高考真题汇总(函数)
高考函数试题及答案解析

高考函数试题及答案解析1. 已知函数f(x) = 2x^3 - 3x^2 - 12x + 1,求f(x)的单调区间。
解析:首先对f(x)求导得到f'(x) = 6x^2 - 6x - 12。
令f'(x) > 0,解得x < -1或x > 2。
令f'(x) < 0,解得-1 < x < 2。
因此,f(x)在(-∞, -1)和(2, +∞)上单调递增,在(-1, 2)上单调递减。
2. 函数g(x) = x^2 - 4x + 3的最小值是多少?解析:将g(x)写成顶点式g(x) = (x - 2)^2 - 1,可以看出当x = 2时,g(x)取得最小值-1。
3. 若函数h(x) = ax^2 + bx + c(a ≠ 0)的图象与x轴有两个交点,求a的取值范围。
解析:由于h(x)与x轴有两个交点,说明方程ax^2 + bx + c = 0有两个不同的实根。
根据判别式Δ = b^2 - 4ac > 0,且a ≠ 0,可得a的取值范围为a > 0。
4. 已知函数p(x) = sin(x) + cos(x),求p(x)的最大值。
解析:将p(x)写成p(x) = √2sin(x + π/4),由于正弦函数的最大值为1,因此p(x)的最大值为√2。
5. 函数q(x) = e^x - x - 1的零点个数是多少?解析:对q(x)求导得到q'(x) = e^x - 1。
令q'(x) = 0,解得x = 0。
当x < 0时,q'(x) < 0,q(x)单调递减;当x > 0时,q'(x) > 0,q(x)单调递增。
由于q(0) = 0,且q(x)在x = 0处由减变增,因此q(x)只有一个零点。
6. 函数r(x) = ln(x) - x/x + 1的单调递减区间是什么?解析:首先对r(x)求导得到r'(x) = 1/x - 1/(x + 1)^2。
函数模块5年高考真题汇总通用版(含答案)

答案解释考点01函数概念与单调性考点02函数周期性与奇偶性应用又因为x 不恒为0,可得()1e e 0a x x --=,即()1e e a x x -=,则()1x a x =-,即11a =-,解得2a =.故选:D.5.(2022·全国·统考高考真题)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则()221k f k ==∑()A .21-B .22-C .23-D .24-【答案】D【分析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=- ,()()()462210f f f +++=- ,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解.【详解】因为()y g x =的图像关于直线2x =对称,所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-,因为()(2)5f x g x +-=,所以()(2)5f x g x ++=,代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-,所以()()()()35212510f f f +++=-⨯=- ,()()()()46222510f f f +++=-⨯=- .因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-.因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=,联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R ,所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑ .故选:D【点睛】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.6.(2022·全国·统考高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑()A .3-B .2-C .0D .1【答案】A【分析】法一:根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出.【详解】[方法一]:赋值加性质因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++= .由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .[方法二]:【最优解】构造特殊函数由()()()()f x y f x y f x f y ++-=,联想到余弦函数和差化积公式()()cos cos 2cos cos x y x y x y ++-=,可设()cos f x a x ω=,则由方法一中()()02,11f f ==知二、填空题考点03函数图像应用一、单选题-的大致图像,1.(2022·全国·统考高考真题)如图是下列四个函数中的某个函数在区间[3,3]则该函数是()A .3231x xy x -+=+B .321x xy x -=+C .2y =【答案】A【分析】由函数图像的特征结合函数的性质逐项排除即可得解【详解】设()321x x f xx -=+,则()10f =,故排除B;设()22cos 1x x h x x =+,当π0,2x ⎛⎫∈ ⎪⎝⎭时,0cos 1x <<,....A.10π9BC.4π3D【答案】C【分析】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭,即可得到....【答案】D【分析】先判断函数的奇偶性,得是奇函数,排除A,再注意到选项的区别,利用特殊值得正确答案.....【答案】B【分析】由分子、分母的奇偶性,易于确定函数为奇函数,由(4)f 的近似值即可得出结果.【详解】设32()22x x y f x ==+32()22x x x f x -=-=-+,344240,2-⨯>+排除选项D ;考点04函数性质综合应用一、单选题1.(2022·全国·统考高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑()A .3-B .2-C .0D .1【答案】A【分析】法一:根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出.【详解】[方法一]:赋值加性质因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()221k f k ==∑()A .21-B .22-C .23-D .24-【答案】D【分析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=- ,()()()462210f f f +++=- ,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解.【详解】因为()y g x =的图像关于直线2x =对称,所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-,因为()(2)5f x g x +-=,所以()(2)5f x g x ++=,代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-,所以()()()()35212510f f f +++=-⨯=- ,()()()()46222510f f f +++=-⨯=- .因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-.因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=,联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R ,所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑ .故选:D【点睛】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.3.(2021·全国·统考高考真题)设0a ≠,若x a =为函数()()()2f x a x a x b =--的极大值点,则()A .a b <B .a b>C .2ab a <D .2ab a >【答案】D【分析】先考虑函数的零点情况,注意零点左右附近函数值是否变号,结合极大值点的性质,对进行分类讨论,画出图象,即可得到,a b 所满足的关系,由此确定正确选项.【详解】若a b =,则()()3f x a x a =-为单调函数,无极值点,不符合题意,故a b ¹.()f x ∴有x a =和x b =两个不同零点,且在x a =左右附近是不变号,在x b =左右附近是变号的.依题意,为函数的极大值点,∴在x a =左右附近都是小于零的.当a<0时,由x b >,()0f x ≤,画出()f x 的图象如下图所示:由图可知b a <,a<0,故2ab a >.当0a >时,由x b >时,()0f x >,画出()f x 的图象如下图所示:由图可知b a >,0a >,故2ab a >.综上所述,2ab a >成立.故选:D933⎝⎦。
函数--2023高考真题分类汇编完整版

函数--高考真题汇编第二节函数的基本性质1.(2023全国甲卷理科13,文科14)若()21sin 2y x ax x π⎛⎫=-+++ ⎪⎝⎭为偶函数,则a =.【分析】利用偶函数的性质得到22f f ππ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,从而求得2a =,再检验即可得解.【解析】因为()()()221sin 1cos 2y f x x ax x x ax x π⎛⎫==-+++=-++ ⎪⎝⎭为偶函数,定义域为R ,所以22f f ππ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,即221cos 1cos 222222a ππππππ⎛⎫⎛⎫⎛⎫---+-=-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则2211222a ππ⎛⎫⎛⎫π=+--=π ⎪ ⎪⎝⎭⎝⎭,故a =2,此时()()2212cos 1cos f x x x x x x =-++=++,所以()()()()221cos 1cos f x x x x x f x -=-++-=++=,又定义域为R ,故()f x 为偶函数,所以2a =.故答案为2.2.(2023全国乙卷理科4,文科5)已知()e e 1xax x f x =-是偶函数,则a =()A.2- B.1- C.1D.2【分析】根据偶函数的定义运算求解.【解析】因为()e e 1xax x f x =-为偶函数,则()()()()1e e e e 0e 1e 1e 1a x xx x axax ax x x x f x f x ---⎡⎤--⎣⎦--=-==---,又因为x 不恒为0,可得()1e e 0a xx --=,即()1e e a x x -=,则()1x a x =-,即11a =-,解得2a =.故选D.3.(2023新高考I 卷11)已知函数()f x 的定义域为R ,()()()22f xy y f x x f y =+,则()A.()00f = B.()10f = C.()f x 是偶函数D.0x =为()f x 的极小值点【解析】选项A ,令0x y ==,则()00f =,故A 正确;选项B ,令1x y ==,则()()()111f f f =+,所以()10f =,故B 正确;选项C ,令1x y ==-,则()()()111f f f =-+-,因为()10f =,所以()10f -=,令1y =-,则()()()()21f x f x x f f x -=+-=,所以()f x 是偶函数,故C 正确;选项D ,对式子两边同时除以220x y ≠,得到()()()2222f xy f x f y x y x y=+,故可以设()20,0ln ,0x f x x x x =⎧⎪=⎨≠⎪⎩,当0x >时,()2ln f x x x =,()()212ln 2ln 1f x x x x x x x'=+⋅=+,令()0f x '>,解得12ex ->,令()0f x '<,解得120e x -<<,故()f x 在120,e -⎛⎫ ⎪⎝⎭单调递减,在12e ,-⎛⎫+∞ ⎪⎝⎭单调递增.又()f x 是偶函数,所以()f x 在12e ,0-⎛⎫- ⎪⎝⎭单调递增,在12,e -⎛⎫-∞- ⎪⎝⎭单调递减.()f x 的图像如图所示,所以0x =为()f x 的极大值点,故D 错误.故选ABC.4.(2023新高考II 卷4)若()()21ln 21x f x x a x -=++为偶函数,则a =()A.1- B.0 C.12D.1【解析】()()2111ln ,,,2122x f x x a x x -⎛⎫⎛⎫=+∈-∞-+∞ ⎪ ⎪+⎝⎭⎝⎭,则()()()2121lnln 2121x x f x x a x a x x --+-=-+=-+-+-.因为()f x 为偶函数,所以()()f x f x =-,即()()()212121lnln ln 212121x x x x a x a x a x x x -+-+=-+=-+-+,所以有x a x a +=-,得0a =.故选B.5.(2023北京卷4)下列函数中,在区间()0,+∞上单调递增的是()A.()ln f x x=- B.()12xf x =C.()1f x x=-D.()13x f x -=【分析】利用基本初等函数的单调性,结合复合函数的单调性判断ABC ,举反例排除D 即可.【解析】对于A ,因为ln y x =在()0,+∞上单调递增,y x =-在()0,+∞上单调递减,所以()ln f x x =-在()0,+∞上单调递减,故A 错误;对于B ,因为2x y =在()0,+∞上单调递增,1y x=在()0,+∞上单调递减,所以()12x f x =在()0,+∞上单调递减,故B 错误;对于C ,因为1y x =在()0,+∞上单调递减,y x =-在()0,+∞上单调递减,所以()1f x x=-在()0,+∞上单调递增,故C 正确;对于D,因为111221332f -⎛⎫=== ⎪⎝⎭,()()112101331,233f f --=====,显然()13x f x -=在()0,+∞上不单调,D 错误.故选C.6.(2023北京卷15)设0a >,函数()2,1,x x a f x a x a x a+<-⎧=-->⎪⎩,给出下列四个结论:①()f x 在区间()1,a -+∞上单调递减;②当1a 时,()f x 存在最大值;③设()()()111,M x f x x a ,()()()222,N x f x x a >,则1MN >;④设()()()333,P x f x x a <-,()()()444,Q x f x x a -,若PQ 存在最小值,则a 的取值范围是10,2⎛⎤ ⎥⎝⎦.其中所有正确结论的序号是.【分析】先分析()f x 的图像,再逐一分析各结论;对于①,取12a =,结合图像即可判断;对于②,分段讨论()f x 的取值范围,从而得以判断;对于③,结合图像可知MN 的范围;对于④,取45a =,结合图像可知此时PQ 存在最小值,从而得以判断.【解析】依题意,0a >,当x a <-时,()2f x x =+,易知其图像为一条端点取不到值的单调递增的射线;当a x a -≤≤时,()f x =()0,0,半径为a 的圆在x 轴上方的图像(即半圆);当x a >时,()1f x =-,易知其图像是一条端点取不到值的单调递减的曲线;对于①,取12a =,则()f x 的图像如下,显然,当(1,)x a ∈-+∞,即1,2x ⎛⎫∈-+∞ ⎪⎝⎭时,()f x 在1,02⎛⎫- ⎪⎝⎭上单调递增,故①错误;对于②,当1a ≥时,当x a <-时,()221f x x a =+<-+≤;当a x a -≤≤时,()f x =a ;当x a >时,()112f x =-<-≤-,综上:()f x 取得最大值a ,故②正确;对于③,结合图像,易知在1x a =,2x a >且接近于x a =处,()()()()()()111222,,,M x f x x a N x f x x a ≤>的距离最小,当1x a =时,()10y f x ==,当2x a >且接近于x a =处,()221y f x =<-,此时,1211MN y y >->>,故③正确;对于④,取45a =,则()f x 的图像如下,因为()()()()()()333444,,,P x f x x a Q x f x x a <-≥-,结合图像可知,要使PQ 取得最小值,则点P 在()425f x x x ⎛⎫=+<- ⎪⎝⎭上,点Q 在()4455f x x ⎫=-≤≤⎪⎭,同时PQ 的最小值为点O 到()425f x x x ⎛⎫=+<- ⎪⎝⎭的距离减去半圆的半径a ,此时,因为()425f x y x x ⎛⎫==+<- ⎪⎝⎭的斜率为1,则1OP k =-,故直线OP 的方程为y x =-,联立2y x y x =-⎧⎨=+⎩,解得11x y =-⎧⎨=⎩,则()1,1P -,显然()1,1P -在()425f x x x ⎛⎫=+<- ⎪⎝⎭上,满足PQ 取得最小值,即45a =也满足PQ 存在最小值,故a 的取值范围不仅仅是10,2⎛⎤⎥⎝⎦,故④错误.故答案为:②③.【评注】本题解决的关键是分析得()f x 的图像,特别是当a x a -≤≤时,()f x =的图像为半圆,解决命题④时,可取特殊值进行排除即可.第三节幂函数1.(2023天津卷3)若0.50.60.51.01, 1.01,0.6a b c ===,则,,a b c 的大小关系为()A .c a b >>B .c b a >>C .a b c>>D .b a c>>【分析】根据对应幂、指数函数的单调性判断大小关系即可.【解析】由 1.01x y =在R 上单调递增,则0.50.61.01 1.01a b =<=,由0.5y x =在[0,)+∞上单调递增,则0.50.51.010.6a c =>=.所以b a c >>.故选D.第四节指数与指数函数1.(2023天津卷3)若0.50.60.51.01, 1.01,0.6a b c ===,则,,a b c 的大小关系为()A .c a b >>B .c b a >>C .a b c>>D .b a c>>【分析】根据对应幂、指数函数的单调性判断大小关系即可.【解析】由 1.01x y =在R 上单调递增,则0.50.61.01 1.01a b =<=,由0.5y x =在[0,)+∞上单调递增,则0.50.51.010.6a c =>=.所以b a c >>.故选D.2.(2023全国甲卷文科11)已知函数()()21ex f x --=.记22a f ⎛= ⎝⎭,32b f ⎛= ⎝⎭,62c f ⎛⎫= ⎪ ⎪⎝⎭,则()A.b c a>> B.b a c>> C.c b a>> D.c a b>>【分析】利用作差法比较自变量的大小,再根据指数函数的单调性及二次函数的性质判断即可.【解析】令2()(1)g x x =--,则()g x 开口向下,对称轴为1x =,因为4112222⎛---=- ⎝⎭,而22491670-=+=>,所以631122->-由二次函数性质知63())22g g <,241122⎛---= ⎪⎝⎭,而22481682)0+-=+-==-<,即1122-<-,所以())22g g >,综上,(())222g g g <<,又e x y =为增函数,故a c b <<,即b c a >>.故选A.3.(2023新高考I 卷4)设函数()()2x x a f x -=在区间()0,1单调递减,则a 的取值范围是()A.(],2-∞- B.[)2,0- C.(]0,2 D.[)2,+∞【解析】令()t x x a =-,要使得()()2x x a f x -=在区间()0,1单调递减,需要满足()t x x a =-在区间()0,1单调递减,所以12a≥,所以a 的取值范围是[)2,+∞.故选D.4.(2023北京卷11)已知函数()24log xf x x =+,则12f ⎛⎫=⎪⎝⎭.【分析】根据给定条件,把12x =代入,利用指数、对数运算计算作答.【解析】函数2()4log xf x x =+,所以12211()4log 21122f =+=-=.故答案为1.第五节对数与对数函数1.(2023北京卷11)已知函数()24log xf x x =+,则12f ⎛⎫=⎪⎝⎭.【分析】根据给定条件,把12x =代入,利用指数、对数运算计算作答.【解析】函数2()4log xf x x =+,所以12211()4log 21122f =+=-=.故答案为1.2.(2023新高考I 卷10)噪声污染问题越来越受到重视,用声压级来度量声音的强弱,定义声压级020lg p pL p =⨯,其中常数()000p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级:声源与声源的距离/m声压级/dB 燃油汽车1060~90混合动力汽车1050~60电动汽车1040已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为1p ,2p ,3p ,则()A.12p p ≥ B.2310p p > C.30100p p = D.12100p p ≤【解析】选项A ,12121120000220lg 20lg 20lg lg 20lg 0p p p p pL L p p p p p ⎛⎫-=⨯-⨯=⨯-=⨯≥ ⎪⎝⎭,所以12p p ≥,所以A 正确;选项B ,223320lg10p LL p -=⨯≥,所以231lg 2p p ≥,所以23p p ≥B 错误;选项C ,33020lg40p L p =⨯=,所以30lg 2p p =,所以30100pp =,故C 正确;选项D ,112220lg 905040p L L p -=⨯≤-=,所以12lg 2p p ≤,所以12100pp ≤,故D 正确.故选ACD.第六节函数的图像及应用1.(2023全国甲卷理科10,文科12)已知()f x 为函数cos 26y x π⎛⎫=+ ⎪⎝⎭向左平移6π个单位所得函数,则()y f x =与1122y x =-交点个数为()A.1B.2C.3D.4【解析】因为函数πcos 26y x ⎛⎫=+ ⎪⎝⎭向左平移π6个单位可得()sin 2.f x x =-而1122y x =-过10,2⎛⎫- ⎪⎝⎭与()1,0两点,分别作出()f x 与1122y x =-的图像如图所示,考虑3π3π7π2,2,2222x x x =-==,即3π3π7π,,444x x x =-==处()f x 与1122y x =-的大小关系,结合图像可知有3个交点.故选C.【评注】本题考查了三角函数的图像与性质,画出图像,不难得到答案.2.(2023北京卷15)设0a >,函数()2,1,x x af x a x a x a+<-⎧=-->⎪⎩,给出下列四个结论:①()f x 在区间()1,a -+∞上单调递减;②当1a 时,()f x 存在最大值;③设()()()111,M x f x x a ,()()()222,N x f x x a >,则1MN >;④设()()()333,P x f x x a <-,()()()444,Q x f x x a -,若PQ 存在最小值,则a 的取值范围是10,2⎛⎤ ⎥⎝⎦.其中所有正确结论的序号是.【分析】先分析()f x 的图像,再逐一分析各结论;对于①,取12a =,结合图像即可判断;对于②,分段讨论()f x 的取值范围,从而得以判断;对于③,结合图像可知MN 的范围;对于④,取45a =,结合图像可知此时PQ 存在最小值,从而得以判断.【解析】依题意,0a >,当x a <-时,()2f x x =+,易知其图像为一条端点取不到值的单调递增的射线;当a x a -≤≤时,()f x =()0,0,半径为a 的圆在x 轴上方的图像(即半圆);当x a >时,()1f x =-,易知其图像是一条端点取不到值的单调递减的曲线;对于①,取12a =,则()f x 的图像如下,显然,当(1,)x a ∈-+∞,即1,2x ⎛⎫∈-+∞ ⎪⎝⎭时,()f x 在1,02⎛⎫- ⎪⎝⎭上单调递增,故①错误;对于②,当1a ≥时,当x a <-时,()221f x x a =+<-+≤;当a x a -≤≤时,()f x =a ;当x a >时,()112f x =-<-≤-,综上:()f x 取得最大值a ,故②正确;对于③,结合图像,易知在1x a =,2x a >且接近于x a =处,()()()()()()111222,,,M x f x x a N x f x x a ≤>的距离最小,当1x a =时,()10y f x ==,当2x a >且接近于x a =处,()221y f x =<-,此时,1211MN y y >->>,故③正确;对于④,取45a =,则()f x 的图像如下,因为()()()()()()333444,,,P x f x x a Q x f x x a <-≥-,结合图像可知,要使PQ 取得最小值,则点P 在()425f x x x ⎛⎫=+<- ⎪⎝⎭上,点Q 在()4455f x x ⎫=-≤≤⎪⎭,同时PQ 的最小值为点O 到()425f x x x ⎛⎫=+<- ⎪⎝⎭的距离减去半圆的半径a ,此时,因为()425f x y x x ⎛⎫==+<- ⎪⎝⎭的斜率为1,则1OP k =-,故直线OP 的方程为y x =-,联立2y x y x =-⎧⎨=+⎩,解得11x y =-⎧⎨=⎩,则()1,1P -,显然()1,1P -在()425f x x x ⎛⎫=+<- ⎪⎝⎭上,满足PQ 取得最小值,即45a =也满足PQ 存在最小值,故a 的取值范围不仅仅是10,2⎛⎤ ⎥⎝⎦,故④错误.故答案为:②③.【评注】本题解决的关键是分析得()f x 的图像,特别是当a x a -≤≤时,()f x =的图像为半圆,解决命题④时,可取特殊值进行排除即可.A .()25e e 2x x x --+B .25sin 1x x +【分析】由图知函数为偶函数,先判断函数的奇偶性排除选项;再判断函数在函数符号排除选项,即得答案.【解析】由图知:函数图象关于第七节函数与方程1.(2023全国甲卷理科10,文科12)已知()f x 为函数cos 26y x π⎛⎫=+ ⎪⎝⎭向左平移6π个单位所得函数,则()y f x =与1122y x =-交点个数为()A.1 B.2 C.3D.4【解析】因为函数πcos 26y x ⎛⎫=+ ⎪⎝⎭向左平移π6个单位可得()sin 2.f x x =-而1122y x =-过10,2⎛⎫- ⎪⎝⎭与()1,0两点,分别作出()f x 与1122y x =-的图像如图所示,考虑3π3π7π2,2,2222x x x =-==,即3π3π7π,,444x x x =-==处()f x 与1122y x =-的大小关系,结合图像可知有3个交点.故选C.【评注】本题考查了三角函数的图像与性质,画出图像,不难得到答案.。
(学生版)2024年高考数学真题分类汇编09:函数与导数

