯矩与分布荷载集度间的关系六弯曲内力部分习题及解答(一)弯曲内力一平面弯曲的概念及实例1. 弯曲: 杆受垂直于轴线的外力或外力偶矩矢的作用时,轴线变成了曲线,这种变形称为弯曲。

2. 梁:以弯曲变形为主的构件通常称为梁。

3.工程实例一平面弯曲的概念及实例4. 平面弯曲:杆发生弯曲变形后,轴线仍然和外力在同一平面内。

对称弯曲(如下图)——平面弯曲的特例。

非对称弯曲——若梁不具有纵对称面,或者,梁虽具有纵对称面但外力并不作用在对称面内,这种弯曲则统称为非对称弯曲。

本部分内容以对称弯曲为主,讨论梁的应力和变形计算。

一平面弯曲的概念及实例梁的支承条件与载荷情况一般都比较复杂,为了便于分析计算,应进行必要的简化,抽象出计算简图。

1. 构件本身的简化通常取梁的轴线来代替梁。

2. 载荷简化作用于梁上的载荷(包括支座反力)可简化为三种类型:集中力、集中力偶和分布载荷。

3. 支座简化二受弯杆件的简化①固定铰支座2个约束,1个自由度。

如:桥梁下的固定支座,止推滚珠轴承等。

②辊轴支座1个约束,2个自由度。

如:桥梁下的辊轴支座,滚珠轴承等。

二受弯杆件的简化③固定端3个约束,0个自由度。

如:游泳池的跳水板支座,木桩下端的支座等。

q (x )—分布力②悬臂梁二受弯杆件的简化③外伸梁[例] 求下列各图示梁的内力方程并画出内力图。

P Y )x (Q O ==解:①求支反力)L x (P M x Y )x (M O O -=-= ②写出内力方程PLM P Y O O == ;[例]:求图示梁内力图。

xy解:截面法求内力。

11110)(qax M M qax F mi A-=\=+=åxQqa Mqa 2x3qa2/2xqqaa a1122M AY A=S Y 0=S A M 0qa 21M 2qa 2A 2=-+2A qa 21M -=0=-+-A Y qa qa 0=A Y 四剪力方程和弯矩方程·剪力图和弯矩图一、剪力、弯矩与分布荷载间的微分关系对d x 段进行平衡分析,有:[]0d d 0=+-+=å)x (Q )x (Q x )x (q )x (Q Y )x (Q x )x (q d d =五剪力、弯矩与分布荷载集度间的关系及应用()()c x q dxx dQ ==讨论:特别地,当q=c :1、q=c>0 : 均布载荷向上,则Q 向右上方倾斜的直线2、q=c=0 : 没有均载荷,则Q 为水平直线3、q=c<0: 均布载荷向下,则Q 向右下方倾斜的直线五剪力、弯矩与分布荷载集度间的关系及应用q (x )M (x )+d M (x )Q (x )+d Q (x )Q (x )M (x )d x A0dM(x)][M(x)M(x)q(x)(dx)21Q(x)dx ,0)F (m2i A=+-++=å)Q(x dxdM(x)=弯矩图上某点处的切线斜率等于该点处剪力的大小。