函数与导数一、单选题1.(2024·全国)已知函数为22,0()e ln(1),0x x ax a x f x x x ì---<=í++³î,在R 上单调递增,则a 取值的范围是()A .(,0]-¥B .[1,0]-C .[1,1]-D .[0,)+¥2.(2024·全国)已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A .(10)100f >B .(20)1000f >C .(10)1000f <D .(20)10000f <3.(2024·全国)设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x Î-时,曲线()y f x =与()y g x =恰有一个交点,则=a ()A .1-B .12C .1D .24.(2024·全国)设函数()()ln()f x x a x b =++,若()0f x ³,则22a b +的最小值为()A .18B .14C .12D .15.(2024·全国)曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为()A .16B C .12D .6.(2024·全国)函数()()2e e sin x xf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A .B .C .D .7.(2024·全国)设函数()2e 2sin 1x xf x x +=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为()A .16B .13C .12D .238.(2024·北京)已知()11,x y ,()22,x y 是函数2x y =图象上不同的两点,则下列正确的是()A .12122log 22y y x x ++>B .12122log 22y y x x ++<C .12212log 2y y x x +>+D .12212log 2y y x x +<+9.(2024·天津)下列函数是偶函数的是()A .22e 1x x y x -=+B .22cos 1x x y x +=+C .e 1x xy x -=+D .||sin 4e x x x y +=10.(2024·天津)若0.30.34.24.2 4.2log 0.2a b c -===,,,则a b c ,,的大小关系为()A .a b c >>B .b a c >>C .c a b>>D .b c a>>11.(2024·上海)下列函数()f x 的最小正周期是2π的是()A .sin cos x x +B .sin cos x xC .22sin cos x x+D .22sin cos x x-12.(2024·上海)已知函数()f x 的定义域为R ,定义集合()()(){}0000,,,M x x x x f x f x ¥=ÎÎ-<R ,在使得[]1,1M =-的所有()f x 中,下列成立的是()A .存在()f x 是偶函数B .存在()f x 在2x =处取最大值C .存在()f x 是严格增函数D .存在()f x 在=1x -处取到极小值二、多选题13.(2024·全国)设函数2()(1)(4)f x x x =--,则()A .3x =是()f x 的极小值点B .当01x <<时,()2()f x f x <C .当12x <<时,4(21)0f x -<-<D .当10x -<<时,(2)()f x f x ->14.(2024·全国)设函数32()231f x x ax =-+,则()A .当1a >时,()f x 有三个零点B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心三、填空题15.(2024·全国)若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a .16.(2024·全国)已知1a >,8115log log 42a a -=-,则=a .17.(2024·全国)曲线33y x x =-与()21y x a =--+在()0,¥+上有两个不同的交点,则a 的取值范围为.18.(2024·天津)若函数()21f x ax =-+有唯一零点,则a 的取值范围为.19.(2024·上海)已知()0,1,0x f x x >=£ïî则()3f =.四、解答题20.(2024·全国)已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x ¢³,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.21.(2024·全国)已知函数3()e x f x ax a =--.(1)当1a =时,求曲线()y f x =在点()1,(1)f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.22.(2024·全国)已知函数()()1ln 1f x a x x =--+.(1)求()f x 的单调区间;(2)若2a £时,证明:当1x >时,()1e xf x -<恒成立.23.(2024·全国)已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ³时,()0f x ³恒成立,求a 的取值范围.24.(2024·北京)已知()()ln 1f x x k x =++在()()(),0t f t t >处切线为l .(1)若切线l 的斜率1k =-,求()f x 单调区间;(2)证明:切线l 不经过()0,0;(3)已知1k =,()(),A t f t ,()()0,C f t ,()0,0O ,其中0t >,切线l 与y 轴交于点B 时.当215ACO ABO S S =△△,符合条件的A 的个数为?(参考数据:1.09ln31.10<<,1.60ln51.61<<,1.94ln71.95<<)25.(2024·天津)设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ³在()0,x ¥Î+时恒成立,求a 的取值范围;(3)若()12,0,1x x Î,证明()()121212f x f x x x -£-.26.(2024·上海)若()log (0,1)a f x x a a =>¹.(1)()y f x =过()4,2,求()()22f x f x -<的解集;(2)存在x 使得()()()12f x f ax f x ++、、成等差数列,求a 的取值范围.27.(2024·上海)对于一个函数()f x 和一个点(),M a b ,令()()22()()s x x a f x b =-+-,若()()00,P x f x 是()s x 取到最小值的点,则称P 是M 在()f x 的“最近点”.(1)对于1()(0)f x x x=>,求证:对于点()0,0M ,存在点P ,使得点P 是M 在()f x 的“最近点”;(2)对于()()e ,1,0xf x M =,请判断是否存在一个点P ,它是M 在()f x 的“最近点”,且直线MP 与()y f x =在点P 处的切线垂直;(3)已知()y f x =在定义域R 上存在导函数()f x ¢,且函数()g x 在定义域R 上恒正,设点()()()11,M t f t g t --,()()()21,M t f t g t ++.若对任意的t ÎR ,存在点P 同时是12,M M 在()f x的单调性.f x的“最近点”,试判断()。
2024年高考数学真题分类汇编(三角函数篇,解析版)

专题三角函数1(新课标全国Ⅰ卷)已知cos (α+β)=m ,tan αtan β=2,则cos (α-β)=()A.-3mB.-m3C.m 3D.3m【答案】A【分析】根据两角和的余弦可求cos αcos β,sin αsin β的关系,结合tan αtan β的值可求前者,故可求cos α-β 的值.【详解】因为cos α+β =m ,所以cos αcos β-sin αsin β=m ,而tan αtan β=2,所以=12×2b ×kb ×sin A 2+12×kb ×b ×sin A2,故cos αcos β-2cos αcos β=m 即cos αcos β=-m ,从而sin αsin β=-2m ,故cos α-β =-3m ,故选:A .2(新课标全国Ⅰ卷)当x ∈[0,2π]时,曲线y =sin x 与y =2sin 3x -π6 的交点个数为()A.3B.4C.6D.8【答案】C【分析】画出两函数在0,2π 上的图象,根据图象即可求解【详解】因为函数y =sin x 的的最小正周期为T =2π,函数y =2sin 3x -π6 的最小正周期为T =2π3,所以在x ∈0,2π 上函数y =2sin 3x -π6有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C3(新课标全国Ⅱ卷)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.22024年高考数学真题分类汇编——三角函数篇【分析】解法一:令F x =ax 2+a -1,G x =cos x ,分析可知曲线y =F (x )与y =G (x )恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得a =2,并代入检验即可;解法二:令h x =f (x )-g x ,x ∈-1,1 ,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a =2,并代入检验即可.【详解】解法一:令f (x )=g x ,即a (x +1)2-1=cos x +2ax ,可得ax 2+a -1=cos x ,令F x =ax 2+a -1,G x =cos x ,原题意等价于当x ∈(-1,1)时,曲线y =F (x )与y =G (x )恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y 轴上,可得F 0 =G 0 ,即a -1=1,解得a =2,若a =2,令F x =G x ,可得2x 2+1-cos x =0因为x ∈-1,1 ,则2x 2≥0,1-cos x ≥0,当且仅当x =0时,等号成立,可得2x 2+1-cos x ≥0,当且仅当x =0时,等号成立,则方程2x 2+1-cos x =0有且仅有一个实根0,即曲线y =F (x )与y =G (x )恰有一个交点,所以a =2符合题意;综上所述:a =2.解法二:令h x =f (x )-g x =ax 2+a -1-cos x ,x ∈-1,1 ,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4(全国甲卷数学(理)(文))已知cos αcos α-sin α=3,则tan α+π4=()A.23+1 B.23-1C.32D.1-3【答案】B【分析】先将cos αcos α-sin α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos αcos α-sin α=3,所以11-tan α=3,⇒tan α=1-33,所以tan α+π4 =tan α+11-tan α=23-1,故选:B .5(新高考北京卷)已知f x =sin ωx ω>0 ,f x 1 =-1,f x 2 =1,|x 1-x 2|min =π2,则ω=()A.1B.2C.3D.4【分析】根据三角函数最值分析周期性,结合三角函数最小正周期公式运算求解.【详解】由题意可知:x 1为f x 的最小值点,x 2为f x 的最大值点,则x 1-x 2 min =T 2=π2,即T =π,且ω>0,所以ω=2πT=2.故选:B .6(新高考天津卷)已知函数f x =sin3ωx +π3ω>0 的最小正周期为π.则函数在-π12,π6 的最小值是()A.-32B.-32C.0D.32【答案】A【分析】先由诱导公式化简,结合周期公式求出ω,得f x =-sin2x ,再整体求出x ∈-π12,π6时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】f x =sin3ωx +π3 =sin 3ωx +π =-sin3ωx ,由T =2π3ω=π得ω=23,即f x =-sin2x ,当x ∈-π12,π6 时,2x ∈-π6,π3,画出f x =-sin2x 图象,如下图,由图可知,f x =-sin2x 在-π12,π6上递减,所以,当x =π6时,f x min =-sin π3=-32故选:A7(新高考上海卷)下列函数f x 的最小正周期是2π的是()A.sin x +cos xB.sin x cos xC.sin 2x +cos 2xD.sin 2x -cos 2x【答案】A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【详解】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .8(新课标全国Ⅱ卷)对于函数f(x)=sin2x和g(x)=sin2x-π4,下列说法正确的有() A.f(x)与g(x)有相同的零点 B.f(x)与g(x)有相同的最大值C.f(x)与g(x)有相同的最小正周期D.f(x)与g(x)的图像有相同的对称轴【答案】BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A选项,令f(x)=sin2x=0,解得x=kπ2,k∈Z,即为f(x)零点,令g(x)=sin2x-π4=0,解得x=kπ2+π8,k∈Z,即为g(x)零点,显然f(x),g(x)零点不同,A选项错误;B选项,显然f(x)max=g(x)max=1,B选项正确;C选项,根据周期公式,f(x),g(x)的周期均为2π2=π,C选项正确;D选项,根据正弦函数的性质f(x)的对称轴满足2x=kπ+π2⇔x=kπ2+π4,k∈Z,g(x)的对称轴满足2x-π4=kπ+π2⇔x=kπ2+3π8,k∈Z,显然f(x),g(x)图像的对称轴不同,D选项错误.故选:BC9(新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tanα+tanβ=4,tanαtanβ=2+1,则sin(α+β)=.【答案】-22 3【分析】法一:根据两角和与差的正切公式得tanα+β=-22,再缩小α+β的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得tanα+β=tanα+tanβ1-tanαtanβ=41-2+1=-22,因为α∈2kπ,2kπ+π2,β∈2mπ+π,2mπ+3π2,k,m∈Z,则α+β∈2m+2kπ+π,2m+2kπ+2π,k,m∈Z,又因为tanα+β=-22<0,则α+β∈2m+2kπ+3π2,2m+2kπ+2π,k,m∈Z,则sinα+β<0,则sinα+βcosα+β=-22,联立sin2α+β+cos2α+β=1,解得sinα+β=-223.法二:因为α为第一象限角,β为第三象限角,则cosα>0,cosβ<0,cosα=cosαsin2α+cos2α=11+tan2α,cosβ=cosβsin2β+cos2β=-11+tan2β,则sin(α+β)=sinαcosβ+cosαsinβ=cosαcosβ(tanα+tanβ)=4cosαcosβ=-41+tan2α1+tan2β=-4(tanα+tanβ)2+(tanαtanβ-1)2=-442+2=-223故答案为:-22 3.10(全国甲卷数学(文))函数f x =sin x-3cos x在0,π上的最大值是.【答案】2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】f x =sin x -3cos x =2sin x -π3 ,当x ∈0,π 时,x -π3∈-π3,2π3,当x -π3=π2时,即x =5π6时,f x max =2.故答案为:2一、单选题1(2024·宁夏石嘴山·三模)在平面直角坐标系中,角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 1,2 ,则7cos 2θ-2sin2θ=()A.-15B.15C.-2D.2【答案】A【分析】由题意可知:tan θ=2,根据倍角公式结合齐次化问题分析求解.【详解】由题意可知:tan θ=2,所以7cos 2θ-2sin2θ=7cos 2θ-4sin θcos θsin 2θ+cos 2θ=7-4tan θtan 2θ+1=7-4×222+1=-15.故选:A .2(2024·广东茂名·一模)已知cos α+π =-2sin α,则sin 2α-3cos α+π2cos αcos2α+1=()A.-1B.-25C.45D.78【答案】D【分析】根据给定条件,求出tan α,再结合诱导公式及二倍角的余弦公式,利用正余弦齐次式法计算得解.【详解】由cos α+π =-2sin α,得cos α=2sin α,则tan α=12,所以sin 2α-3cos α+π2 cos αcos2α+1=sin 2α+3sin αcos α2cos 2α=12tan 2α+32tan α=18+34=78.故选:D3(2024·河北保定·二模)函数f (x )=1-e x1+e xcos2x 的部分图象大致为()A. B.C. D.【答案】A【分析】根据函数的奇偶性判断即可.【详解】设g x =1-e x1+e x,则g-x=1-e-x1+e-x=e x-11+e x=-g x ,所以g x 为奇函数,设h x =cos2x,可知h x 为偶函数,所以f x =1-e x1+e xcos2x为奇函数,则B,C错误,易知f0 =0,所以A正确,D错误.故选:A.4(2024·山东济宁·三模)已知函数f(x)=(3sin x+cos x)cos x-12,若f(x)在区间-π4,m上的值域为-3 2,1,则实数m的取值范围是()A.π6,π2B.π6,π2C.π6,7π12D.π6,7π12【答案】D【分析】利用二倍角公式、辅助角公式化简函数f(x),再借助正弦函数的图象与性质求解即得.【详解】依题意,函数f(x)=3sin x cos x+cos2x-12=32sin2x+12cos2x=sin2x+π6,当x∈-π4,m时,2x+π6∈-π3,2m+π6,显然sin-π3=sin4π3=-32,sinπ2=1,且正弦函数y=sin x在π2,4π3上单调递减,由f(x)在区间-π4,m上的值域为-32,1,得π2≤2m+π6≤4π3,解得π6≤m≤7π12,所以实数m的取值范围是π6,7π12.故选:D5(2024·江西景德镇·三模)函数f x =cosωx x∈R在0,π内恰有两个对称中心,fπ=1,将函数f x 的图象向右平移π3个单位得到函数g x 的图象.若fα +gα =35,则cos4α+π3=()A.725B.1625C.-925D.-1925【答案】A【分析】根据y轴右边第二个对称中心在0,π内,第三个对称中心不在0,π内可求得32≤ω<52,结合fπ=1可得ω=2,再利用平移变换求出g x ,根据三角变换化简fα +gα =35可得sin2α+π6=35,然后由二倍角公式可解.【详解】由x∈0,π得ωx∈0,ωπ,因为函数f x 在0,π内恰有两个对称中心,所以3π2≤ωπ5π2>ωπ,解得32≤ω<52,又fπ=cosωπ=1,所以ωπ=kπ,k∈Z,即ω=k,k∈Z,所以ω=2,将函数f x 的图象向右平移π3个单位得到函数y=cos2x-π3=cos2x-2π3,即g x =cos2x-2π3,因为fα +gα =cos2α+cos2α-2π3=32sin2α+12cos2α=sin2α+π6=35,所以cos4α+π3=1-2sin22α+π6=1-2×35 2=725.故选:A6(2024·安徽马鞍山·三模)已知函数f(x)=sin2ωx+cos2ωx(ω>1)的一个零点是π2,且f(x)在-π6,π16上单调,则ω=()A.54B.74C.94D.114【答案】B【分析】整理可得f(x)=2sin2ωx+π4,以2ωx+π4为整体,根据单调性分析可得1<ω≤2,再结合零点分析求解.【详解】因为f(x)=sin2ωx+cos2ωx=2sin2ωx+π4,x∈-π6,π16,且ω>1时,可得2ωx+π4∈-π3ω+π4,π8ω+π4,且-π3ω+π4<0<π8ω+π4,若f(x)在-π6,π16上单调,则-π3ω+π4≥-π2π8ω+π4≤π2,解得1<ω≤2,又因为f(x)的一个零点是π2,则πω+π4=kπ,k∈Z,解得ω=k-14,k∈Z,所以k=2,ω=7 4 .故选:B.7(2024·山东临沂·二模)已知函数f x =sin2x+φϕ <π2图象的一个对称中心为π6,0,则()A.f x 在区间-π8,π3上单调递增B.x=5π6是f x 图象的一条对称轴C.f x 在-π6,π4上的值域为-1,32D.将f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y轴对称【答案】D【分析】借助整体代入法结合正弦函数的性质可得A、B;结合正弦函数最值可得C;得到平移后的函数解析式后借助诱导公式即可得D.【详解】由题意可得2×π6+φ=kπk∈Z,解得φ=-π3+kπk∈Z,又ϕ <π2,故φ=-π3,即f x =sin2x-π3;对A :当x ∈-π8,π3 时,2x -π3∈-7π12,π3,由函数y =sin x 在-7π12,π3上不为单调递增,故f x 在区间-π8,π3上不为单调递增,故A 错误;对B :当x =5π6时,2x -π3=4π3,由x =4π3不是函数y =sin x 的对称轴,故x =5π6不是f x 图象的对称轴,故B 错误;对C :当x ∈-π6,π4 时,2x -π3∈-2π3,π6,则f x ∈-1,12,故C 错误;对D :将f x 图象上的所有点向左平移5π12个长度单位后,可得y =sin 2x +2×5π12-π3 =sin 2x +π2=cos2x ,该函数关于y 轴对称,故D 正确.故选:D .8(2024·广东广州·二模)已知函数f (x )=2sin (ωx +φ)ω>0,|φ|<π2的部分图象如图所示,若将函数f (x )的图象向右平移θ(θ>0)个单位后所得曲线关于y 轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π2【答案】A【分析】根据给定的图象特征,结合五点法作图列式求出ω和φ,再根据图象的平移变换,以及图象的对称性即可得解.【详解】由f π4=1,得sin π4ω+φ =22,又点π4,1 及附近点从左到右是上升的,则π4ω+φ=π4+2k π,k ∈Z ,由f 5π8 =0,点5π8,0 及附近点从左到右是下降的,且上升、下降的两段图象相邻,得5π8ω+φ=π+2k π,k ∈Z ,联立解得ω=2,φ=-π4+2k π,k ∈Z ,而|φ|<π2,于是φ=-π4,f (x )=2sin 2x -π4,若将函数f (x )的图像向右平移θ(θ>0)个单位后,得到y =sin 2x -2θ-π4,则-2θ-π4=π2-k π,k ∈Z ,而θ>0,因此θ=-3π8+k π2,k ∈N ,所以当k =1时,θ取得最小值为π8.故选:A9(2024·四川雅安·三模)已知函数f x =sin ωx +3cos ωx (ω>0),则下列说法中正确的个数是()①当ω=2时,函数y =f x -2log πx 有且只有一个零点;②当ω=2时,函数y =f x +φ 为奇函数,则正数φ的最小值为π3;③若函数y =f x 在0,π3 上单调递增,则ω的最小值为12;④若函数y =f x 在0,π 上恰有两个极值点,则ω的取值范围为136,256.A.1 B.2C.3D.4【答案】B【分析】利用辅助角公式化简函数,由图象分析判断①;由正弦函数的性质判断②③;由极大值的意义结合正弦函数的性质判断④.【详解】依题意,ω>0,函数f (x )=212sin ωx +32cos ωx =2sin ωx +π3,对于①:f (x )=2sin 2x +π3,令y =f x -2log πx =0,即f x =2log πx ,作出函数y =f (x )和函数y =2log πx 的图象,如图,观察图象知,两个函数在0,7π12 上只有一个零点,f 13π12 =2sin 5π2=2,当x =13π12时,y =2log π13π12=2log π1312+2log ππ=2+2log π1312>2,当x >13π12时,2log πx >2≥f (x ),因此函数y =f x 与函数y =2log πx 的图象有且只有一个交点,①正确;对于②:f (x +φ)=2sin 2x +2φ+π3 为奇函数,则2φ+π3=k π,k ∈Z ,φ=-π6+k π2,k ∈Z ,即正数φ的最小值为π3,②正确;对于③:当x ∈0,π3 时,ωx +π3∈π3,π(ω+1)3,由y =f x 在0,π3 上单调递增,得π(ω+1)3≤π2ω>0,解得0<ω≤12,正数ω有最大值12,③错误;对于④:当x ∈(0,π)时,ωx +π3∈π3,ωπ+π3,而y =f x 在(0,π)上恰有两个极值点,由正弦函数的性质得3π2<ωπ+π3≤5π2,解得76<ω≤136,因此ω的取值范围是76,136,④错误.综上,共2个正确,故选:B .10(2024·河北保定·二模)已知tan α=3cos αsin α+11,则cos2α=()A.-78B.78C.79D.-79【答案】B【分析】利用切化弦和同角三角函数的关系,解出sin α,再结合二倍角公式即可求解.【详解】因为sin αcos α=3cos αsin α+11,所以4sin 2α+11sin α-3=0,解得sin α=14或sin α=-3(舍去),所以cos2α=1-2sin 2α=78.故选:B .11(2024·河北衡水·三模)已知sin (3α-β)=m sin (α-β),tan (2α-β)=n tan α,则m ,n 的关系为()A.m =2nB.n =m +1mC.n =m m -1D.n =m +1m -1【答案】D【分析】利用和差角的正弦公式化简,结合已知列出方程即可求解.【详解】依题意,sin (3α-β)=sin [(2α-β)+α]=sin (2α-β)cos α+cos (2α-β)sin α,sin (α-β)=sin [(2α-β)-α]=sin (2α-β)cos α-cos (2α-β)sin α,则sin (2α-β)cos α+cos (2α-β)sin α=m sin (2α-β)cos α-m cos (2α-β)sin α,即sin (2α-β)cos αcos (2α-β)sin α=m +1m -1,即tan (2α-β)tan α=m +1m -1=n .故选:D12(2024·辽宁沈阳·三模)已知tan α2=2,则sin 2α2+sin α的值是()A.25B.45C.65D.85【答案】D【分析】利用二倍角公式和同角之间的转化,进行求解判断选项【详解】当tan α2=2,则sin 2α2+sin α=sin 2α2+2sin α2cos α2sin 2α2+cos 2α2=tan 2α2+2tan α2tan 2α2+1=22+2×222+1=85故选:D13(2024·贵州黔东南·二模)已知0<α<β<π,且sin α+β =2cos α+β ,sin αsin β-3cos αcos β=0,则tan α-β =()A.-1 B.-32C.-12D.12【答案】C【分析】找出tan α和tan β的关系,求出tan α和tan β即可求解.【详解】∵sin αsin β-3cos αcos β=0,∴sin αsin β=3cos αcos β,∴tan αtan β=3①,∵sin α+β =2cos α+β ,∴tan α+β =2⇒tan α+tan β1-tan αtan β=2⇒tan α+tan β1-3=2,∴tan α+tan β=-4②,由①②解得tan α=-1tan β=-3或tan α=-3tan β=-1 ,∵0<α<β<π,∴tan α<tan β,∴tan α=-3tan β=-1 ,∴tan α-β =tan α-tan β1+tan αtan β=-12.故选:C .二、多选题14(2024·河北张家口·三模)已知函数f (x )=23cos 2x +2sin x cos x ,则下列说法正确的是()A.函数f (x )的一个周期为2πB.函数f (x )的图象关于点π3,0 对称C.将函数f (x )的图象向右平移φ(φ>0)个单位长度,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的最小值为5π12D.若f 12α-5π24 -3=12,其中α为锐角,则sin α-cos α的值为6-308【答案】ACD【分析】利用三角恒等变换公式化简,由周期公式可判断A ;代入验证可判断B ;根据平移变化求g (x ),由奇偶性可求出φ,可判断C ;根据已知化简可得sin α-π12 =14,将目标式化为2sin α-π12 -π6 ,由和差角公式求解可判断D .【详解】对于A ,因为f (x )=31+cos2x +sin2x =2sin 2x +π3+3,所以f (x )的最小值周期T =2π2=π,所以2π是函数f (x )的一个周期,A 正确;对于B ,因为f π3 =2sin 2×π3+π3 +3=3,所以,点π3,0 不是函数f (x )的对称中心,B 错误;对于C ,由题知,g x =f (x -φ)=2sin 2(x -φ)+π3 +3=2sin 2x +π3-2φ +3,若函数g (x )为偶函数,则π3-2φ=π2+k π,k ∈Z ,得φ=-π12-k π2,k ∈Z ,因为φ>0,所以φ的最小值为5π12,C 正确;对于D ,若f 12α-5π24-3=2sin 212α-5π24 +π3 =2sin α-π12 =12,则sin α-π12 =14,因为α为锐角,-π12<α-π12<5π12,所以cos α-π12 =154,所以sin α-cos α=2sin α-π4 =2sin α-π12 -π6=232sin α-π12 -12cos α-π12=232×14-12×154=6-308,D 正确.故选:ACD 15(2024·辽宁鞍山·模拟预测)已知函数f x =sin x ⋅cos x ,则()A.f x 是奇函数B.f x 的最小正周期为2πC.f x 的最小值为-12D.f x 在0,π2上单调递增【答案】AC【分析】首先化简函数f x =12sin2x ,再根据函数的性质判断各选项.【详解】f x =sin x ⋅cos x =12sin2x ,函数的定义域为R ,对A ,f -x =-12sin2x =-f x ,所以函数f x 是奇函数,故A 正确;对B ,函数f x 的最小正周期为2π2=π,故B 错误;对C ,函数f x 的最小值为-12,故C 正确;对D ,x ∈0,π2 ,2x ∈0,π ,函数f x 不单调,f x 在0,π4 上单调递增,在π4,π2上单调递减,故D 错误.故选:AC16(2024·安徽·三模)已知函数f x =sin x -3cos x ,则()A.f x 是偶函数B.f x 的最小正周期是πC.f x 的值域为-3,2D.f x 在-π,-π2上单调递增【答案】AC【分析】对于A ,直接用偶函数的定义即可验证;对于B ,直接说明f 0 ≠f π 即可否定;对于C ,先证明-3≤f x ≤2,再说明对-3≤u ≤2总有f x =u 有解即可验证;对于D ,直接说明f -5π6>f -2π3 即可否定.【详解】对于A ,由于f x 的定义域为R ,且f -x =sin -x -3cos -x =-sin x -3cos x =sin x -3cos x =f x ,故f x 是偶函数,A 正确;对于B ,由于f 0 =sin0 -3cos0=-3,f π =sinπ -3cosπ=3,故f 0 ≠f π ,这说明π不是f x 的周期,B 错误;对于C ,由于f x =sin x -3cos x ≤sin x +3cos x =sin x +3cos x 2≤sin x +3cos x 2+3sin x -cos x 2=sin 2x +3cos 2x +23sin x cos x +3sin 2x +cos 2x -23sin x cos x =4sin 2x +4cos 2x =4=2,且f x =sin x -3cos x ≥-3cos x ≥-3,故-3≤f x ≤2.而对-3≤u ≤2,有f 0 =-3≤u ,f 5π6 =2≥u ,故由零点存在定理知一定存在x ∈0,5π6使得f x =u .所以f x 的值域为-3,2 ,C 正确;对于D ,由于-π<-5π6<-2π3<-π2,f -5π6 =2>3=f -2π3 ,故f x 在-π,-π2上并不是单调递增的,D 错误.故选:AC .17(2024·山西太原·模拟预测)已知函数f x =sin 2x +φ 0<φ<π2 的图象关于直线x =π12对称,且h x =sin2x -f x ,则()A.φ=π12B.h x 的图象关于点π6,0中心对称C.f x 与h x 的图象关于直线x =π4对称 D.h x 在区间π6,5π12内单调递增【答案】BCD【分析】根据正弦函数的对称性求解φ判断A ,先求出h x =sin 2x -π3,然后利用正弦函数的对称性求解判断B ,根据对称函数的性质判断C ,结合正弦函数的单调性代入验证判断D .【详解】由题意得2×π12+φ=π2+k π,k ∈Z ,解得φ=π3+k π,k ∈Z ,又因为0<φ<π2,所以φ=π3,A 错误;由φ=π3可知f x =sin 2x +π3,则h x =sin2x -sin 2x +π3 =12sin2x -32cos2x =sin 2x -π3,令2x -π3=k π,k ∈Z ,解得x =π6+k π2,k ∈Z ,令k =0,得x =π6,所以点π6,0 是曲线y =h x 的对称中心,B 正确;因为f π2-x =sin 2π2-x +π3 =sin 4π3-2x =sin 2x -π3=h x ,所以f x 与h x 的图象关于直线x =π4对称,C 正确;当x ∈π6,5π12 时,2x -π3∈0,π2 ,故h x 在区间π6,5π12内单调递增,D 正确.故选:BCD 18(2024·浙江金华·三模)已知函数f x =sin2ωx cos φ+cos2ωx sin φω>0,0<φ<π2的部分图象如图所示,则()A.φ=π6B.ω=2C.f x +π6为偶函数 D.f x 在区间0,π2的最小值为-12【答案】ACD【分析】先由正弦展开式,五点法结合图象求出f x =sin 2x +π6,可得A 正确,B 错误;由诱导公式可得C 正确;整体代入由正弦函数的值域可得D 正确.【详解】由题意得f x =sin 2ω+φ ,由图象可得f 0 =12⇒sin φ=12,又0<φ<π2,所以φ=π6,由五点法可得ω×4π3+π6=3π2⇒ω=1,所以f x =sin 2x +π6 .A :由以上解析可得φ=π6,故A 正确;B :由以上解析可得ω=1,故B 错误;C :f x +π6 =sin 2x +π6 +π6=cos2x ,故C 正确;D :当x ∈0,π2 ⇒2x +π6∈π6,7π6 时,sin 2x +π6 ∈-12,1,所以最小值为-12,故D 正确;故选:ACD .19(2024·浙江温州·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,P -3,4 为其终边上一点,若角β的终边与角2α的终边关于直线y =-x 对称,则()A.cos π+α =35B.β=2k π+π2+2αk ∈Z C.tan β=724D.角β的终边在第一象限【答案】ACD【分析】根据三角函数的定义,可求角α的三角函数,结合诱导公式判断A 的真假;利用二倍角公式,求出2α的三角函数值,结合三角函数的概念指出角2α的终边与单位圆的交点,由对称性确定角β终边与单位圆交点,从而判断BCD 的真假.【详解】因为角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点P -3,4 ,所以:OP =5,所以sin α=45,cos α=-35,所以cos π+α =-cos α=35,故A 对;又sin2α=2sin α⋅cos α=2×45×-35 =-2425,cos2α=cos 2α-sin 2α=-35 2-45 2=-725,所以2α的终边与单位圆的交点坐标为:-725,-2425 ,因为角β的终边与角2α的终边关于直线y =-x 对称,所以角β的终边与单位圆的交点为2425,725,所以tan β=724,且β的终边在第一象限,故CD 正确;又因为终边在直线y =-x 的角为:k π-π4,k ∈Z ,角2α的终边与角β的终边关于y =-x 对称,所以2α+β2=k π-π4⇒β=2k π-π2-2αk ∈Z ,故B 错误.故选:ACD20(2024·广东佛山·二模)已知函数f x =sin x +cos2x 与g x =sin2x +cos x ,记h x =λf x +μg x ,其中λ,μ∈R 且λ2+μ2≠0.下列说法正确的是()A.h x 一定为周期函数B.若λ⋅μ>0,则h x 在0,π2上总有零点C.h x 可能为偶函数 D.h x 在区间0,2π 上的图象过3个定点【答案】ABD【分析】对于A :计算h x +2π ,化简即可;对于B :求出h x ,然后计算h 0 h π2的正负即可;对于C :计算h x ,h -x 是否恒相等即可;对于D :令f x =0g x =0,求解x 即可.【详解】对于A ,∀x ∈R ,h x +2π =λf x +2π +μg x +2π =λf x +μg x =h x ,A 正确;对于B ,h x =λcos x -2sin2x +μ2cos2x -sin x ,则h 0 =λ+2μ,h π2=-3μ,因为λμ>0,即λ,μ同号,所以h 0 h π2<0,由零点存在定理知h x 在0,π2上总有零点,故B 正确;对于C ,h x =λsin x +λcos2x +μsin2x +μcos x ,h -x =-λsin x +λcos2x -μsin2x +μcos x ,由h x =h -x 得2λsin x +2μsin2x =2λsin x +2μ⋅2sin x cos x =2sin x λ+2μcos x =0对x ∈R 恒成立,则λ=μ=0与题意不符,故C 错误;对于D ,令f x =0g x =0 ,则sin x +cos2x =1-2sin 2x +sin x =-sin x -1 2sin x +1 =0sin2x +cos x =cos x 2sin x +1 =0 ⇒sin x =1或sin x =-12cos x =0或sin x =-12,即x ∈-π6+2k π,π2+2k π,7π6+2k π ,k ∈Z ,故所有定点坐标为-π6+2k π,0 ,π2+2k π,0 ,7π6+2k π,0 ,k ∈Z ,又因为x ∈0,2π ,所以函数h x 的图象过定点π2,0 ,7π6,0 ,11π6,0 ,故D 正确;故选:ABD .21(2024·湖南·二模)已知函数f x =12cos 2x -π3 ,把y =f x 的图象向右平移π3个单位长度,得到函数y =g x 的图象,以下说法正确的是()A.x =π6是y =f x 图象的一条对称轴B.f x 的单调递减区间为k π+π6,k π+2π3k ∈Z C.y =g x 的图象关于原点对称D.f x +g x 的最大值为12【答案】ABD【分析】根据题意,求得g x =-12cos2x 的图象,结合三角函数的图象与性质,以及两角差的正弦公式,逐项判定,即可求解.【详解】将函数f x =12cos 2x -π3 的图象向右平移π3个单位长度,得到函数y =g x =12cos 2x -π =-12cos2x 的图象,对于A 中,令x =π6,求得f x =12,即为函数y =f x 最大值,所以直线x =π6是函数f x 图象的一条对称轴,所以A 正确;对于B 中,令2k π≤2x -π3≤2k π+π,k ∈Z ,解得k π+π6≤x ≤k π+2π3,k ∈Z ,可得f x 的单调减区间为k π+π6,k π+2π3,k ∈Z ,所以B 正确.对于C 中,由于g x =-12cos2x 是偶函数,可得函数g x 的图象关于y 轴对称,所以C 错误.对于D 中,由f x +g x =12cos 2x -π3 +-12cos2x =1212cos2x +32sin2x -12cos2x =34sin2x -14cos2x =12sin 2x -π6 ≤12,即f x +g x 的最大值为12,所以D 正确.故选:ABD .22(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8【答案】BCD【分析】根据三角恒等变换化简f x =2sin 2ωx +π3,进而根据周期可判断A ,根据整体法求解函数的值域判断B ,根据函数图象的平移可判断C ,根据零点个数确定不等式满足的条件可判断D .【详解】f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3=sin2ωx cos π3+cos2ωx sin π3+sin2ωx cos π3-cos2ωx sin π3+3cos2ωx=sin2ωx +3cos2ωx =2sin 2ωx +π3,对于A ,若f x 相邻两条对称轴的距离为π2,则T =2×π2=π=2π2ω,故ω=1,A 错误,对于B ,当ω=1,f x =2sin 2x +π3 ,当x ∈0,π2 时,2x +π3∈π3,4π3,则f x 的值域为-3,2 ,B 正确,对于C ,当ω=1,f x =2sin 2x +π3,f x 的图象向左平移π6个单位长度得到函数解析式为f x +π6 =2sin 2x +π6 +π3 =2sin 2x +2π3 =2cos 2x +π6,C 正确,对于D ,当x ∈0,π6 时,2ωx +π3∈π3,2ωπ6+π3,若f x 在区间0,π6 上有且仅有两个零点,则2π≤2ωπ6+π3<3π,解得5≤ω<8,故D 正确,故选:BCD 三、填空题23(2024·北京·三模)已知函数f (x )=sin x cos ωx ,x ∈R .①若ω=1,则f (x )的最小正周期是;,②若ω=2,则f (x )的值域是.【答案】π[-1,1]【分析】把ω=1代入,t 明智二倍角的正弦,结合正弦函数的周期求出f (x )的最小正周期;把ω=2代入,利用二倍角的余弦公式,借助换元法,利用导数求出f (x )的值域.【详解】当ω=1时,f (x )=sin x cos x =12sin2x ,函数f (x )的最小正周期为2π2=π;当ω=2时,f (x )=sin x cos2x =sin x (1-2sin 2x ),令sin x =t ∈[-1,1],g (t )=t (1-2t 2)=-2t 3+t ,求导得g (t )=-6t 2+1,当-1≤t <-66或66<t ≤1时,g (t )<0,当-66<t <66时,g (t )>0,函数g (t )在-1,-66 ,66,1 上单调递减,在-66,66上单调递增,g (-1)=1,g 66 =69,g (1)=-1,g -66 =-69,所以g (t )min =-1,g (t )max =1,f (x )的值域是[-1,1].故答案为:π;[-1,1]24(2024·北京·模拟预测)已知函数f (x )=sin ωx -2cos ωx (ω>0),且f α+x =f α-x .若两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,则sin4α=.【答案】-45/-0.8【分析】利用辅助角公式化简f (x )的解析式,再由题意可得函数关于x =α对称,且最小正周期T =π,即可求出ω的值,从而得到2α=φ+π2+k π,k ∈Z ,再由二倍角公式及同角三角函数的基本关系计算可得.【详解】因为f (x )=sin ωx -2cos ωx =5sin ωx -φ ,其中tan φ=2,由f α+x =f α-x ,可得f x 关于x =α对称,又两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,所以f x 的最小正周期T =π,又ω>0,所以2πω=π,解得ω=2,所以f x =5sin 2x -φ ,所以2α-φ=π2+k π,k ∈Z ,则2α=φ+π2+k π,k ∈Z ,所以sin4α=sin2φ+π2+k π =sin 2φ+π+2k π =-sin2φ=-2sin φcos φsin 2φ+cos 2φ=-2tan φtan 2φ+1=-2×222+1=-45.故答案为:-4525(2024·湖北荆州·三模)设0<α<β<π2,tan α=m tan β,cos α-β =35,若满足条件的α与β存在且唯一,则m =,tan αtan β=.【答案】191【分析】由tan α=m tan β得到sin αcos β=m cos αsin β,再结合cos α-β =35,利用sin α-β =-45,得到cos αsin β=-45m -1 ,sin αcos β=-4m5m -1 ,从而sin α+β =-4m +1 5m -1,再由满足条件的α与β存在且唯一,得到α+β唯一,从而sin α+β =-4m +15m -1=1,求得m 即可.【详解】解:由tan α=m tan β,得sin αcos α=m sin βcos β,即sin αcos β=m cos αsin β,因为0<α<β<π2,tan α=m tan β,所以-π2<α-β<0,0<m <1,又cos α-β =35,所以sin α-β <0,从而sin α-β =sin αcos β-cos αsin β=m -1 cos αsin β=-45,所以cos αsin β=-45m -1,所以sin αcos β=m cos αsin β=-4m5m -1,所以sin α+β =sin αcos β+cos αsin β=-4m +15m -1,因为α,β∈0,π2,所以α+β∈0,π ,因为满足条件的α与β存在且唯一,所以α+β唯一,所以sin α+β =-4m +1 5m -1=1,所以m =19,经检验符合题意,所以tan α=19tan β,则tan α-β =-43=tan α-tan β1+tan αtan β=tan α-9tan α1+9tan 2α,解得tan α=13,所以tan αtan β=9tan 2α=1.故答案为:19,1【点睛】关键点点睛:关键是结合已知得出sin α+β =-4m +15m -1 =1,求出m ,由此即可顺利得解.。
高中函数试题及答案解析

高中函数试题及答案解析一、选择题1. 下列函数中,为奇函数的是:A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = x + 1答案:C2. 函数f(x) = 2x + 3的反函数是:A. f^(-1)(x) = (x - 3) / 2B. f^(-1)(x) = (x + 3) / 2C. f^(-1)(x) = 2x - 3D. f^(-1)(x) = (x - 3) / 2答案:A3. 若函数f(x) = ax^2 + bx + c在x=1处取得最小值,则a的取值范围是:A. a > 0B. a < 0C. a = 0D. a可以为任意实数答案:B二、填空题4. 函数f(x) = x^2 - 4x + 3的顶点坐标为_______。
答案:(2, -1)5. 若函数f(x) = 3x - 2与g(x) = 2x + 1的图象相交,则交点坐标为_______。
答案:(1, 1)三、解答题6. 已知函数f(x) = x^2 - 2x + 1,求证:对于任意实数x,都有f(x) ≥ 0。
证明:首先,我们可以将函数f(x)进行配方,得到f(x) = (x -1)^2。
由于平方项(x - 1)^2总是非负的,即(x - 1)^2 ≥ 0,因此f(x) = (x - 1)^2也总是非负的。
所以,对于任意实数x,都有f(x) ≥ 0。
7. 已知函数f(x) = 2x^3 - 3x^2 + x - 5,求f(x)的单调区间。
解答:首先对函数f(x)求导得到f'(x) = 6x^2 - 6x + 1。
令f'(x) = 0,解得x = 1/3 或 x = 1。
接下来分析f'(x)的符号:- 当x < 1/3时,f'(x) > 0,说明f(x)在此区间内单调递增;- 当1/3 < x < 1时,f'(x) < 0,说明f(x)在此区间内单调递减; - 当x > 1时,f'(x) > 0,说明f(x)在此区间内单调递增。
历年(2020-2024)全国高考数学真题分类(函数及其基本性质)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(函数及其基本性质)汇编考点01 直接求函数值1.(2024∙全国新Ⅰ卷∙高考真题)已知函数()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( ) A .(10)100f > B .(20)1000f > C .(10)1000f <D .(20)10000f <2.(2024∙上海∙高考真题)已知()0,1,0x f x x >=≤⎪⎩则()3f = . 3.(2023∙北京∙高考真题)已知函数2()4log xf x x =+,则12f ⎛⎫= ⎪⎝⎭.4.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .535.(2021∙浙江∙高考真题)已知R a ∈,函数24,2()3,2,x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f ⎡⎤=⎣⎦,则=a .考点02 函数的定义域与值域1.(2022∙北京∙高考真题)函数1()f x x=的定义域是 . 2.(2020∙山东∙高考真题)函数()1lg f x x=的定义域是( ) A .()0,∞+B .()()0,11,+∞C .[)()0,11,+∞UD .()1,+∞考点03 函数单调性的判断及其应用1.(2024∙全国新Ⅰ卷∙高考真题)已知函数22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩在R 上单调递增,则a 的取值范围是( ) A .(,0]-∞B .[1,0]-C .[1,1]-D .[0,)+∞2.(2023∙北京∙高考真题)下列函数中,在区间(0,)+∞上单调递增的是( ) A .()ln f x x =-B .1()2xf x =C .1()f x x=-D .|1|()3x f x -=3.(2023∙全国甲卷∙高考真题)已知函数()2(1)e x f x --=.记,,a f b f c f ===⎝⎭⎝⎭⎝⎭,则( )A .b c a >>B .b a c >>C .c b a >>D .c a b >>4.(2023∙全国新Ⅰ卷∙高考真题)设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是( )A .(],2-∞-B .[)2,0-C .(]0,2D .[)2,+∞5.(2021∙全国甲卷∙高考真题)下列函数中是增函数的为( )A .()f x x =-B .()23xf x ⎛⎫= ⎪⎝⎭C .()2f x x = D .()f x 6.(2020∙山东∙高考真题)已知函数()f x 的定义域是R ,若对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,则函数()f x 一定是( )A .奇函数B .偶函数C .增函数D .减函数7.(2020∙全国∙高考真题)设函数331()f x x x=-,则()f x ( ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增D .是偶函数,且在(0,+∞)单调递减考点04 函数的奇偶性及其应用1.(2024∙天津∙高考真题)下列函数是偶函数的是( )A .22e 1x x y x -=+ B .22cos 1x x y x +=+C .e 1x x y x -=+D .||sin 4e x x xy +=2.(2024∙上海∙高考真题)已知()3f x x a =+,x ∈R ,且()f x 是奇函数,则=a .3.(2023∙全国甲卷∙高考真题)若()()2π1sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭为偶函数,则=a .4.(2023∙全国乙卷∙高考真题)已知e ()e 1xax x f x =-是偶函数,则=a ( )A .2-B .1-C .1D .25.(2023∙全国新Ⅱ卷∙高考真题)若()()21ln 21x f x x a x -=++为偶函数,则=a ( ). A .1-B .0C .12D .16.(2022∙全国乙卷∙高考真题)若()1ln 1f x a b x++-=是奇函数,则=a ,b = . 7.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .538.(2021∙全国新Ⅱ卷∙高考真题)写出一个同时具有下列性质①②③的函数():f x . ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.9.(2021∙全国新Ⅰ卷∙高考真题)已知函数()()322x x x a f x -=⋅-是偶函数,则=a .10.(2021∙全国乙卷∙高考真题)设函数1()1xf x x-=+,则下列函数中为奇函数的是( ) A .()11f x --B .()11f x -+C .()11f x +-D .()11f x ++11.(2020∙山东∙高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃12.(2020∙全国∙高考真题)设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,2-∞-单调递减考点05 函数的周期性及其应用1.(2022∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A .3-B .2-C .0D .12.(2021∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( ) A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =3.(2021∙全国甲卷∙高考真题)设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A .94-B .32-C .74D .52考点06 函数的对称性及其应用1.