材料力学弯曲变形答案

材料力学弯曲变形答案

第一章 绪论一、是非判断题1.1 材料力学的研究方法与理论力学的研究方法完全相同。

( ) 1.2 内力只作用在杆件截面的形心处。

( ) 1.3 杆件某截面上的内力是该截面上应力的代数和。

( ) 1.4 确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。

( ) 1.5 根据各向同性假设,可认为材料的弹性常数在各方向都相同。

( ) 1.6 根据均匀性假设,可认为构件的弹性常数在各点处都相同。

( ) 1.7 同一截面上正应力ζ与切应力η必相互垂直。

( ) 1.8 同一截面上各点的正应力ζ必定大小相等,方向相同。

( ) 1.9 同一截面上各点的切应力η必相互平行。

( ) 1.10 应变分为正应变ε和切应变γ。

( ) 1.11 应变为无量纲量。

( ) 1.12 若物体各部分均无变形,则物体内各点的应变均为零。

( ) 1.13 若物体内各点的应变均为零,则物体无位移。

( ) 1.14 平衡状态弹性体的任意部分的内力都与外力保持平衡。

( )1.15 题1.15图所示结构中,AD 杆发生的变形为弯曲与压缩的组合变形。

( )1.16 题1.16图所示结构中,AB 杆将发生弯曲与压缩的组合变形。

( )二、填空题1.1 材料力学主要研究 受力后发生的 ,以及由此产生的 。

1.2 拉伸或压缩的受力特征是 ,变形特征是 。

1.3 剪切的受力特征是 ,变形特征是 。

1.4 扭转的受力特征是 ,变形特征是 。

B题1.15图题1.16图1.5 弯曲的受力特征是 ,变形特征是 。

1.6 组合受力与变形是指 。

1.7 构件的承载能力包括 , 和 三个方面。

1.8 所谓 ,是指材料或构件抵抗破坏的能力。

所谓 ,是指构件抵抗变形的能力。

所谓 ,是指材料或构件保持其原有平衡形式的能力。

1.9 根据固体材料的性能作如下三个基本假设 , , 。

材料力学综合题

材料力学综合题

题1 如图所示受扭圆轴,正确的扭矩图为图( )
题2 等截面圆轴上装有四个皮带轮,则 四种方案中最合理方案为( )。 (A)将C轮与D轮对调; (B)将B轮与D轮对调; (C)将B轮与C轮对调; (D)将B轮与D轮对调,然后再将B轮与C 轮对调。
题30图
题3 扭转切应力公式适用于哪种杆件?( )。
题5 图示四根受拉杆危险横截面的面积相同, 首先破坏的杆件为

题6 两根钢制拉杆受力如图,若杆长L2=2L 1,横截面面积A2=2A1,则两杆的伸长Δ L和纵向线应变ε之间的关系应为( )。 (A) ΔL2=ΔL1,ε2=ε1 (B) ΔL2=2ΔL1,ε2=ε1 (C) ΔL2=2ΔL1,ε2=2ε1 (D) ΔL2=ΔL1/2,ε2=2ε1/2
第一章 绪 论
答案:1 强度要求,刚度要求,稳定性 要求。 2 拉伸或压缩,剪切,扭转, 弯曲。
1 为了保证工程结构或机械的正常工作, 构件应有足够的能力负担起应当承受的 载荷。因此,它应当满足以下要求:

2 杆件变形的基本形式有以下几种:


第二章 拉伸与压缩
答案 1-7 ABCDD BD
题1 下列构件中哪些属于轴向拉伸 或压缩? (A)(a)、(b); (B) (b)、(c);
题5 图示(a)、(b)两根梁,它们的( )。 (A) Q、M图都相同 (B) Q、M图都不相同 (C) Q图相同,M图不同 (D) M图相同,Q图不同
题6 梁的某一段内作用有均匀分布力时,则 该段内的内力图为( )。 (A) Q水平线,M斜直线 (B) Q斜直线,M曲线 (C) Q曲线,M曲线 (D) Q斜直线,M带拐点的曲线
(A)矩形截面 (B)任意实心截面 (C)任意材料的圆截面 (D)线弹性材料的圆截面