(2024∙全国新Ⅱ卷∙高考真题)(多选)设函数32()231f x x ax =-+,则( ) A .当1a >时,()f x 有三个零点 B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心2.(2022∙全国新Ⅰ卷∙高考真题)(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=3.(2022∙全国乙卷∙高考真题)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则()221k f k ==∑( )A .21-B .22-C .23-D .24-4.(2020∙全国∙高考真题)已知函数f (x )=sin x +1sin x,则() A .f (x )的最小值为2B .f (x )的图象关于y 轴对称C .f (x )的图象关于直线x π=对称D .f (x )的图象关于直线2x π=对称参考答案 考点01 直接求函数值1.(2024∙全国新Ⅰ卷∙高考真题)已知函数()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( ) A .(10)100f > B .(20)1000f > C .(10)1000f < D .(20)10000f <【答案】B【答案分析】代入得到(1)1,(2)2==f f ,再利用函数性质和不等式的性质,逐渐递推即可判断. 【答案详解】因为当3x <时()f x x =,所以(1)1,(2)2==f f , 又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>, (8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>, (11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+> (14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确. 故选:B.【名师点评】关键点名师点评:本题的关键是利用(1)1,(2)2==f f ,再利用题目所给的函数性质()(1)(2)f x f x f x >-+-,代入函数值再结合不等式同向可加性,不断递推即可.2.(2024∙上海∙高考真题)已知()0,1,0x f x x >=≤⎪⎩则()3f = .【答案分析】利用分段函数的形式可求()3f .【答案详解】因为()0,1,0x f x x >=≤⎪⎩故()3f =3.(2023∙北京∙高考真题)已知函数2()4log xf x x =+,则12f ⎛⎫= ⎪⎝⎭ .【答案】1【答案分析】根据给定条件,把12x =代入,利用指数、对数运算计算作答. 【答案详解】函数2()4log xf x x =+,所以12211()4log 21122f =+=-=.故答案为:14.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .53【答案】C【答案分析】由题意利用函数的奇偶性和函数的递推关系即可求得53f ⎛⎫⎪⎝⎭的值.【答案详解】由题意可得:522213333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 而21111133333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=-==--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 故5133f ⎛⎫= ⎪⎝⎭.故选:C.【名师点评】关键点名师点评:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.5.(2021∙浙江∙高考真题)已知R a ∈,函数24,2()3,2,x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f ⎡⎤=⎣⎦,则=a . 【答案】2【答案分析】由题意结合函数的答案解析式得到关于a 的方程,解方程可得a 的值.【答案详解】()()642233f f f f a ⎡⎤=-==-+=⎣⎦,故2a =, 故答案为:2.考点02 函数的定义域与值域1.(2022∙北京∙高考真题)函数1()f x x=的定义域是 . 【答案】()(],00,1-∞⋃【答案分析】根据偶次方根的被开方数非负、分母不为零得到方程组,解得即可;【答案详解】解:因为()1f x x =100x x -≥⎧⎨≠⎩,解得1x ≤且0x ≠, 故函数的定义域为()(],00,1-∞⋃; 故答案为:()(],00,1-∞⋃2.(2020∙山东∙高考真题)函数()1lg f x x=的定义域是( ) A .()0,∞+ B .()()0,11,+∞C .[)()0,11,+∞UD .()1,+∞【答案】B【答案分析】根据题意得到0lg 0x x >⎧⎨≠⎩,再解不等式组即可.【答案详解】由题知:0lg 0x x >⎧⎨≠⎩,解得0x >且1x ≠. 所以函数定义域为()()0,11,+∞ . 故选:B考点03 函数单调性的判断及其应用1.(2024∙全国新Ⅰ卷∙高考真题)已知函数22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩在R 上单调递增,则a 的取值范围是( ) A .(,0]-∞ B .[1,0]- C .[1,1]- D .[0,)+∞【答案】B【答案分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【答案详解】因为()f x 在R 上单调递增,且0x ≥时,()()e ln 1xf x x =++单调递增,则需满足()02021e ln1aa -⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a -≤≤, 即a 的范围是[1,0]-. 故选:B.2.(2023∙北京∙高考真题)下列函数中,在区间(0,)+∞上单调递增的是( ) A .()ln f x x =- B .1()2xf x =C .1()f x x=-D .|1|()3x f x -=【答案】C【答案分析】利用基本初等函数的单调性,结合复合函数的单调性判断ABC ,举反例排除D 即可. 【答案详解】对于A ,因为ln y x =在()0,∞+上单调递增,y x =-在()0,∞+上单调递减, 所以()ln f x x =-在()0,∞+上单调递减,故A 错误;对于B ,因为2x y =在()0,∞+上单调递增,1y x=在()0,∞+上单调递减,所以()12xf x =在()0,∞+上单调递减,故B 错误; 对于C ,因为1y x=在()0,∞+上单调递减,y x =-在()0,∞+上单调递减, 所以()1f x x=-在()0,∞+上单调递增,故C 正确;对于D ,因为111221332f -⎛⎫=== ⎪⎝⎭()()112101331,233f f --=====,显然()13x f x -=在()0,∞+上不单调,D 错误.故选:C.3.(2023∙全国甲卷∙高考真题)已知函数()2(1)e x f x --=.记,,222a f b f c f ⎛⎫=== ⎪⎝⎭⎝⎭⎝⎭,则( ) A .b c a >> B .b a c >> C .c b a >> D .c a b >>【答案】A【答案分析】利用作差法比较自变量的大小,再根据指数函数的单调性及二次函数的性质判断即可. 【答案详解】令2()(1)g x x =--,则()g x 开口向下,对称轴为1x =,4112⎛-= ⎝⎭,而22491670-=+=>,41102⎛-=> ⎝⎭,即1122->-由二次函数性质知g g <,4112⎛-= ⎝⎭,而22481682)0-=+-=-=-<,112<-,所以(2g g >,综上,(2g g g <<, 又e x y =为增函数,故a c b <<,即b c a >>. 故选:A.4.(2023∙全国新Ⅰ卷∙高考真题)设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是( )A .(],2-∞-B .[)2,0-C .(]0,2D .[)2,+∞【答案】D【答案分析】利用指数型复合函数单调性,判断列式计算作答.【答案详解】函数2x y =在R 上单调递增,而函数()()2x x a f x -=在区间()0,1上单调递减,则有函数22()()24a a y x x a x =-=--在区间()0,1上单调递减,因此12a ≥,解得2a ≥,所以a 的取值范围是[)2,+∞. 故选:D5.(2021∙全国甲卷∙高考真题)下列函数中是增函数的为( )A .()f x x =-B .()23xf x ⎛⎫= ⎪⎝⎭C .()2f x x = D .()f x 【答案】D【答案分析】根据基本初等函数的性质逐项判断后可得正确的选项. 【答案详解】对于A ,()f x x =-为R 上的减函数,不合题意,舍. 对于B ,()23xf x ⎛⎫= ⎪⎝⎭为R 上的减函数,不合题意,舍.对于C ,()2f x x =在(),0∞-为减函数,不合题意,舍.对于D ,()f x =R 上的增函数,符合题意, 故选:D.6.(2020∙山东∙高考真题)已知函数()f x 的定义域是R ,若对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,则函数()f x 一定是( )A .奇函数B .偶函数C .增函数D .减函数【答案】C【答案分析】利用函数单调性定义即可得到答案. 【答案详解】对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,等价于对于任意两个不相等的实数12x x <,总有()()12f x f x <. 所以函数()f x 一定是增函数. 故选:C7.(2020∙全国∙高考真题)设函数331()f x x x =-,则()f x ( ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增 D .是偶函数,且在(0,+∞)单调递减【答案】A【答案分析】根据函数的答案解析式可知函数的定义域为{}0x x ≠,利用定义可得出函数()f x 为奇函数,再根据函数的单调性法则,即可解出.【答案详解】因为函数()331f x x x =-定义域为{}0x x ≠,其关于原点对称,而()()f x f x -=-, 所以函数()f x 为奇函数. 又因为函数3y x =在()0,+?上单调递增,在(),0-?上单调递增,而331y x x -==在()0,+?上单调递减,在(),0-?上单调递减,所以函数()331f x x x =-在()0,+?上单调递增,在(),0-?上单调递增.故选:A .【名师点评】本题主要考查利用函数的答案解析式研究函数的性质,属于基础题.考点04 函数的奇偶性及其应用1.(2024∙天津∙高考真题)下列函数是偶函数的是( )A .22e 1x x y x -=+ B .22cos 1x x y x +=+C .e 1x xy x -=+D .||sin 4e x x xy +=【答案】B【答案分析】根据偶函数的判定方法一一判断即可.【答案详解】对A ,设()22e 1x xf x x -=+,函数定义域为R ,但()112e 1f ---=,()112e f -=,则()()11f f -≠,故A 错误;对B ,设()22cos 1x x g x x +=+,函数定义域为R , 且()()()()()2222cos cos 11x x x x g x g x x x -+-+-===+-+,则()g x 为偶函数,故B 正确;对C ,设()e 1x xh x x -=+,函数定义域为{}|1x x ≠-,不关于原点对称, 则()h x 不是偶函数,故C 错误; 对D ,设()||sin 4e x x x x ϕ+=,函数定义域为R,因为()sin141e ϕ+=,()sin141e ϕ---=, 则()()11ϕϕ≠-,则()x ϕ不是偶函数,故D 错误. 故选:B.2.(2024∙上海∙高考真题)已知()3f x x a =+,x ∈R ,且()f x 是奇函数,则=a .【答案】0【答案分析】根据奇函数的性质可求参数a .【答案详解】因为()f x 是奇函数,故()()0f x f x -+=即()330x a x a ++-+=,故0a =, 故答案为:0.3.(2023∙全国甲卷∙高考真题)若()()2π1sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭为偶函数,则=a .【答案】2【答案分析】利用偶函数的性质得到ππ22f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,从而求得2a =,再检验即可得解.【答案详解】因为()()()22π1sin 1cos 2y f x x ax x x ax x ⎛⎫==-+++=-++ ⎪⎝⎭为偶函数,定义域为R ,所以ππ22f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,即22ππππππ222222s 1co 1cos a a ⎛⎫⎛⎫⎛⎫-+=-+ ⎪ -⎪ ⎪⎝⎭⎝⎭--⎝+⎭,则22πππ2π1212a -⎛⎫⎛⎫=+- ⎪⎪⎭⎝⎭= ⎝,故2a =,此时()()2212cos 1cos f x x x x x x =-++=++, 所以()()()()221cos s 1co f x x x x x f x -=-++++-==, 又定义域为R ,故()f x 为偶函数, 所以2a =. 故答案为:2.4.(2023∙全国乙卷∙高考真题)已知e ()e 1xaxx f x =-是偶函数,则=a ( ) A .2- B .1- C .1 D .2【答案】D【答案分析】根据偶函数的定义运算求解.【答案详解】因为()e e 1x ax x f x =-为偶函数,则()()()()1e e e e 0e 1e 1e 1a x x x x ax ax axx x x f x f x ---⎡⎤--⎣⎦--=-==---, 又因为x 不恒为0,可得()1e e 0a x x --=,即()1e e a x x -=, 则()1x a x =-,即11a =-,解得2a =. 故选:D.5.(2023∙全国新Ⅱ卷∙高考真题)若()()21ln 21x f x x a x -=++为偶函数,则=a ( ). A .1- B .0C .12D .1【答案】B【答案分析】根据偶函数性质,利用特殊值法求出a 值,再检验即可.【答案详解】因为()f x 为偶函数,则 1(1)(1)(1)ln (1)ln 33f f a a =-∴+=-+,,解得0a =, 当0a =时,()21ln21x x x f x -=+,()()21210x x -+>,解得12x >或12x <-,则其定义域为12x x ⎧⎨⎩或12x ⎫<-⎬⎭,关于原点对称.()()()()()()()121212121ln ln ln ln 21212121f x x x x x x x x x f x x x x x ---+⎫-=---⎛==== ⎪-+-++⎝-⎭-, 故此时()f x 为偶函数. 故选:B.6.(2022∙全国乙卷∙高考真题)若()1ln 1f x a b x++-=是奇函数,则=a ,b = . 【答案】 12-; ln 2.【答案分析】根据奇函数的定义即可求出. 【答案详解】[方法一]:奇函数定义域的对称性 若0a =,则()f x 的定义域为{|1}x x ≠,不关于原点对称0a ∴≠若奇函数的1()||1f x ln a b x =++-有意义,则1x ≠且101a x+≠- 1x ∴≠且11x a≠+,函数()f x 为奇函数,定义域关于原点对称,111a ∴+=-,解得12a =-, 由(0)0f =得,102ln b +=,2b ln ∴=,故答案为:12-;2ln .[方法二]:函数的奇偶性求参 111()111a ax ax a f x ln a b ln b ln b x x x-+--=++=+=+--- 1()1ax a f x lnb x++-=++函数()f x 为奇函数11()()2011ax a ax a f x f x lnln b x x--++∴+-=++=-+2222(1)201a x a lnb x -+∴+=-22(1)1210112a a a a +∴=⇒+=⇒=- 1222241,22b ln b ln a b ln ln -==-⇒=∴=-=[方法三]:因为函数()1ln 1f x a b x++-=为奇函数,所以其定义域关于原点对称. 由101a x+≠-可得,()()110x a ax -+-≠,所以11a x a +==-,解得:12a =-,即函数的定义域为()()(),11,11,-∞-⋃-⋃+∞,再由()00f =可得,ln 2b =.即()111ln ln 2ln 211x f x x x+=-++=--,在定义域内满足()()f x f x -=-,符合题意. 故答案为:12-;ln 2.7.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .53【答案】C【答案分析】由题意利用函数的奇偶性和函数的递推关系即可求得53f ⎛⎫⎪⎝⎭的值.【答案详解】由题意可得:522213333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 而21111133333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=-==--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 故5133f ⎛⎫= ⎪⎝⎭.故选:C.【名师点评】关键点名师点评:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.8.(2021∙全国新Ⅱ卷∙高考真题)写出一个同时具有下列性质①②③的函数():f x . ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.【答案】()4f x x =(答案不唯一,()()2*n x N f n x =∈均满足)【答案分析】根据幂函数的性质可得所求的()f x .【答案详解】取()4f x x =,则()()()()44421121122x f x f x x x x f x x ===,满足①, ()34f x x '=,0x >时有()0f x ¢>,满足②, ()34f x x '=的定义域为R ,又()()34f x x f x ''-=-=-,故()f x '是奇函数,满足③.故答案为:()4f x x =(答案不唯一,()()2*n x N f n x =∈均满足)9.(2021∙全国新Ⅰ卷∙高考真题)已知函数()()322x xx a f x -=⋅-是偶函数,则=a .【答案】1【答案分析】利用偶函数的定义可求参数a 的值.【答案详解】因为()()322x x x a f x -=⋅-,故()()322x xf x x a --=-⋅-,因为()f x 为偶函数,故()()f x f x -=,时()()332222x x x x x a x a --⋅-=-⋅-,整理得到()()12+2=0x xa --,故1a =, 故答案为:110.(2021∙全国乙卷∙高考真题)设函数1()1xf x x-=+,则下列函数中为奇函数的是( ) A .()11f x -- B .()11f x -+C .()11f x +-D .()11f x ++【答案】B【答案分析】分别求出选项的函数答案解析式,再利用奇函数的定义即可. 【答案详解】由题意可得12()111x f x x x-==-+++, 对于A ,()2112f x x--=-不是奇函数; 对于B ,()211f x x-=+是奇函数; 对于C ,()21122f x x +-=-+,定义域不关于原点对称,不是奇函数; 对于D ,()2112f x x ++=+,定义域不关于原点对称,不是奇函数. 故选:B【名师点评】本题主要考查奇函数定义,考查学生对概念的理解,是一道容易题.11.(2020∙山东∙高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【答案分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【答案详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =, 所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <, 所以由(10)xf x -≥可得:0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃, 故选:D.【名师点评】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题. 12.(2020∙全国∙高考真题)设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,2-∞-单调递减【答案】D【答案分析】根据奇偶性的定义可判断出()f x 为奇函数,排除AC ;当11,22x ⎛⎫∈- ⎪⎝⎭时,利用函数单调性的性质可判断出()f x 单调递增,排除B ;当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,利用复合函数单调性可判断出()f x 单调递减,从而得到结果.【答案详解】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-, ()f x \为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈- ⎪⎝⎭时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+Q 在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x \在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ;当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+- 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,D 正确.故选:D.【名师点评】本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据()f x -与()f x 的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.考点05 函数的周期性及其应用1.(2022∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A .3-B .2-C .0D .1【答案】A【答案分析】法一:根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出. 【答案详解】[方法一]:赋值加性质因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++= .由于22除以6余4, 所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .[方法二]:【最优解】构造特殊函数由()()()()f x y f x y f x f y ++-=,联想到余弦函数和差化积公式()()cos cos 2cos cos x y x y x y ++-=,可设()cos f x a x ω=,则由方法一中()()02,11f f ==知2,cos 1a a ω==,解得1cos 2ω=,取3πω=, 所以()2cos3f x x π=,则()()()()2cos 2cos 4cos cos 333333f x y f x y x y x y x y f x f y ππππππ⎛⎫⎛⎫++-=++-== ⎪ ⎪⎝⎭⎝⎭,所以()2cos 3f x xπ=符合条件,因此()f x 的周期263T ππ==,()()02,11f f ==,且()()()()()21,32,41,51,62f f f f f =-=-=-==,所以(1)(2)(3)(4)(5)(6)0f f f f f f +++++=, 由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .【整体点评】法一:利用赋值法求出函数的周期,即可解出,是该题的通性通法;法二:作为选择题,利用熟悉的函数使抽象问题具体化,简化推理过程,直接使用具体函数的性质解题,简单明了,是该题的最优解.2.(2021∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( ) A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =【答案】B【答案分析】推导出函数()f x 是以4为周期的周期函数,由已知条件得出()10f =,结合已知条件可得出结论.【答案详解】因为函数()2f x +为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-, 因为函数()21f x +为奇函数,则()()1221f x f x -=-+,所以,()()11f x f x -=-+, 所以,()()()311f x f x f x +=-+=-,即()()4f x f x =+, 故函数()f x 是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==, 故()()110f f -=-=,其它三个选项未知. 故选:B.3.(2021∙全国甲卷∙高考真题)设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A .94-B .32-C .74D .52【答案】D【答案分析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数答案解析式()222f x x =-+,进而利用定义或周期性结论,即可得到答案. 【答案详解】[方法一]:因为()1f x +是奇函数,所以()()11f x f x -+=-+①; 因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路一:从定义入手.9551222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1335112222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 511322=2222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以935222f f⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭. [方法二]:因为()1f x +是奇函数,所以()()11f x f x -+=-+①; 因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T =. 所以91352222f f f⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:D .【名师点评】在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计算的效果.考点06 函数的对称性及其应用1.(2024∙全国新Ⅱ卷∙高考真题)(多选)设函数32()231f x x ax =-+,则( ) A .当1a >时,()f x 有三个零点 B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心【答案】AD【答案分析】A 选项,先答案分析出函数的极值点为0,x x a ==,根据零点存在定理和极值的符号判断出()f x 在(1,0),(0,),(,2)a a a -上各有一个零点;B 选项,根据极值和导函数符号的关系进行答案分析;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,则()(2)f x f b x =-为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,据此进行计算判断,亦可利用拐点结论直接求解.【答案详解】A 选项,2()666()f x x ax x x a '=-=-,由于1a >,故()(),0,x a ∞∞∈-⋃+时()0f x '>,故()f x 在()(),0,,a ∞∞-+上单调递增, (0,)x a ∈时,()0f x '<,()f x 单调递减,则()f x 在0x =处取到极大值,在x a =处取到极小值, 由(0)10=>f ,3()10f a a =-<,则(0)()0f f a <, 根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a -=--<,3(2)410f a a =+>,则(1)(0)0,()(2)0f f f a f a -<<,则()f x 在(1,0),(,2)a a -上各有一个零点,于是1a >时,()f x 有三个零点,A 选项正确; B 选项,()6()f x x x a '=-,a<0时,(,0),()0x a f x '∈<,()f x 单调递减, ,()0x ∈+∞时()0f x '>,()f x 单调递增,此时()f x 在0x =处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,即存在这样的,a b 使得()(2)f x f b x =-, 即32322312(2)3(2)1x ax b x a b x -+=---+,根据二项式定理,等式右边3(2)b x -展开式含有3x 的项为303332C (2)()2b x x -=-,于是等式左右两边3x 的系数都不相等,原等式不可能恒成立, 于是不存在这样的,a b ,使得x b =为()f x 的对称轴,C 选项错误; D 选项,方法一:利用对称中心的表达式化简(1)33f a =-,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a +-=-++---+=-+-+-,于是266(126)(1224)1812a a x a x a -=-+-+-即126012240181266a a a a -=⎧⎪-=⎨⎪-=-⎩,解得2a =,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确. 方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax =-+,2()66f x x ax '=-,()126f x x a ''=-,由()02af x x ''=⇔=,于是该三次函数的对称中心为,22a a f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭, 由题意(1,(1))f 也是对称中心,故122aa =⇔=, 即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确. 故选:AD【名师点评】结论名师点评:(1)()f x 的对称轴为()(2)x b f x f b x =⇔=-;(2)()f x 关于(,)a b 对称()(2)2f x f a x b ⇔+-=;(3)任何三次函数32()f x ax bx cx d =+++都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是()0f x ''=的解,即,33b b f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭是三次函数的对称中心 2.(2022∙全国新Ⅰ卷∙高考真题)(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=【答案】BC【答案分析】方法一:转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.【答案详解】[方法一]:对称性和周期性的关系研究对于()f x ,因为322f x ⎛⎫- ⎪⎝⎭为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭①,所以()()3f x f x -=,所以()f x 关于32x =对称,则(1)(4)f f -=,故C 正确; 对于()g x ,因为(2)g x +为偶函数,(2)(2)g x g x +=-,(4)()g x g x -=,所以()g x 关于2x =对称,由①求导,和()()g x f x '=,得333333222222f x f x f x f x g x g x ''⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫''-=+⇔--=+⇔--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,所以()()30g x g x -+=,所以()g x 关于3(,0)2对称,因为其定义域为R ,所以302g ⎛⎫= ⎪⎝⎭,结合()g x 关于2x =对称,从而周期34222T ⎛⎫=⨯-= ⎪⎝⎭,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误; 若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.[方法二]:【最优解】特殊值,构造函数法.由方法一知()g x 周期为2,关于2x =对称,故可设()()cos πg x x =,则()()1sin ππf x x c =+,显然A ,D 错误,选BC.故选:BC.[方法三]: 因为322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数, 所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=-, 所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确;函数()f x ,()g x 的图象分别关于直线3,22x x ==对称, 又()()g x f x '=,且函数()f x 可导, 所以()()30,32g g x g x ⎛⎫=-=- ⎪⎝⎭, 所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=, 所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误; 若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.【点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.3.(2022∙全国乙卷∙高考真题)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则()221k f k ==∑( )A .21-B .22-C .23-D .24-【答案】D【答案分析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=- ,()()()462210f f f +++=- ,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解.【答案详解】因为()y g x =的图像关于直线2x =对称,所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-,因为()(2)5f x g x +-=,所以()(2)5f x g x ++=,代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-,所以()()()()35212510f f f +++=-⨯=- ,()()()()46222510f f f +++=-⨯=- .因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-.因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=,联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R ,所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑ . 故选:D【名师点评】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.4.(2020∙全国∙高考真题)已知函数f (x )=sin x +1sin x ,则() A .f (x )的最小值为2B .f (x )的图象关于y 轴对称C .f (x )的图象关于直线x π=对称D .f (x )的图象关于直线2x π=对称【答案】D【答案分析】根据基本不等式使用条件可判断A;根据奇偶性可判断B;根据对称性判断C,D.【答案详解】sin x 可以为负,所以A 错;1sin 0()()sin ()sin x x k k Z f x x f x x π≠∴≠∈-=--=-∴Q Q ()f x 关于原点对称; 11(2)sin (),()sin (),sin sin f x x f x f x x f x x x ππ-=--≠-=+=Q 故B 错; ()f x ∴关于直线2x π=对称,故C 错,D 对故选:D【名师点评】本题考查函数定义域与最值、奇偶性、对称性,考查基本答案分析判断能力,属中档题.。
2024年高考真题汇总三角函数(学生版)

专题三角函数1(新课标全国Ⅰ卷)已知cos (α+β)=m ,tan αtan β=2,则cos (α-β)=()A.-3mB.-m3C.m 3D.3m2(新课标全国Ⅰ卷)当x ∈[0,2π]时,曲线y =sin x 与y =2sin 3x -π6 的交点个数为()A.3B.4C.6D.83(新课标全国Ⅱ卷)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.24(全国甲卷数学(理)(文))已知cos αcos α-sin α=3,则tan α+π4=()A.23+1B.23-1C.32D.1-35(新高考北京卷)已知f x =sin ωx ω>0 ,f x 1 =-1,f x 2 =1,|x 1-x 2|min =π2,则ω=()A.1B.2C.3D.46(新高考天津卷)已知函数f x =sin3ωx +π3 ω>0 的最小正周期为π.则函数在-π12,π6 的最小值是()A.-32B.-32C.0D.327(新高考上海卷)下列函数f x 的最小正周期是2π的是()A.sin x +cos xB.sin x cos xC.sin 2x +cos 2xD.sin 2x -cos 2x8(新课标全国Ⅱ卷)对于函数f (x )=sin2x 和g (x )=sin 2x -π4,下列说法正确的有()A.f (x )与g (x )有相同的零点B.f (x )与g (x )有相同的最大值C.f (x )与g (x )有相同的最小正周期D.f (x )与g (x )的图像有相同的对称轴9(新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tan α+tan β=4,tan αtan β=2+1,则sin (α+β)=.10(全国甲卷数学(文))函数f x =sin x -3cos x 在0,π 上的最大值是.2024年高考真题汇总一、单选题1(2024·宁夏石嘴山·三模)在平面直角坐标系中,角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 1,2 ,则7cos 2θ-2sin2θ=()A.-15B.15C.-2D.22(2024·广东茂名·一模)已知cos α+π =-2sin α,则sin 2α-3cos α+π2cos αcos2α+1=()A.-1B.-25C.45D.783(2024·河北保定·二模)函数f (x )=1-e x1+e xcos2x 的部分图象大致为()A. B.C. D.4(2024·山东济宁·三模)已知函数f (x )=(3sin x +cos x )cos x -12,若f (x )在区间-π4,m 上的值域为-32,1,则实数m 的取值范围是()A.π6,π2B.π6,π2C.π6,7π12D.π6,7π125(2024·江西景德镇·三模)函数f x =cos ωx x ∈R 在0,π 内恰有两个对称中心,f π =1,将函数f x 的图象向右平移π3个单位得到函数g x 的图象.若f α +g α =35,则cos 4α+π3=()A.725B.1625C.-925D.-19256(2024·安徽马鞍山·三模)已知函数f (x )=sin2ωx +cos2ωx (ω>1)的一个零点是π2,且f (x )在-π6,π16 上单调,则ω=()A.54 B.74C.94D.1147(2024·山东临沂·二模)已知函数f x =sin 2x +φ ϕ <π2图象的一个对称中心为π6,0 ,则()A.f x 在区间-π8,π3上单调递增B.x=5π6是f x 图象的一条对称轴C.f x 在-π6,π4上的值域为-1,32D.将f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y轴对称8(2024·广东广州·二模)已知函数f(x)=2sin(ωx+φ)ω>0,|φ|<π2的部分图象如图所示,若将函数f(x)的图象向右平移θ(θ>0)个单位后所得曲线关于y轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π29(2024·四川雅安·三模)已知函数f x =sinωx+3cosωx(ω>0),则下列说法中正确的个数是()①当ω=2时,函数y=f x -2logπx有且只有一个零点;②当ω=2时,函数y=f x+φ为奇函数,则正数φ的最小值为π3;③若函数y=f x 在0,π3上单调递增,则ω的最小值为12;④若函数y=f x 在0,π上恰有两个极值点,则ω的取值范围为136,256 .A.1B.2C.3D.410(2024·河北保定·二模)已知tanα=3cosαsinα+11,则cos2α=()A.-78B.78C.79D.-7911(2024·河北衡水·三模)已知sin(3α-β)=m sin(α-β),tan(2α-β)=n tanα,则m,n的关系为()A.m=2nB.n=m+1m C.n=mm-1D.n=m+1m-112(2024·辽宁沈阳·三模)已知tan α2=2,则sin2α2+sinα的值是()A.25B.45C.65D.8513(2024·贵州黔东南·二模)已知0<α<β<π,且sinα+β=2cosα+β,sinαsinβ-3cosαcosβ=0,则tanα-β=()A.-1B.-32C.-12D.12二、多选题14(2024·河北张家口·三模)已知函数f (x )=23cos 2x +2sin x cos x ,则下列说法正确的是()A.函数f (x )的一个周期为2πB.函数f (x )的图象关于点π3,0 对称C.将函数f (x )的图象向右平移φ(φ>0)个单位长度,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的最小值为5π12D.若f 12α-5π24 -3=12,其中α为锐角,则sin α-cos α的值为6-30815(2024·辽宁鞍山·模拟预测)已知函数f x =sin x ⋅cos x ,则()A.f x 是奇函数B.f x 的最小正周期为2πC.f x 的最小值为-12D.f x 在0,π2上单调递增16(2024·安徽·三模)已知函数f x =sin x -3cos x ,则()A.f x 是偶函数B.f x 的最小正周期是πC.f x 的值域为-3,2D.f x 在-π,-π2上单调递增17(2024·山西太原·模拟预测)已知函数f x =sin 2x +φ 0<φ<π2 的图象关于直线x =π12对称,且h x =sin2x -f x ,则()A.φ=π12B.h x 的图象关于点π6,0中心对称C.f x 与h x 的图象关于直线x =π4对称 D.h x 在区间π6,5π12内单调递增18(2024·浙江金华·三模)已知函数f x =sin2ωx cos φ+cos2ωx sin φω>0,0<φ<π2的部分图象如图所示,则()A.φ=π6B.ω=2C.f x +π6为偶函数 D.f x 在区间0,π2的最小值为-1219(2024·浙江温州·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,P -3,4 为其终边上一点,若角β的终边与角2α的终边关于直线y =-x 对称,则()A.cos π+α =35B.β=2k π+π2+2αk ∈Z C.tan β=724D.角β的终边在第一象限20(2024·广东佛山·二模)已知函数f x =sin x +cos2x 与g x =sin2x +cos x ,记h x =λf x +μg x ,其中λ,μ∈R 且λ2+μ2≠0.下列说法正确的是()A.h x 一定为周期函数B.若λ⋅μ>0,则h x 在0,π2上总有零点C.h x 可能为偶函数D.h x 在区间0,2π 上的图象过3个定点21(2024·湖南·二模)已知函数f x =12cos 2x -π3 ,把y =f x 的图象向右平移π3个单位长度,得到函数y =g x 的图象,以下说法正确的是()A.x =π6是y =f x 图象的一条对称轴B.f x 的单调递减区间为k π+π6,k π+2π3k ∈Z C.y =g x 的图象关于原点对称D.f x +g x 的最大值为1222(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8三、填空题23(2024·北京·三模)已知函数f (x )=sin x cos ωx ,x ∈R .①若ω=1,则f (x )的最小正周期是;,②若ω=2,则f (x )的值域是.24(2024·北京·模拟预测)已知函数f (x )=sin ωx -2cos ωx (ω>0),且f α+x =f α-x .若两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,则sin4α=.25(2024·湖北荆州·三模)设0<α<β<π2,tan α=m tan β,cos α-β =35,若满足条件的α与β存在且唯一,则m =,tan αtan β=.。
2024全国高考真题数学汇编:指数函数与对数函数章节综合

2024全国高考真题数学汇编指数函数与对数函数章节综合一、单选题1.(2024天津高考真题)设,a b ∈R ,则“33a b =”是“33a b =”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 2.(2024天津高考真题)若0.30.3 4.24.24.2log 0.2a b c -===,,,则a b c ,,的大小关系为( ) A .a b c >> B .b a c >> C .c a b >> D .b c a >>3.(2024全国高考真题)已知函数22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩在R 上单调递增,则a 的取值范围是( ) A .(,0]-∞ B .[1,0]- C .[1,1]- D .[0,)+∞4.(2024北京高考真题)生物丰富度指数 1ln S d N-=是河流水质的一个评价指标,其中,S N 分别表示河流中的生物种类数与生物个体总数.生物丰富度指数d 越大,水质越好.如果某河流治理前后的生物种类数S 没有变化,生物个体总数由1N 变为2N ,生物丰富度指数由2.1提高到3.15,则( )A .2132N N =B .2123N N =C .2321N N =D .3221N N = 5.(2024北京高考真题)已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则( ) A .12122log 22y y x x ++< B .12122log 22y y x x ++> C .12212log 2y y x x +<+ D .12212log 2y y x x +>+ 6.(2024全国高考真题)设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为( )A .18B .14C .12D .1二、填空题 7.(2024全国高考真题)已知1a >且8115log log 42a a -=-,则=a .参考答案1.C【分析】说明二者与同一个命题等价,再得到二者等价,即是充分必要条件.【详解】根据立方的性质和指数函数的性质,33a b =和33a b =都当且仅当a b =,所以二者互为充要条件. 故选:C.2.B【分析】利用指数函数和对数函数的单调性分析判断即可.【详解】因为 4.2x y =在R 上递增,且0.300.3-<<,所以0.300.30 4.2 4.2 4.2-<<<,所以0.30.30 4.21 4.2-<<<,即01a b <<<,因为 4.2log y x =在(0,)+∞上递增,且00.21<<,所以 4.2 4.2log 0.2log 10<=,即0c <,所以b a c >>,故选:B3.B【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【详解】因为()f x 在R 上单调递增,且0x ≥时,()()e ln 1x f x x =++单调递增,则需满足()02021e ln1a a -⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a -≤≤, 即a 的范围是[1,0]-.故选:B.4.D 【分析】根据题意分析可得12112.1, 3.15ln ln S S N N --==,消去S 即可求解. 【详解】由题意得12112.1, 3.15ln ln S S N N --==,则122.1ln 3.15ln N N =,即122ln 3ln N N =,所以3221N N =. 故选:D.5.B【分析】根据指数函数和对数函数的单调性结合基本不等式分析判断AB ;举例判断CD 即可.【详解】由题意不妨设12x x <,因为函数2x y =是增函数,所以12022x x <<,即120y y <<,对于选项AB:可得121222222x x x x ++>=,即12122202x x y y ++>>, 根据函数2log y x =是增函数,所以121212222log log 222x x y y x x +++>=,故B 正确,A 错误;对于选项D :例如120,1x x ==,则121,2y y ==, 可得()12223log log 0,122y y +=∈,即12212log 12y y x x +<=+,故D 错误; 对于选项C :例如121,2x x =-=-,则1211,24y y ==, 可得()122223log log log 332,128y y +==-∈--,即12212log 32y y x x +>-=+,故C 错误, 故选:B.6.C 【分析】解法一:由题意可知:()f x 的定义域为(),b ∞-+,分类讨论a -与,1b b --的大小关系,结合符号分析判断,即可得1b a =+,代入可得最值;解法二:根据对数函数的性质分析ln()x b +的符号,进而可得x a +的符号,即可得1b a =+,代入可得最值.【详解】解法一:由题意可知:()f x 的定义域为(),b ∞-+,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;若-≤-a b ,当(),1x b b ∈--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1b a b -<-<-,当(),1x a b ∈--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1a b -=-,当(),1x b b ∈--时,可知()0,ln 0x a x b +<+<,此时()0f x >;当[)1,x b ∞∈-+时,可知()0,ln 0x a x b +≥+≥,此时()0f x ≥;可知若1a b -=-,符合题意;若1a b ->-,当()1,x b a ∈--时,可知()0,ln 0x a x b ++,此时()0f x <,不合题意;综上所述:1a b -=-,即1b a =+,则()2222211112222a b a a a ⎛⎫+=++=++≥ ⎪⎝⎭,当且仅当11,22a b =-=时,等号成立, 所以22a b +的最小值为12;解法二:由题意可知:()f x 的定义域为(),b ∞-+,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;则当(),1x b b ∈--时,()ln 0x b +<,故0x a +≤,所以10b a -+≤; ()1,x b ∞∈-+时,()ln 0x b +>,故0x a +≥,所以10b a -+≥;故10b a -+=, 则()2222211112222a b a a a ⎛⎫+=++=++≥ ⎪⎝⎭,当且仅当11,22a b =-=时,等号成立, 所以22a b +的最小值为12.故选:C.【点睛】关键点点睛:分别求0x a +=、ln()0x b +=的根,以根和函数定义域为临界,比较大小分类讨论,结合符号性分析判断.7.64【分析】将8log ,log 4a a 利用换底公式转化成2log a 来表示即可求解. 【详解】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=, 2log 1a ⇒=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案为:64.。
高考函数选择题汇总(附答案)

A.