材料力学课后习题答案5章

材料力学课后习题答案5章
(b)
保留有限量,略去一阶和二阶微量后,得
足标 C 系指梁微段右端面的形心,对题图(b)亦同。 根据题图 b,由
∑F
略去微量 qdx 后,得
y
=0 ,FS左 + qdx − FS右 = 0
FS右 = FS左
仍据题图 b,由
(c)
∑M
C
=0 ,M 右 − M e − qdx(
dx ) − FS左 dx − M 左 = 0 2
11l 处有 FS2 = 0 , M 2 有极大值,其值为 24 121 2 M 2 max = M max = ql 1152
(d)解:1.建立剪力、弯矩方程
8
图 5-9d 坐标如图 5-9d(1)所示,由截面法易得剪力、弯矩方程分别为
q( x1 ) ⋅ x1 qx 2 =− 1 2 l ql FS2 = − + qx2 4 qx 3 M1 = − 1 3l q 2 ql l M 2 = x2 − ⋅ ( + x2 ) 2 4 6 FS1 = −
2 q0l q 0 x2 FS = − + 4 l q x3 ql M = 0 x2 − 0 2 4 3l
l (0 ≤ x2 ≤ ) 2 l (0 ≤ x2 ≤ ) 2
(e) (f)
3.画剪力、弯矩图 依据式(c)和(e)可绘剪力图,如图 5-9b(2)所示;依据式(d)和(f)可绘弯矩图,如图 5-9b(3) 所示。 (c)解:1.求支反力
=0 ,FS左 + F + qdx − FS右 = 0
保留有限量,略去微量 qdx 后,得
FS右 − FS左 = F
为了更一般地反映 F 作用处剪力的突变情况(把向下的 F 也包括在内) ,可将上式改写为

测试题-弯曲内力(答案)

测试题-弯曲内力(答案)