B.
C.
D.
)
21.(2020·浙江)已知 a,b∈R 且 ab≠0,若(x﹣a)
(x﹣b)
(x﹣2a﹣b)≥0 在 x≥0 上恒成立,则
(
)
A.a<0
B.a>0
C.b<0
22.(2019·浙江)在同一直角坐标系中,函数 y=
(
D.b>0
1
,y=loga(x+ 1 )
,
(a>0 且 a≠1)的图像可能是
1 ,则 ∑22
=1
() = (
A.-3
)
B.-2
C.0
D.1
3.
(2021·新高考Ⅱ卷)已知函数 () 的定义域为 , ( + 2) 为偶函数, (2 + 1) 为奇函
数,则(
)
A.(− 1) = 0
2
B.(−1) = 0
C.(2) = 0
D.(4) = 0
4.
(2021·北京)函数 () = cos − cos2 ,试判断函数的奇偶性及最大值(
论.
4.
【答案】D
【解析】
【解答】解:∵f(-x)=cos(-x)-cos(-2x)=cosx-cos2x=f(x)
∴f(x)为偶函数
又 f(x)=cosx-cos2x=-2cos2x+cosx+1
令 t=cosx,则 y=-2t2+t+1,t∈[-1,1],
1
1
1
则当 = − 2× −2 = 4时,y 取得最大值
④f(x)的最大值为 2
其中所有正确结论的编号是(
A.①②④
28.(2019·浙江)函数 f(x)=
三角函数--2023高考真题分类汇编完整版

三角函数--高考真题汇编第一节三角函数概念、同角三角函数关系式和诱导公式1.(2023全国甲卷理科7)“22sin sin 1αβ+=”是“sin cos 0αβ+=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据充分条件、必要条件概念及同角三角函数的基本关系得解.【解析】当2απ=,0β=时,有22sin sin 1αβ+=,但sin cos 0αβ+≠,即22sin sin 1αβ+=推不出sin cos 0αβ+=;当sin cos 0αβ+=时,()2222sin sin cos sin 1αβββ+=-+=,即sin cos 0αβ+=能推出22sin sin 1αβ+=.综上可知,22sin sin 1αβ+=是sin cos 0αβ+=成立的必要不充分条件.故选B.2.(2023北京卷13)已知命题:p 若,αβ为第一象限角,且αβ>,则tan tan αβ>.能说明p 为假命题的一组,αβ的值为α=;β=.【分析】根据正切函数单调性以及任意角的定义分析求解.【解析】因为()tan f x x =在π0,2⎛⎫⎪⎝⎭上单调递增,若00π02αβ<<<,则00tan tan αβ<,取1020122π,2π,,k k k k ααββ=+=+∈Z ,则()()100200tan tan 2πtan ,tan tan 2πtan k k αααβββ=+==+=,即tan tan αβ<,令12k k >,则()()()()102012002π2π2πk k k k αβαβαβ-=+-+=-+-,因为()1200π2π2π,02k k αβ-≥-<-<,则()()12003π2π02k k αβαβ-=-+->>,即12k k >,则αβ>.不妨取1200ππ1,0,,43k k αβ====,即9ππ,43αβ==满足题意.故答案为:9ππ;43.第二节三角恒等变换1.(2023新高考I 卷6)过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=()A.1B.154C.104D.64【解析】()222241025x y x x y +--=⇒-+=,所以圆心为()2,0B ,记()0,2A -,设切点为,M N ,如图所示.因为AB =,BM =,故AM =cos cos2AM MAB AB α=∠==,sin 2α=,15sin 2sincos 2224ααα==⨯.故选B.2.(2023新高考I 卷8)已知()1sin 3αβ-=,1cos sin 6αβ=,则()cos 22αβ+=()A.79B.19 C.19-D.79-【解析】()1sin sin cos cos sin 3αβαβαβ-=-=,1cos sin 6αβ=,所以1sin cos 2αβ=,所以()112sin sin cos cos sin 263αβαβαβ+=+=+=,()()()2221cos 22cos 212sin 1239αβαβαβ⎛⎫+=+=-+=-⨯= ⎪⎝⎭.故选B.3.(2023新高考II 卷7)已知α为锐角,1cos 4α+=,则sin 2α=()A.38- B.18-+ C.34- D.14-+【解析】21cos 12sin 24αα+=-=,所以2231sin 284α⎫-==⎪⎪⎝⎭,则1sin24α-=或1sin 24α=.因为α为锐角,所以sin02α>,15sin24α-=舍去,得51sin 24α-=.故选D.第三节三角函数的图像与性质1.(2023新高考II 卷16)已知函数()()sin f x x ωϕ=+,如图所示,A ,B 是直线12y =与曲线()y f x =的两个交点,若π=6AB ,则()πf =_______.【解析】sin y x =的图象与直线12y =两个相邻交点的最近距离为2π3,占周期2π的13,所以12ππ36ω⋅=,解得4ω=,所以()()sin 4f x x ϕ=+.再将2π,03⎛⎫⎪⎝⎭代入()()sin 4f x x ϕ=+得ϕ的一个值为2π3-,即()2πsin 43f x x ⎛⎫=- ⎪⎝⎭.所以()2π3πsin 4π32f ⎛⎫=-=- ⎪⎝⎭.2.(2023全国甲卷理科10,文科12)已知()f x 为函数cos 26y x π⎛⎫=+ ⎪⎝⎭向左平移6π个单位所得函数,则()y f x =与1122y x =-交点个数为()A.1B.2C.3D.4【解析】因为函数πcos 26y x ⎛⎫=+ ⎪⎝⎭向左平移π6个单位可得()sin 2.f x x =-而1122y x =-过10,2⎛⎫- ⎪⎝⎭与()1,0两点,分别作出()f x 与1122y x =-的图像如图所示,考虑3π3π7π2,2,2222x x x =-==,即3π3π7π,,444x x x =-==处()f x 与1122y x =-的大小关系,结合图像可知有3个交点.故选C.3.(2023全国乙卷理科6,文科10)已知函数()()sin f x x ωϕ=+在区间2,63ππ⎛⎫⎪⎝⎭单调递增,直线6x π=和23x π=为函数()y f x =的图像的两条对称轴,则512f π⎛⎫-= ⎪⎝⎭()A. B.12-C.12【解析】2222362T T ωωππππ=-=⇒=π=⇒=,所以()()sin 2.f x x ϕ=+又222,32k k ϕππ⋅+=+π∈Z ,则52,6k k ϕπ=-+π∈Z .所以5555sin 22sin 121263f k π⎡ππ⎤π⎛⎫⎛⎫⎛⎫-=⋅--+π=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦故选D.【评注】本题考查了三角函数图像与性质,当然此题也可以通过画图快速来做,读者可以自行体会.4.(2023全国乙卷理科10)已知等差数列{}n a 的公差为23π,集合{}*cos n S a n =∈N ,若{},S a b =,则ab =()A.1- B.12-C.0D.12【解析】解法一(利用三角函数图像与性质)因为公差为23π,所以只考虑123,,a a a ,即一个周期内的情形即可.依题意,{}{}cos ,n S a a b ==,即S 中只有2个元素,则123cos ,cos ,cos a a a 中必有且仅有2个相等.如图所示,设横坐标为123,,a a a 的点对应图像中123,,A A A 点.①当12cos cos a a =时,且2123a a π-=,所以图像上点的位置必为如图1所示,12,A A 关于x =π对称,且1223A A π=,则1233a ππ=π-=,2433a ππ=π+=,32a =π.所以11122ab ⎛⎫=-⨯=- ⎪⎝⎭.②当13cos cos a a =时,3143a a π-=,所以图像上点的位置必为如图2所示,13,A A 关于x =π对称,且1343A A π=,则133a 2ππ=π-=,3533a 2ππ=π+=,2a =π.所以()11122ab =⨯-=-.综上所述,12ab =-.故选B.解法二(代数法)()()11113n a a n d a n 2π=+-=+-,21cos cos 3a a 2π⎛⎫=+ ⎪⎝⎭,31cos cos 3a a 4π⎛⎫=+ ⎪⎝⎭,由于{}{}*cos ,n S a n a b =∈=N ,故123cos ,cos ,cos a a a 中必有2个相等.①若121111cos cos cos cos 322a a a a a 2π⎛⎫==+=-- ⎪⎝⎭,即113cos 22a a =-,解得11cos 2a =或11cos 2a =-.若11cos 2a =,则1sin a =,3111113cos cos cos 132244a a a a 4π⎛⎫=+=-+=--=- ⎪⎝⎭,若11cos 2a =-,则1sin a =,3111113cos cos cos 13244a a a a 4π⎛⎫=+=-=+= ⎪⎝⎭,故131cos cos 2a a ab ==-.②若131111cos cos cos cos sin 322a a a a a 4π⎛⎫==+=-+ ⎪⎝⎭,得113cos 2a a =,解得11cos 2a =或11cos 2a =-.当11cos 2a =时,1sin a =,21111313cos cos cos 132244a a a a 2π⎛⎫=+=--=--=- ⎪⎝⎭,当11cos 2a =-时,1sin a =213cos 144a =+=,故121cos cos 2a a ab ==-.③若23cos cos a a =,与①类似有121cos cos 2a a ab ==-.综上,故选B.5.(2023北京卷17)已知函数()sin cos cos sin ,0,2f x x x ωϕωϕωϕπ=+><.(1)若()0f =,求ϕ的值;(2)若()f x 在区间2,33ππ⎡⎤-⎢⎥⎣⎦上单调递增,且213f π⎛⎫= ⎪⎝⎭,再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数()f x 存在,求,ωϕ的值.条件①:3f π⎛⎫= ⎪⎝⎭;条件②:13f π⎛⎫-=- ⎪⎝⎭;条件③:()f x 在,23ππ⎡⎤--⎢⎥⎣⎦上单调递减.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.【分析】(1)把0x =代入()f x 的解析式求出sin ϕ,再由π||2ϕ<即可求出ϕ的值;(2)若选条件①不合题意;若选条件②,先把()f x 的解析式化简,根据() f x 在π2π,33⎡⎤⎢⎥⎣⎦-上的单调性及函数的最值可求出T ,从而求出ω的值;把ω的值代入()f x 的解析式,由π13f ⎛⎫-=- ⎪⎝⎭和π||2ϕ<即可求出ϕ的值;若选条件③:由() f x 的单调性可知() f x 在π3x =-处取得最小值1-,则与条件②所给的条件一样,解法与条件②相同.【解析】(1)因为π()sin cos cos sin ,0,||2f x x x ωϕωϕωϕ=+><所以()()3(0)sin 0cos cos 0sin sin 2f ωϕωϕϕ=⋅+⋅==-,因为π||2ϕ<,所以π3ϕ=-.(2)因为π()sin cos cos sin ,0,||2f x x x ωϕωϕωϕ=+><,所以()π()sin ,0,||2f x x ωϕωϕ=+><,所以() f x 的最大值为1,最小值为1-.若选条件①:因为()()sin f x x ωϕ=+的最大值为1,最小值为1-,所以π3f ⎛⎫= ⎪⎝⎭无解,故条件①不能使函数()f x 存在;若选条件②:因为() f x 在π2π,33⎡⎤⎢⎥⎣⎦-上单调递增,且2π13f ⎛⎫= ⎪⎝⎭,π13f ⎛⎫-=- ⎪⎝⎭,所以2πππ233T ⎛⎫=--= ⎪⎝⎭,所以2πT =,2π1Tω==,所以()()sin f x x ϕ=+,又因为π13f ⎛⎫-=- ⎪⎝⎭,所以πsin 13ϕ⎛⎫-+=- ⎪⎝⎭,所以ππ2π,32k k ϕ-+=-+∈Z ,所以π2π,6k k ϕ=-+∈Z ,因为||2ϕπ<,所以π6ϕ=-.所以1ω=,π6ϕ=-;若选条件③:因为() f x 在π2π,33⎡⎤⎢⎥⎣⎦-上单调递增,在ππ,23⎡⎤--⎢⎥⎣⎦上单调递减,所以() f x 在π3x =-处取得最小值1-,即π13f ⎛⎫-=- ⎪⎝⎭.以下与条件②相同.第四节解三角形1.(2023全国甲卷理科16)在ABC △中,2AB =,60BAC ∠=︒,BC =D 为BC 上一点,AD 平分BAC ∠,则AD =.【解析】如图所示,记,,,AB c AC b BC a ===由余弦定理可得22222cos606b b +-⨯⨯⨯︒=,解得1b =(负值舍去).由ABC ABD ACD S S S =+△△△可得,1112sin602sin30sin30222b AD AD b ⨯⨯⨯︒=⨯⨯⨯︒+⨯⨯⨯︒,解得1212bAD b +===+.2.(2023全国甲卷文科17)记ABC △的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c a A+-=.(1)求bc .(2)若cos cos 1cos cos a B b A ba Bb A c--=,求ABC △面积.3.(2023全国乙卷理科18)在ABC △中,120BAC ∠=︒,2AB =,1AC =.(1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积.【解析】(1)利用余弦定理可得2222cos 14212cos120527BC AC AB AC AB BAC =+-⋅∠=+-⨯⨯⨯︒=+=.故BC =.又由正弦定理可知sin sin BC ACBAC ABC=∠∠.故sin sin14AC BAC ABC BC ⋅∠∠====.(2)由(1)可知tan ABC ∠=在Rt BAD △中,tan 2AD AB ABC =⋅∠=⨯=故1122255ABD S AB AD =⨯⨯=⨯⨯=△,又11sin 21sin120222ABC S AB AC BAC =⨯⨯⨯∠=⨯⨯⨯︒=△,所以2510ADC ABC ABD S S S =-=-=△△△.5.(2023新高考I 卷17)已知在ABC △中,3A B C +=,()2sin sin A C B -=.(1)求sin A ;(2)设=5AB ,求AB 边上的高.【解析】(1)解法一因为3A B C +=,所以4A B C C ++==π,所以4C π=,2sin()sin()A C A C -=+2sin cos 2cos sin sin cos cos sin A C A C A C A C⇒-=+sin cos 3cos sin A C A C ⇒=tan 3tan 3sin A C A ⇒==⇒=解法二因为3A B C +=,所以4A B C C ++==π,所以4C π=,所以4A B 3π+=,所以4B A 3π=-,故2sin()sin()4AC A 3π-=-,即2sin cos 2cos sin sin cos cos sin 4444A A A A ππ3π3π-=-,得sin 3cos A A =.又22sin cos 1A A +=,()0,A ∈π,得310sin 10A =.(2)若||5AB =.如图所示,设AC 边上的高为BG ,AB 边上的高为CH ,||CH h =,由(1)可得10cos 10A =,||||cos ||102AG AB A AB =⋅==,||||2BG CG ===,所以||AC =,||||2||6||5AC BG CH AB ===.6.(2023新高考II 卷17)记ABC △的内角,,A B C 的对边分别为,,a b c ,已知ABC △的面,D 为BC 的中点,且1AD =.(1)若π3ADC ∠=,求tan B ;(2)若228b c +=,求,b c .【解析】(1)依题意,122ADC ABC S S ==△△,133sin 242ADC S AD DC ADC =⋅⋅∠==△,解得2DC =,2BD =.如图所示,过点A 作AE BC ⊥于点E .因为60ADC ∠= ,所以12DE =,32AE =,则15222BE =+=,所以3tan 5AE B BE ==.(2)设AB = c ,AC = b ,由极化恒等式得2214AB AC AD BC ⋅- =,即2114⋅--b c =b c ,化简得()22244⋅-+=-b c =b c ,即cos cos 2BAC bc BAC ⋅⋅∠=∠=-b c =b c ①,又1sin 2ABC S bc BAC =∠=△,即sin bc BAC ∠=.②①得tan BAC ∠=0πBAC <∠<得2π3BAC ∠=,代入①得4bc =,与228b c +=联立可得2b c ==.7.(2023北京卷7)在ABC △中,()()()sin sin sin sin a c A C b A B +-=-,则C ∠=()A.6π B.3π C.32π D.65π【分析】利用正弦定理的边角变换与余弦定理即可得解.【解析】因为()(sin sin )(sin sin )a c A C b A B +-=-,所以由正弦定理得()()()a c a c b a b +-=-,即222a c ab b -=-,则222a b c ab +-=,故2221cos 222a b c ab C ab ab +-===,又0πC <<,所以π3C =.故选B.。
高中函数考试题及答案

高中函数考试题及答案一、选择题(每题3分,共30分)1. 函数f(x) = 2x^2 - 3x + 1的图像与x轴的交点个数是:A. 0个B. 1个C. 2个D. 3个2. 若函数f(x) = x^3 - 2x^2 + x + 2在R上单调递增,则x的取值范围是:A. x > 2B. x < 2C. x ≥ 2D. x ≤ 23. 已知函数f(x) = |x - 1| + |x + 2|,当x = -1时,f(x)的值为:A. 4B. 2C. 1D. 04. 函数y = log_2(x)的定义域是:A. (0, +∞)B. (-∞, 0)C. (-∞, +∞)D. [0, +∞)5. 函数y = √(x - 1)的值域是:A. (0, +∞)B. [0, +∞)C. (-∞, 0]D. (-∞, +∞)6. 若函数f(x) = 3x - 2与g(x) = 2x + 1的图象有交点,则交点的个数是:A. 0个B. 1个C. 2个D. 3个7. 函数f(x) = sin(x) + cos(x)的周期是:A. πB. 2πC. 4πD. 18. 函数f(x) = 1 / (x^2 + 1)的图像关于:A. x轴对称B. y轴对称C. 原点对称D. 都不是9. 若函数f(x) = x^2 + bx + c的顶点坐标为(-1, -2),则b的值为:A. 0B. -1C. 2D. -210. 函数y = x^3 - 6x^2 + 9x + 2的极值点个数是:A. 0个B. 1个C. 2个D. 3个答案:1-5 CADBA 6-10 BCCDB二、填空题(每题2分,共20分)11. 函数y = 3x + 5的斜率是______。
12. 函数f(x) = x^2 - 4x + 4的最小值是______。
13. 函数y = sin(x)的对称轴方程是______。
14. 函数y = 2^x的反函数是______。
(完整版)高考数学历年函数试题及答案

设(x )是定义在R 上的偶函数, 其图象关于直线x=1对称, 对任意x1,x2∈[0, ]都有 (Ⅰ)设);41(),21(,2)1(f f f 求 (Ⅱ)证明)(x f 是周期函数。
2.设函数(Ⅰ)判断函数)(x f 的奇偶性; (Ⅱ)求函数)(x f 的最小值.3. 已知函数(Ⅰ)求函数()f x 的最小正周期和最大值;(Ⅱ)在给出的直角坐标系中, 画出函数 在区间 上的图象4. (本小题满分12分)求函数 的最小正周期、最大值和最小值.5. (本小题满分12分)已知在R上是减函数, 求的取值范围.6.△ABC的三个内角为A.B.C, 求当A为何值时, 取得最大值, 并求出这个最大值7.设a为实数, 函数在和都是增函数, 求a的取值范围.8.设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对于任意的x 都有f(x)<c2成立, 求c的取值范围.9.已知函数 , .(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数 在区间 内是减函数, 求 的取值范围.10.在 中, 内角A.b 、c 的对边长分别为a 、b 、c.已知 , 且 , 求b.11. 已知函数42()36f x x x =-+. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设点P 在曲线 上, 若该曲线在点P 处的切线 通过坐标原点, 求 的方程12.设函数 图像的一条对称轴是直线 (Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间; (Ⅲ)画出函数)(x f y =在区间],0[π上的图像13.已知二次函数 的二次项系数为 , 且不等式 的解集为 (Ⅰ)若方程 有两个相等的根, 求 的解析式; (Ⅱ)若 的最大值为正数, 求 的取值范围解答: 2.解: (Ⅰ) 由于),2()2(),2()2(f f f f -≠-≠- 故 既不是奇函数, 也不是偶函数.(Ⅱ)⎪⎩⎪⎨⎧<+-≥-+=.2,1,2,3)(22x x x x x x x f由于),2[)(+∞在x f 上的最小值为)2,(,3)2(-∞=在f 内的最小值为.43)21(=f故函数),()(+∞-∞在x f 内的最小值为.433.解)42sin(21)4sin 2cos 4cos 2(sin 21πππ-+=-⋅+=x x x所以函数 的最小正周期为π, 最大值为 .(Ⅱ)由(Ⅰ)知x83π-8π-8π 83π 85π y121-121+1故函数)(x f y =在区 间]2,2[ππ-上的图象是4.解:.212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数 的最小正周期是 , 最大值是 最小值是 5.解: 函数f(x)的导数: .(Ⅰ)当 ( )时, 是减函数.)(01632R x x ax ∈<-+ .3012360-<⇔<+=∆<⇔a a a 且所以, 当 是减函数;(II )当 时, =由函数 在R 上的单调性, 可知当 时, )是减函数;(Ⅲ)当 时, 在R 上存在一个区间, 其上有 所以, 当 时, 函数 不是减函数. 综上, 所求 的取值范围是 6.解: 由,222,A C B C B A -=+=++ππ得所以有 .2sin 2cosAC B =+ 2sin 2cos 2cos 2cos AA CB A +=++2sin 22sin 212A A +-=.23)212(sin 22+--=A 当.232cos 2cos ,3,212sin取得最大值时即C B A A A ++==π 7.解:),1(23)('22-+-=a ax x x f其判别试.81212124222a a a -=+-=∆ (ⅰ)若,26,08122±==-=∆a a 即 当.),()(,0)(',),3()32,(为增函数在时或+∞-∞>+∞∈-∞∈x f x f a x x所以.26±=a (ⅱ) 若,08122<-=∆a .),()(,0)('为增函数在恒有+∞-∞>x f x f 所以 ,232>a即 ).,26()26,(+∞--∞∈ a (ⅲ)若,08122>-=∆a 即,0)(',2626=<<-x f a 令 解得 .323,3232221a a x a a x -+=--=当;)(,0)(',)(),(21为增函数时或x f x f x x x x >∞+∈-∞∈ 当.)(,0)(',),(21为减函数时x f x f x x x <∈ 依题意1x ≥0得2x ≤1. 由1x ≥0得a ≥,232a - 解得 1≤.26<a 由2x ≤1得,232a -≤3,a - 解得 .2626<<-a 从而 .)26,1[∈a 综上, a 的取值范围为 即 ∈a ).,1[]26,(+∞--∞ 9.解: (1) 求导: 当 时, , , 在 上递增; 当 , 由 求得两根为 即 在 递增, 递减,⎫+∞⎪⎪⎝⎭递增; (2)(法一)∵函数 在区间 内是减函数, 递减, ∴ , 且 , 解得: 。
历年(2020-2023)全国高考数学真题分类(函数)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(函数)汇编【2023年真题】1.(2023·新课标I 卷 第4题) 设函数()()2x x a f x -=在区间(0,1)单调递减,则a 的取值范围是( ) A. (,2]-∞-B. [2,0)-C. (0,2]D. [2,)+∞2.(2023·新课标II 卷 第4题)若21()()ln 21x f x x a x -=++为偶函数,则a =( ) A. 1-B. 0C.12D. 13.(2023·新课标I 卷 第10题)(多选) 噪声污染问题越来越受到重视,用声压级来度量声音的强弱,定义声压级020lgp pL p =⨯,其中常数00(0)p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级: 声源 与声源的距离/m声压级/dB 燃油汽车1060~90混合动力汽车1050~60电动汽车1040已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为1p ,2p ,3p ,则( ) A. 12p p …B. 2310p p >C. 30100p p =D. 12100p p …4. (2023·新课标I 卷 第11题)(多选)已知函数()f x 的定义域为R ,22()()()f xy y f x x f y =+,则( ) A. (0)0f = B. (1)0f =C. ()f x 是偶函数D. 0x =为()f x 的极小值点【2022年真题】5.(2022·新高考I 卷 第12题)(多选)已知函数()f x 及其导函数()f x '的定义域为R ,记()().g x f x ='若3(2)2f x -,(2)g x +均为偶函数,则( )A. (0)0f =B. 1()02g -=C. (1)(4)f f -=D. (1)(2)g g -=6.(2022·新高考II 卷 第8题)若函数()f x 的定义域为R ,且()()()()f x y f x y f x f y ++-=,(1)1f =,则221()k f k ==∑( )A. 3-B. 2-C. 0D. 1【2021年真题】7.(2021·新高考I 卷 第13题)已知函数3()(22)x x f x x a -=⋅-是偶函数,则a =__________. 8.(2021·新高考II 卷 第7题)已知5log 2a =,8log 3b =,12c =,则下列判断正确的是( ) A. c b a << B. b a c << C. a c b << D. a b c <<9.(2021·新高考II 卷 第8题)设函数()f x 的定义域为R ,且(2)f x +为偶函数,(21)f x +为奇函数,则 ( )A. 102f ⎛⎫-= ⎪⎝⎭B. (1)0f -=C. (2)0f =D. (4)0f =10.(2021·新高考II 卷 第14题)写出一个同时具有下列性质①②③的函数()f x :_________. ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.【2020年真题】11.(2020·新高考I 卷 第6题)基本再生数0R 与世代间隔T 是新冠肺炎流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:()rt I t e =描述累计感染病例数()I t 随时间(t 单位:天)的变化规律,指数增长率 r 与0R ,T 近似满足01.R rT =+有学者基于已有数据估计出0 3.28R =, 6.T =据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 20.69)≈( ) A. 1.2天B. 1.8天C. 2.5天D. 3.5天12.(2020·新高考I 卷、II 卷 第8题)若定义在R 上的奇函数()f x 在(,0)-∞单调递减,且(2)0f =,则满足(1)0xf x -…的x 的取值范围是( ) A. [1,1][3,)-⋃+∞ B. [3,1][0,1]--⋃ C. [1,0][1,)-⋃+∞D. [1,0][1,3]-⋃13.(2020·新高考II 卷 第7题)已知函数2()lg(45)f x x x =--在(,)a +∞上单调递增,则a 的取值范围是( ) A. (2,)+∞ B. [2,)+∞ C. (5,)+∞ D. [5,)+∞14.(2020·新高考I 卷 第12题)(多选)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2, ,n ,且()0(1,2,,)i P X i p i n ==>= ,11ni i p ==∑,定义X 的信息熵21()logni i i H X p p ==-∑( )A. 若1n =,则()0H x =B. 若2n =,则()H x 随着1p 的增大而增大C. 若i p =1n(1,2,i =,)n ,则()H x 随着n 的增大而增大 D. 若2n m =,随机变量Y 的所有可能取值为1,2, ,m ,且()P Y j ==j p +21j m p +-(1,2,j = ,)m ,则()H X ()H Y参考答案1.(2023·新课标I 卷 第4题)解:结合复合函数单调性的性质,易得12a …,所以a 的取值范围是[2,);+∞故选.D 2.(2023·新课标II 卷 第4题)解:()f x 为偶函数,(1)(1)f f =-,1(1)ln(1)ln 33a a ∴+=-+,0a ∴=,故选.B 3.(2023·新课标I 卷 第10题)(多选) 解:1211200220lg20lg 20lg 0p p p L L p p p -=⨯-⨯=⨯> ,121pp ∴>,12p p ∴>,所以A 正确; 223320lg 10p L L p -=⨯ …,231lg 2p p ∴…,1223p e p ∴…,所以B 错误;33020lg40p L p =⨯= ,30100pp ∴=,所以C 正确; 112220lg 905040p L L p -=⨯-= …,12lg 2p p ∴…,12100pp ∴…,所以D 正确. 故选ACD4. (2023·新课标I 卷 第11题)(多选)解:选项A ,令0x y ==,则(0)0(0)0(0)f f f =⨯+⨯,则(0)0f =,故A 正确; 选项B ,令1x y ==,则(1)1(1)1(1)f f f =⨯+⨯,则(1)0f =,故B 正确; 选项C ,令1x y ==-,则22(1)(1)(1)(1)(1)f f f =-⨯-+-⨯-,则(1)0f -=, 再令1y =-,则22()(1)()(1)f x f x x f -=-+-,即()()f x f x -=,故C 正确;选项D ,不妨设()0f x =为常函数,且满足原题22()()()f xy y f x x f y =+,而常函数没有极值点,故D 错误. 故选:.ABC5.(2022·新高考I 卷 第12题)(多选)解:由3(2)2f x -为偶函数可知()f x 关于直线32x =对称,由(2)g x +为偶函数可知()g x 关于直线2x =对称,结合()()g x f x =',根据()g x 关于直线2x =对称可知()f x 关于点(2,)t 对称, 根据()f x 关于直线32x =对称可知:()g x 关于点3(,0)2对称,综上,函数()f x 与()g x 均是周期为2的周期函数,所以有(0)(2)f f t ==,所以A 不正确;(1)(1)f f -=,(4)(2)f f =,(1)(2)f f =,故(1)(4)f f -=,所以C 正确.13()()022g g -==,(1)(1)g g -=,所以B 正确;又(1)(2)0g g +=,所以(1)(2)0g g -+=,所以D 不正确. 6.(2022·新高考II 卷 第8题)解:令1y =得(1)(1)()(1)()(1)()(1)f x f x f x f f x f x f x f x ++-=⋅=⇒+=-- 故(2)(1)()f x f x f x +=+-,(3)(2)(1)f x f x f x +=+-+, 消去(2)f x +和(1)f x +得到(3)()f x f x +=-,故()f x 周期为6; 令1x =,0y =得(1)(1)(1)(0)(0)2f f f f f +=⋅⇒=,(2)(1)(0)121f f f =-=-=-, (3)(2)(1)112f f f =-=--=-, (4)(3)(2)2(1)1f f f =-=---=-, (5)(4)(3)1(2)1f f f =-=---=, (6)(5)(4)1(1)2f f f =-=--=,故221()3[(1)(2)(6)](19)(20)(21)(22)k f k f f f f f f f ==+++++++∑(1)(2)(3)(4)1(1)(2)(1)3f f f f =+++=+-+-+-=-即7.(2021·新高考I 卷 第13题)解: 函数3()(22)x x f x x a -=⋅-是偶函数;33()(22)=()()(22)x x x x f x x a f x x a --∴=⋅--=-⋅-, 化简可得3(2222)0x x x x x a a --⋅-+⋅-=, 解得1a =,故答案为1.8.(2021·新高考II 卷 第7题)解:5881log 2log log log 32a b =<==<=, 即.a c b << 故选.C9.(2021·新高考II 卷 第8题)解:因为函数为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-, 因为函数为奇函数,则()()1221f x f x -=-+,所以()()11f x f x -=-+, 所以,(3)(1)f x f x +=-+,即(4)(2)()f x f x f x +=-+=, 故函数是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==, 故()()110f f -=-=,其它三个选项未知. 故选.B10.(2021·新高考II 卷 第14题)解:取2()f x x =,则22212121212()()()()f x x x x x x f x f x ===,满足①,()2f x x '=,0x >时有,满足②, ()2f x x '=的定义域为R ,又()2()f x x f x ''-=-=-,故是奇函数,满足③.故答案为:2()(f x x =答案不唯一,()()2*nf x x n N =∈均满足)11.(2020·新高考I 卷 第6题)解:将0 3.28R =,6T =代入01R rT =+, 得01 3.2810.386R r T--===,(2)f x +(21)f x +()f x ()0f x '>由()0.38tI t e=得()()ln 0.38I t t =,当增加1倍时,,所需时间为故选.B12.(2020·新高考I 卷、II 卷 第8题)解:根据题意,不等式(1)0xf x -…可化为()010x f x ≥⎧⎨-≥⎩ 或()010x f x ≤⎧⎨-≤⎩, 由奇函数性质得(2)-(2)0f f -==,()f x 在(0,)+∞上单调递减,所以或,解得13x 剟或10.x -剟 满足(1)0xf x -…的x 的取值范围是[1,0][1,3].x ∈-⋃ 故选.D13.(2020·新高考II 卷 第7题) 解:由2450x x -->,得1x <-或 5.x > 令245t x x =--,外层函数lg y t =是其定义域内的增函数,∴要使函数2()lg(45)f x x x =--在(,)a +∞上单调递增,则需内层函数245t x x =--在(,)a +∞上单调递增且恒大于0,则(,)(5,)a +∞⊆+∞,即 5.a …a ∴的取值范围是[5,).+∞故选:.D14.(2020·新高考I 卷 第12题)(多选)解:A 选项中,由题意知11p =,此时2()1log 10H X =-⨯=,故A 正确; B 选项中,由题意知121p p +=,且1(0,1)p ∈,121222121121()log log log (1)log (1)H X p p p p p p p p =--=----,设22()log (1)log (1)f x x x x x =----,(0,1)x ∈ ,则222111()log log (1)log (1)ln 2ln 2f x x x x '=--+-+=-,当1(,1)2x ∈时,()0f x '<,当1(0,)2x ∈时,()0f x '>,故当11(0,2p ∈ 时,()H X 随着1p 的增大而增大,当11(,1)2p ∈ 时,()H X 随着1p 的增大而减小,故B 错误;C 选项中,由题意知2211()(log H X n log n n n=⨯-=,故()H X 随着n 的增大而增大,故C 正确;D 选项中,由题意知j21j2j 21j j 1()()log ()mm m H Y p pp p +-+-==-++∑,2j 2j j 2j 21j 221j j 1j 1()log (log log )mmm m H X p p p p p p +-+-===-=-+∑∑,j 21jj 21j2j 21j 2j 221jj 1j 1()()log ()(log log )m m mmp p pp m m H X H Y p p p p +-+-++-+-==-=+-+∑∑j 21j j 21jj 21jj 21jj 21j j 21j j 21j 22j 1j 1j 21j j 21j()()()=log log m m m m p p pp mmm m m pp pp m m p p p p p p p p p p +-+-+-+-++-+-+-==+-+-+++=∑∑j 21j21j j 2j 1j21j=log (1)(1)0,m mpp m m p p p p +-+-=+-++>∑故D 错误. 故答案为: .AC。
(完整版)高考数学函数专题习题及详细答案

函数专题练习1。
函数1()x y e x R +=∈的反函数是( )A .1ln (0)y x x =+>B .1ln (0)y x x =->C .1ln (0)y x x =-->D .1ln (0)y x x =-+>2。
已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是(A )(0,1) (B )1(0,)3 (C )11[,)73(D )1[,1)73。
在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠,1221|()()|||f x f x x x -<-恒成立”的只有 (A )1()f x x=(B )()||f x x = (C )()2x f x =(D )2()f x x =4。
已知()f x 是周期为2的奇函数,当01x <<时,()lg .f x x =设63(),(),52a f b f ==5(),2c f =则(A )a b c << (B )b a c << (C )c b a << (D )c a b <<5.函数2()lg(31)f x x =++的定义域是 A .1(,)3-+∞ B . 1(,1)3- C 。
11(,)33- D . 1(,)3-∞-6、下列函数中,在其定义域内既是奇函数又是减函数的是A .3 ,y x x R =-∈B . sin ,y x x R =∈C 。
,y x x R =∈R7、函数()y f x =的反函数1()y f x -=的图像与y 轴交于点(0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x =A 。