班级:学号:姓名:《工程力学》弯曲内力测试题一、判断题(每小题2分,共20分)1、根据剪力图和弯矩图,可以初步判断梁的危险截面位置。

(√)2、梁的内力图通常与横截面面积有关。

(×)3、将梁上的集中力平移,不会改变梁的内力分布。

(×)4、梁端铰支座处无集中力偶作用,该端铰支座处的弯矩必为零。

(√)5、分布载荷q(x)向上为负,向下为正。

(×)6、简支梁的支座上作用集中力偶M,当跨长l改变时,梁内最大剪力发生改变,而最大弯矩不改变。

(√)7、剪力图上斜直线部分一定有分布载荷作用。

(√)8、在集中力作用的截面处,剪力图有突变,弯矩图连续但不光滑。

(√)9、梁在集中力偶作用截面处,弯矩图有突变,剪力图无变化。

(√)10、在梁的某一段上,若无载荷q作用,则该段梁上的剪力为常数。

(√)二、单项选择题(每小题2分,共20分)1、如图所示,火车轮轴产生的是(D )。

A.拉伸或压缩变形B.剪切变形C.扭转变形D.弯曲变形2、梁在集中力偶作用的截面处,它的内力图为(C )。

A. 剪力图有突变,弯矩图无变化B. 剪力图有突变,弯矩图有转折C. 弯矩图有突变,剪力图无变化D. 弯矩图有突变,剪力图有转折3、在下图四种情况中,截面上弯矩为正,剪力为负的是(B )。

4、梁在某一段内作用有向下的分布力时,则在该段内,弯矩图是一条(A )。

A. 上凸曲线B. 下凸曲线C. 带有拐点的曲线;D. 斜直线5、梁受力如图,在B截面处(D )A. 剪力图有突变,弯矩图连续光滑B. 剪力图有尖角,弯矩图连续光滑C. 剪力图、弯矩图都有尖角D. 剪力图有突变,弯矩图有尖角6、图示梁,当力偶M e的位置改变时,有(B )A. 剪力图、弯矩图都改变B. 剪力图不变,只弯矩图改变C. 弯矩图不变,只剪力图改变D. 剪力图、弯矩图都不变F qCBAFM eaqa a7、若梁的受力情况对于梁的中央截面为反对称(如图),则下列结论中正确的是(D )A. 剪力图和弯矩图均为反对称,中央截面上剪力为零B. 剪力图和弯矩图均为对称,中央截面上弯矩为零C. 剪力图反对称,弯矩图对称,中央截面上剪力为零D. 剪力图对称,弯矩图反对称,中央截面上弯矩为零8、多跨静定梁的两种受载情况分别如图所示,力F靠近铰链,以下结论正确的是(C )A. 两者的剪力图和弯矩图完全相同B. 两者的剪力图相同,弯矩图不同C. 两者的剪力图不同,弯矩图相同D. 两者的剪力图和弯矩图均不相同9、多跨静定梁的两种受载情况如图所示,下列结论中正确的是(D )A. 两者的剪力图和弯矩图完全相同B. 两者的剪力图相同,弯矩图不同C. 两者的剪力图不同,弯矩图相同D. 两者的剪力图和弯矩图均不相同10、若梁的剪力图和弯矩图分别如图所示,则该图表明(C )A. AB段有均布载荷,BC段无载荷;B. AB 段无载荷,B截面处有向上的集中力,BC段有向下的均布载荷;C. AB 段无载荷,B截面处有向下的集中力,BC段有向下的均布载荷;D. AB 段无载荷,B截面处有顺时针的集中力偶,BC段有向下的均布载荷。

弯曲内力习题及答案

弯曲内力习题及答案

弯曲内力1. 长l 的梁用绳向上吊起,如图所示。

离为x 。

梁内由自重引起的最大弯矩|M |max 为最小时的x (A) /2l ; (B) /6l ;(C …) 1)/2l ; (D) 1)/2l 。

2. 多跨静定梁的两种受载情况如图(a)、(b)所示。

下列结论中哪个是正确的 (A)(B) 两者的剪力图相同,弯矩图不同; (C) 两者的剪力图不同,弯矩图相同; (D ….) 两者的剪力图不同,弯矩图也不同。

3. 图示(a)、(b)两根梁,它们的)(A) 剪力图、弯矩图都相同; (B …)(C) 剪力图不同,弯矩图相同; (D) 剪力图、弯矩图都不同。

4. 图示梁,当力偶M e 的位置改变时,有下列结论: (A) 剪力图、弯矩图都改变; (B …) 剪力图不变,只弯矩图改变; (C) 弯矩图不变,只剪力图改变; (D) 剪力图、弯矩图都不变。

5. 图示梁C 截面弯矩M C = ;为使M C =0,则M e = ;为使全梁不出现正弯矩,则M e ≥。

!6. 图示梁,已知F 、l 、a 。

使梁的最大弯矩为最小时,梁端重量P = 。

7. 图示梁受分布力偶作用,其值沿轴线按线性规律分布,则B 端支反力为 ,弯矩图为 次曲线,|M |max 发生在 处。

8. 图示梁,m (x )为沿梁长每单位长度上的力偶矩值,m (x )、q (x )、F S (x )和M (x )之间的微分关系为: S d ();d F x x=d ()d M x x= 。

9. 外伸梁受载如图,欲使AB 中点的弯矩等于零时,需在B 端加多大的集中力偶矩(将大小和方向标在图上)。

10. 简支梁受载如图,欲使A 截面弯矩等于零时,则=e21e /M M 。

1-10题答案:1. C 2. D 3. B 4. B[5. 28e 2M ql -;42ql ;22ql6. ⎪⎭⎫⎝⎛-a l a F 24 7. m 0/2;二;l /2 8. q (x );F S (x )+ m (x ) 9.10. 1/211-60题. 作图示梁的剪力图和弯矩图。

材料力学第2版 课后习题答案 第5章 弯曲内力

材料力学第2版 课后习题答案 第5章 弯曲内力

qa qa
qa
1 qa
qa
2
(a)Q 图
1 qa 2 8
(b)Q 图
1 qa 2 2
(c)Q 图
1 qa 2 2
3qa 2
1 qa 2 2
(a)M 图
qa 2
(b)M 图
qa 2
(c)M 图
8KN
qa
5KN
1KN
8KN
(d)Q 图
1 qa 2 2
3 qa 2 2
(e)Q 图
3KN
(f)Q 图
qa 2 1 KN ⋅ m 4
M3 = 0
(f) Q1 = 10KN
Q2 = 10KN
Q3 = 10KN
M1 = 5KN ⋅ m M 2 = 5KN ⋅ m
M 3 = −10KN ⋅ m
5-2 试写出下列各梁的剪力方程和弯矩方程,并作剪力图和弯矩图,确定|Fmax|和|Mmax|。
解 :( a) Q(x) = 3M 0 l
Qmax
2
8
2
4
0.5a
qa
1 qa
2
(j)Q 图
3a
5 ql
8
8
(k)Q 图
3P 4
(l)Q 图
1 qa 2
1 ql 2
1 Pa
2
128
4
qa 2
(j)M 图
1 ql 2 8
(k)M 图
(l)M 图
1 Pa 2
5-3 利用 q、 FS 、M 的微分关系作出下列各梁的剪力图和弯矩图,并求出| FSmax |和|Mmax|。
1 qa 2 4
(a)M 图
qa
(b)Q 图

《材料力学》第五章课后习题参考答案

《材料力学》第五章课后习题参考答案

错误原因及避免方法
错误原因
1. 对材料力学的基本原理理解不深入,导致选择错误的公式或方法进行 计算。
2. 计算过程中出现数值错误或单位不统一等问题,导致结果偏差较大。
错误原因及避免方法
• 对计算结果缺乏分析和讨论,无法判断其 合理性和准确性。
错误原因及避免方法
01
避免方法
02
03
04
1. 加强对材料力学基本原理 的学习和理解,掌握各种公式 和方法的适用范围和条件。
题目一
分析并比较不同材料在拉伸过程中的力学行为差异。
题目二
讨论材料疲劳破坏的机理及影响因素。
要求
掌握材料在拉伸过程中的应力-应变曲线,理解弹性模量 、屈服强度、抗拉强度等概念,能够运用所学知识分析不 同材料的力学行为。
要求
了解材料疲劳破坏的基本概念,掌握疲劳破坏的机理和影 响因素,能够运用所学知识分析实际工程中的疲劳破坏问 题。
知识点综合运用
弹性力学基础
运用弹性力学的基本原理,分析 材料在弹性阶段的力学行为,计
算弹性模量等参数。
塑性力学基础
运用塑性力学的基本原理,分析材 料在塑性阶段的力学行为,理解屈 服强度、抗拉强度等概念。
疲劳破坏理论
运用疲劳破坏的基本理论,分析材 料在交变应力作用下的力学行为, 讨论疲劳破坏的机理和影响因素。
加强实践应用
除了理论学习外,我还计划通过 实践应用来加深对材料力学的理 解。例如,可以尝试利用所学知 识解决实际工程问题,或者参加 相关的实验和课程设计等。
拓展相关学科领域
材料力学是一门基础学科,与其他学 科领域有着密切的联系。因此,我计 划拓展相关学科领域的学习,如结构 力学、弹性力学等,以便更全面地了 解材料的力学性能和工程应用。

材料力学练习册5-6详细答案

材料力学练习册5-6详细答案

第五章弯曲应力5-1 直径为d的金属丝,环绕在直径为D的轮缘上。

试求金属丝内的最大正应变与最大正应力。

已知材料的弹性模量为E。

解:5-2 图示直径为d的圆木,现需从中切取一矩形截面梁。

试问:(1) 如欲使所切矩形梁的弯曲强度最高,h和b应分别为何值;(2) 如欲使所切矩形梁的弯曲刚度最高,h和b应分别为何值;解:(1) 欲使梁的弯曲强度最高,只要抗弯截面系数取极大值,为此令(2) 欲使梁的弯曲刚度最高,只要惯性矩取极大值,为此令5-3 图示简支梁,由№18工字钢制成,在外载荷作用下,测得横截面A 底边的纵向正应变ε=3.0×10-4,试计算梁内的最大弯曲正应力。

已知钢的弹性模量E =200GPa ,a =1m 。

解:梁的剪力图及弯矩图如图所示,从弯矩图可见:5-4 No.20a 工字钢梁的支承和受力情况如图所示。

若[]MPa 160=σ,试求许可载荷F 。

5-5 图示结构中,AB 梁和CD 梁的矩形截面宽度均为b 。

如已知AB 梁高为1h ,CD 梁高为2h 。

欲使AB 梁CD 梁的最大弯曲正应力相等,则二梁的跨度1l 和2l 之间应满足什么样的关系?若材料的许用应力为[σ],此时许用载荷F 为多大?5-6 某吊钩横轴,受到载荷kN 130F =作用,尺寸如图所示。

已知mm 300=l ,mm 110h =,mm 160b =,mm 75d 0=,材料的[]MPa 100=σ,试校核该轴的强度。

5-7 矩形截面梁AB,以固定铰支座A及拉杆CD支承,C点可视为铰支,有关尺寸如图所示。

设拉杆及横梁的[]MPaσ,试求作用于梁B端的许可载荷F。

=1605-8 图示槽形截面铸铁梁,F=10kN,M e=70kN·m,许用拉应力[σt]=35MPa,许用压应力[σc]=120MPa。

试校核梁的强度。

解:先求形心坐标,将图示截面看成一大矩形减去一小矩形惯性矩弯矩图如图所示,C截面的左、右截面为危险截面。

弯曲时的内力和应力

弯曲时的内力和应力

第七章 弯曲时的内力和应力※ 说明:本文档仅限练习。

与考试无任何联系。

如答案有误请自行修改。

如仍有疑问咨询相关教师。

Q群125207914一、填空题:1、梁产生弯曲变形时的受力特点,是梁在过轴线的平面内受到外力偶的作用或者受到和梁轴线相___________的外力的作用。

3、矩形截面梁弯曲时,其横截面上的剪力作用线必然________于外力并通过截面________。

5、梁弯曲时,任一横截面上的弯矩可通过该截面一侧(左侧或右侧)的外力确定,它等于该一侧所有外力对________力矩的代数和。

7、用截面法确定梁横截面上的剪力时,若截面右侧的外力合力向上,则剪力为______。

9、将一悬臂梁的自重简化为均布载荷,设其载荷集度为q,梁长为L,由此可知在距固定端L/2处的横截面上的剪力为_________,固定端处横截面上的弯矩为__________。

10、在梁的集中力偶左、右两侧无限接近的横截面上,剪力相等,而弯矩则发生_______,_________值等于梁上集中力偶的力偶矩。

11、剪力图和弯矩图是通过________和___________的函数图象表示的。

18、在梁的某一段内,若无分布载荷q(X)的作用,则剪力图是__________于X轴的直线。

19、在梁的弯矩图上,某一横截面上的弯矩有极值(极大值或极小值),该极值必发生在对应于剪力___________的横截面上。

21、梁在发生弯曲变形的同时伴有剪切变形,这种平面弯曲称为__________弯曲。

24、梁在弯曲时的中性轴,就是梁的___________与横截面的交线。

28、梁弯曲时,横截面中性轴上各点的正应力等于零,而距中性轴________处的各正应力为最大。

29、梁弯曲变形后,以中性层为界,靠__________边的一侧纵向纤维受压力作用,而靠__________边的一侧纵向纤维受拉应力作用。

31、等截面梁内的最大正应力总是出现在最大___________所在的横截面上。

工程力学 第五章 弯曲内力(FS)

工程力学 第五章 弯曲内力(FS)

楼房的横梁:
阳台的挑梁:
(Internal Forces in Beams) 二、弯曲的概念:
受力特点——作用于杆件上的外力都垂直于杆的轴线。 变形特点——杆轴线由直线变为一条平面的曲线。
P M
q
主要产生弯曲变形的杆--- 梁。 RA 三、平面弯曲的概念:
NB
(Internal Forces in Beams) F1 q
A
a m l m x
F
B
F
x
0,
XA 0
Fa M A 0 , RB l F (l a ) Fy 0 , YA l
XA A
YA
F
B
RB
(Internal Forces in Beams) 求内力——截面法 F (l a ) Fy 0 , FS YA l m XA=0A F (l a ) M C 0 , M YA x l x m YA 1、 剪力(Shear force) FS x 构件受弯时,横截面上其作用线平行 于截面的内力. FS 2、弯矩(Bending moment )M M C 构件受弯时,横截面上其作用面垂直 YA 于截面的内力偶矩. M 剪力 C 弯曲构件内力 Fs 弯矩
m (受拉)
m
按变形:当dx 微段的弯曲上凸(即该段的下 半部受压)时,横截面m-m 上的弯矩为负 注:横截面上的弯矩:
-
m
“左顺右逆”为正;反之为负 按受力:“上压下拉”为正,反之为负
(受压)
(Internal Forces in Beams) 例题2 图示梁的计算简图。已知 F1、F2,且 F2 > F1 , 尺寸a、b、c和 l 亦均为已知.试求梁在 E 、 F 点处横截面处 的剪力和弯矩. RA F2 RB F1 a 解: (1)求支反力 R 和 R
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Fl=900N.m
160N.m 140N.m
3、 解:
M max 160 N m W Z 0.1d 1562.5mm
3 3
σ
M max WZ

160 10 1562.5
3
102.4M pa < σ 140M pa
-1-
故梁的强度足够。
20N.m
北华大学机械工程学院材料力学习题答案
北华大学机械工程学院材料力学习题答案
第五章弯曲应力习题答案
一、单项选择题
1、A
二、填空题
1、
pd
4
32
L L
pd
4
64
L L
pd 16
3
L L
pd
3
32
2、弯矩 惯性矩 刚度 3、线性 愈大 零 4、中性层 中性轴
三、 计算题
1、 解:
M max 270kN m
270kN.m
3 -6
σ
M max Wz

270 10
8
1860 10
1.45 10 pa = 145M pa < σ 160M pa
故梁的强度足够。 2、 解:
M max 900 N m
σ
M max Wz

900 10 9b
3
3
σ 160M pa
6
b 15.5mm
h 46.5mm

M WZ

175 10
6
6 9
1430 10 10
122.4M pa < 140M pa
故大梁的强度足够。
6、 解: M=8.5× 3× 10 (720-80)=5440× 3( N mm ) 10

M WZ 6 5440 10 b 3b
3 6
W Z 0.1d
3
max
WZ
M max WZ [ ]
[ ] 3 10 80
6
M max
d 72.5mm
-2-
2 3
50 M pa
解得: b≥41.7mm; 7、 解: (1)求最大,其值为 M
max

ql 2
2

6000 1 2
2
3000 N m
(2)求最大应力 因危险截面上的弯矩为负,故截面上边缘受最大拉应力,
t max c max
8、 解:
M max Iz M max Iz
y1 y2
3000 25.6 10 3000 25.6 10
8 8
0.0152 178 10 Pa 178M Pa
6
0.0328 385 10 Pa 385M Pa
6
M max Fa 5 10 600 3 10 N mm
4、 解:
σ max a
σ

M WZ

6Pl b (4b)
2

3Pl 8b
3
(Mpa)
max
b

M WZ

6Pl 4b b
2

3Pl 2b
3
(Mpa)
5、 解:M=1/2(G + Q)× = 1/2(55+15)× l/2 10/2 × 6 10 6 =175× 10 ( N mm )
相关文档
最新文档