4B .3C . 2D .18、设()f x 是R 上的任意函数,则下列叙述正确的是(A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数(C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数9、已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则A .()22()x f x e x R =∈B .()2ln 2ln (0)f x x x =>C .()22()x f x e x R =∈D .()2ln ln 2(0)f x x x =+>)10、设1232,2()((2))log (1) 2.x e x f x f f x x -⎧⎪=⎨-≥⎪⎩<,则的值为, (A )0 (B )1 (C )2 (D )311、对a ,b ∈R ,记max {a ,b }=⎩⎨⎧≥b a b ba a <,,,函数f (x )=max {|x +1|,|x -2|}(x ∈R )的最小值是(A )0 (B )12 (C ) 32(D )3 12、关于x 的方程222(1)10x x k ---+=,给出下列四个命题: ①存在实数k ,使得方程恰有2个不同的实根;②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根; 其中假.命题的个数是 A .0 B .1 C .2 D .3(一) 填空题(4个)1.函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =_______________。
高考真题汇总(函数)精选

高考真题汇总(函数)考试内容:集合.子集、交集、并集、补集.映射.函数(函数的记号、定义域、值域). 幂函数.函数的单调性.函数的奇偶性. 反函数.互为反函数的函数图象间的关系.指数函数.对数函数.换底公式.简单的指数方程和对数方程. 二次函数.考试要求:(1)理解集合、子集、交集、并集、补集的概念.了解空集和全集的意义,了解属于、包含、相等关系的意义,能掌握有关的术语和符号,能正确地表示一些较简单的集合.(2)了解映射的概念,在此基础上理解函数及其有关的概念掌握互为反函数的函数图象间的关系.(3)理解函数的单调性和奇偶性的概念,并能判断一些简单函数的单调性和奇偶性,能利用函数的奇偶性与图象的对称性的关系描绘函数图象.(4)掌握幂函数、指数函数、对数函数及二次函数的概念及其图象和性质,并会解简单的指数方程和对数方程.一、选择题1.在下面给出的函数中,哪一个既是区间(0,π2)上的增函数,又是以π为周期的偶函数(85(3)3分)A .y =x 2B .y =|sinx |C .y =cos 2xD .y =e sin 2x2.函数y =(0.2)-x +1的反函数是(86(2)3分) A .y =log 5x +1 B .y =log x 5+1 C .y =log 5(x -1) D .y =log 5x -13.在下列各图中,y =ax 2+bx 与y =ax +b 的图象只可能是(86(9)3分) A . B . C . D .4.设S ,T 是两个非空集合,且S ⊄T ,T ⊄S ,令X =S ∩T ,那么S ∪X =(87(1)3分) A .X B .T C .Φ D .S5.在区间(-∞,0)上为增函数的是(87(5)3分)A .y =-log 0.5(-x )B .y =x 1-xC .y =-(x +1)2D .y =1+x 26.集合{1,2,3}的子集总共有(88(3)3分) A .7个 B .8个 C .6个 D .5个7.如果全集I ={a ,b ,c ,d ,e },M ={a ,c ,d },N ={b ,d ,e },则M -∩N -=(89(1)3分) A .φ B .{d }C .{a ,c }D .{b ,e }8.与函数y =x 有相同图象的一个函数是(89(2)3分)A .y =xB .y =x2xC .y =a x log a (a >0且a ≠1)D .y =log a a x (a >0且a ≠1)9.已知f (x )=8+2x -x 2,如果g (x )=f (2-x 2),那么g (x )(89(11)3分) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数10.方程2413logx的解是(90(1)3分)A .x =19B .x =33C .x = 3D .x =911.设全集I ={(x ,y )|x ,y ∈R },M ={(x ,y )|y -3x -2=1},N ={(x ,y )|y ≠x +1},则M —∪N —=(90(9)3分)A .φB .{(2,3)}C .(2,3)D .{(x ,y )|y =x +1}12.如果实数x ,y 满足等式(x -2)2+y 2=3,那么y x 的最大值是(90(10)3分)A .12B .33C .32D . 313.函数f (x )和g (x )的定义域为R ,“f (x )和g (x )均为奇函数”是“f (x )与g (x )的积为偶函数”的(90上海) A .必要条件但非充分条件 B .充分条件但非必要条件 C .充分必要条件 D .非充分条件也非必要条件14.如果log a 2>log b 2>0,那么(90广东) A .1<a <b B .1<b <a C .0<a <b <1 D .0<b <a <115.函数y =(x +4)2在某区间上是减函数,这区间可以是(90年广东) A .(-∞,-4] B .[-4,+∞) C .[4,+∞) D .(-∞,4]16.如果奇函数f (x )在区间[3,7]上是增函数且最小值为5,那么f (x )在区间[-7,-3]上是(91(13)3分) A .增函数且最小值为-5 B .增函数且最大值为-5 C .减函数且最小值为-5 D .减函数且最大值为-517.设全集为R ,f (x )=sinx ,g (x )=cosx ,M ={x |f (x )≠0},N ={x |g (x )≠0},那么集合{x |f (x )g (x )=0}等于(91年⒂3分) A .M -∩N - B .M -∪N C .M -∪N D .M -∪N - 18.log89log23等于(92(1)3分) A .23B .1C .32D .219.图中曲线是幂函数y =x n 在第一象限的图象,已知n 取±2,±12四个值,则相应于曲线c 1,c 2,c 3,c 4的n 依次是(92(6)3分)A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .12,2,-2,-1220.函数y =ex -e -x 2的反函数(92(16)3分)3 4A .是奇函数,它在(0,+∞)上是减函数B .是偶函数,它在(0,+∞)上是减函数C .是奇函数,它在(0,+∞)上是增函数D .是偶函数,它在(0,+∞)上是增函数21.如果函数f (x )=x 2+bx +c 对任意实数t 都有f (2+t )=f (2-t ),那么(92(17)3分) A .f (2)<f (1)<f (4) B .f (1)<f (2)<f (4) C .f (2)<f (4)<f (1) D .f (4)<f (2)<f (1)22.当0<a <1时,函数y =a x 和y =(a -1)x 2的图象只可能是(92年上海) ABC D23.xNAB C D24.对于定义域为R 的任何奇函数f (x )都有(92年三南) A .f (x )-f (-x )>0(x ∈R ) B .f (x )-f (-x )≤0(x ∈R ) C .f (x )f (-x )≤0(x ∈R ) D .f (x )f (-x )>0(x ∈R )25.F (x )=[1+22x -1]f (x ),(x ≠0)是偶函数,且f (x )不恒等于0,则f (x )(93(8)3分)A .是奇函数B .是偶函数C .可能是奇函数也可能是偶函数D .不是奇函数也不是偶函数26.设a ,b ,c 都是正数,且3a =4b =6c ,那么(93(16)3分)A .1c =1a +1bB .2c =2a +1bC .1c =2a +2bD .2c =1a +2b27.函数y =x +a 与y =log a x 的图象可能是(93年上海) A . B . C . D .28.A .M =N B .N ⊂M C .M ⊂N D .M ∩N =φ29.设全集I ={0,1,2,3,4},集合A ={0,1,2,3},集合B ={2,3,4},则A∪B - -=(94(1)4分) A .{0} B .{0,1} C .{0,1,4} D .{0,1,2,3,4}30.设函数f (x )=1-1-x2(-1≤x ≤0),则函数y =f -1(x )的图象是(94(12)5分) B . y 1 x x31.f f (x )=lg (10x+1),x ∈R ,那么(94(15)5分)A .g (x )=x ,h (x )=lg (10x +10-x +1) B .g (x )=lg(10x +1)+x 2,h (x )=lg(10x +1)-x2C .g (x )=x 2,h (x )=lg (10x +1)-x2D .g (x )=-x 2,h (x )=lg(10x +1)+x232.当a >1时,函数y =log a x 和y =(1-a )x 的图像只可能是(94上海) ACDx33.设I是全集,集合P,Q 满足P⊂Q A .P ∪Q=Q B .P -∪Q=I C .P ∩Q -=φ D .P∩Q=P - - -34.如果0<a <1,那么下列不等式中正确的是(94上海)A .(1-a )31>(1-a )21 B .log (1-a )(1+a )>0 C .(1-a )3>(1+a )2D .(1-a )1+a >135.已知I 为全集,集合M ,N ⊂I ,若M ∩N =N ,则(95(1)4分) A .错误! B .错误!⊆N C .错误! D .错误!⊇N36.函数y =-1x +1的图象是(95(2)4分)B C . y x x x x ax )在A .(0,1) B .(1,2) C .(0,2) D .[2,+∞) 38.如果P ={x |(x -1)(2x -5)<0},Q ={x |0<x <10},那么(95年上海) A .P ∩Q =φ B .P ⊂Q C .Q ⊂P D .P ∪Q =R 39.已知全集I =N ,集合A ={x |x =2n ,n ∈N },B ={x |x =4n ,n ∈N },则(96(1)4分)A .I =A ∪B B .I =A -∪BC .I =A ∪B -D .I =A∪B- -40.当a >1时,同一直角坐标系中,函数y =a -x ,y =log (96(2)4分) x +=(96(15)5分) A .0.5 B .-0.5 C .1.5 D .-1.5 42.如果log a 3>log b 3>0,那么a 、b 间的关系为(96上海) A .0<a <b <1 B .1<a <b C .0<b <a <1 D .1<b <a43.在下列图像中,二次函数y =ax 2+bx 与指数函数y =(b a)x 的图像只可能是(96上海)B C . D .44.设集合M={x|0≤x<2},集合N={x|x2-2x-3<0},集合M∩N=(97(1)4分)A.{x|0≤x<1}B.{x|0≤x<2}C.{x|0≤x≤1}D.{x|0≤x≤2}45.将y=2x的图象A.先向左平行移动1个单位B.先向右平行移动1个单位C.先向上平行移动1个单位D.先向下平行移动1个单位再作关于直线y=x对称的图象,可得到函数y=log2(x+1)的图象.(97(7)4分)46.定义在区间(-∞,+∞)的奇函数f(x)为增函数;偶函数g(x)在区间[0,+∞)的图象与f(x)重合.设a>b>0,给出下列不等式:①f(b)-f(-a)>g(a)-g(-b) ②f(b)-f(-a)<g(a)-g(-b)③f(a)-f(-b)>g(b)-g(-a) ④f(a)-f(-b)<g(b)-g(-a)其中成立的是(97(13)5分)A.①与④B.②与③C.①与③D.②与④47.三个数60.7,0.76,log0.76的大小关系为(97上海)A.0.76<log0.76<60.7B.0.76<60.7<log0.76C.log0.76<60.7<0.76D.log0.76<0.76<60.748.函数y=a|x|(a>1)的图像是(98(2)4分)x0)A.x(x≠0)B.1x(x≠0) C.-x(x≠0) D.-1x(x≠0)50.如果实数x,y满足x2+y2=1,那么(1-xy)(1+xy)有(98年广东)A.最小值12和最大值1 B.最大值1和最小值34C.最小值34而没有最大值D.最大值1而没有最小值51.如图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是A.(M∩P)∩SB.(M∩P)∪SC.(M∩P)∩S-D.(M∩P)∪S-(99(1)4分)52.已知映射f:A B,其中集合A={-3,-2,-1,1,2,3,4},集合B中的元素都是A中的元素在映射f下的象,且对任意的a∈A,在B中和它对应的元素是|a|,则集合B中的元素的个数是(99(2)4分)A.4B.5C.6D.753.若函数y=f(x)的反函数是y=g(x),f(a)=b,ab≠0,则g(b)=(99(3)4分)A.aB.a-1C.bD.b-154.设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素2n+n,则在映射f下,象20的原象是(2000⑴5分)A .2B .3C .4D .555.《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分别累进计算.A .800~900元B .900~1200元C .1200~1500元D .1500~2800元56.设全集I ={a ,b ,c ,d ,e },集合M ={a ,c ,d },N ={b ,d ,e },那么M∩N - -是(2000春京、皖(2)4分)A .ΦB .{d }C .{a ,c }D .{b ,e }57.已知f (x 6)=log 2x ,那么f (8)等于(2000春京、皖)A .43B .8C .18D .1258.函数y =lg |x |(2000春京、皖(7)4分)A .是偶函数,在区间(-∞,0)上单调递增B .是偶函数,在区间(-∞,0)上单调递减C .是奇函数,在区间(0,+∞)上单调递增D .是奇函数,在区间(0,+∞)上单调递减59.已知函数f (x )=ax 3+bx 2+cx +d 的图象如右图,则(2000春京、皖(14)5分) A .b ∈(-∞,0) B .b ∈(0,1) C .b ∈(1,2) D .b ∈(2,+∞)60.若集合S ={y |y =3x ,x ∈R },T ={y |y =x 2-1,x ∈R },则S ∩T 是(2000上海(15)4分) A .S B .T C .Φ D .有限集61.已知集合A ={1,2,3,4},那么A 的真子集的个数是(2000广东) A .15 B .16 C .3 D .462.设集合A 和B 都是坐标平面上的点集{(x ,y )|x ∈R ,y ∈R },映射f :A →B 把集合A 中的元素(x ,y )映射成集合B 中的元素(x +y ,x -y ),则在映射f 下,象(2,1)的原象是(2000年江西、天津(1)5分)A .(3,1)B .(32,12)C .(32,-12) D .(1,3)63.集合M ={1,2,3,4,5}的子集个数是(2001年春京、皖、蒙(1)5分) A .32 B .31 C .16 D .1564.函数f (x )=a x (a >0且a ≠1)对于任意的实数x 、y 都有(2001春京、皖、蒙(2)5分) A .f (xy )=f (x )f (y ) B .f (xy )=f (x )+f (y ) C .f (x +y )=f (x )f (y ) D .f (x +y )=f (x )+f (y ) 65.函数y =-1-x 的反函数是(2001春京、皖、蒙(4)5分)A .y =x 2-1(-1≤x ≤0)B .y =x 2-1(0≤x ≤1)C .y =1-x 2(x ≤0)D .y =1-x 2(0≤x ≤1)66.已知f (x 6)=log 2x ,那么f (8)等于(2001春京、皖、蒙(7)5分)A .43B .8C .18D .1267.若定义在区间(-1, 0) 内的函数f (x )=log 2a (x +1) 满足f (x )>0, 则a 的取值范围是(2001年(4)5分)A .(12,+∞)B .(0,12]C .(0,12) D .(0,+∞)68.设f (x )、g (x )都是单调函数,有如下四个命题:(2001年(10)5分) ①若f (x )单调递增,g (x )单调递增,则f (x )-g (x )单调递增; ②若f (x )单调递增,g (x )单调递减,则f (x )-g (x )单调递增; ③若f (x )单调递减,g (x )单调递增,则f (x )-g (x )单调递减; ④若f (x )单调递减,g (x )单调递减,则f (x )-g (x )单调递减; 其中,正确的命题是 A .②③ B .①④ C .①③ D .②④ 69.满足条件M ∪{1}={1,2,3}的集合M 的个数是(2002年北京(1)5分) A .1 B .2 C .3 D .470.下列四个函数中,以π为最小正周期,且在区间(π2,π)上为减函数的是(2002年北京(3)5分)A .y =cos 2x B .y =2|sinx | C .y =(13)cosx D .y =-cotx71.如图所示,f i (x )(i =1,2,3,4)是定义在[0, 1]上的四个函数,其中满足性质:“对[0, 1]中任意的x 1和x 2,任意λ∈[0, 1], f [λx 1+(1-λ)x 2]≤λf (x 1)+(1-λ)f (x 2)恒成立”的只有(2002年北京(12)5分)A .f 1(x ), f 3(x )B .f 2(x )C .f 2(x ), f 3(x )D .f 4(x )72.一般地,家庭用电量(千瓦时)与气温(℃)有一定的关系,用图(1)表示某年12个月中每月的平均气温,图(2)表示某家庭在这年12个月中每月的用电量,根据这些信息,以下关于该家庭用电量与气温间关系的叙述中,正确的是(2002年上海(16)4分)图(1) 图(2)1 2 3 4 5 6 7 8 9 10 11 12 月份 1 2 3 4 5 6 7 8 9 10 11 12 月份30 25201510 5140120100806040 20 0气温 用电量A .气温最高时,用电量最多B .气温最低时,用电量最少C .当气温大于某一值时,用电量随气温增高而增加D .当气温小于某一值时,用电量随气温降低而增加73.集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12,k ∈Z },则(2002年全国(5)、广东(5)、天津(6)5分)A .M =NB .M ⊂NC .N ⊂MD .M ∩N =φ74.函数f (x )=x |x +a |+b 是奇函数的充要条件是(2002年广东(7)5分)A .ab =0B .a +b =0C .a =bD .a 2+b 2=075.函数y =1-1x -1(2002年广东(9)5分)A .在(-1,+∞)内单调递增B .在(-1,+∞)内单调递减C .在(1,+∞)内单调递增D .在(1,+∞)内单调递减76.函数y =x 2+bx +c (x ∈[0,+∞))是单调函数的充要条件是(2002年全国(9)、天津(8)5分) A .b ≥0 B .b ≤0 C .b >0 D .b <077.据2002年3月9日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95 933亿元,比上年增长7.3%”,如果“十·五”期间(2001年——2005年)每年的国内生产总值都按此年增长率增长,那么到“十·五”末我国国内年生产总值约为(2002年全国(12)、广东(12)、天津(12)5分) A .115 000亿元 B .120 000亿元 C .127 000亿元 D .135 000亿元78. 函数y =1-1x -1的图像是(2002年全国(10)5分)79.若集合M ={y |y =2-x },P ={y |y =x -1},则M ∩P =(2003年春北京(1)5分) A .{y |y >1} B .{y |y ≥1} C .{y |y >0} D .{y |y ≥0}80.若f (x )=x -1x,则方程f (4x )=x 的根是(2003年春北京(2)5分)A .12B .-12C .2D .-281.关于函数f (x )=(sinx )2-(23)|x|+12,有下面四个结论:(1)f (x )是奇函数 (2)当x >2003时, f (x )>12恒成立(3)f (x )的最大值是32 (4)f (x )的最小值是-12其中正确结论的个数为(2003年春上海(16)4分) A .1个 B .2个 C .3个 D .4个83.设函数的取值范围是则若0021,1)(,.0,,0,12)(x x f x x x x f x >⎪⎩⎪⎨⎧>≤-=-(2003年全国(3)5分)A .(-1,1)B .(-1,+∞)C .),0()2,(+∞⋃--∞D .),1()1,(+∞⋃--∞二、填空题1. 设函数f (x )的定义域是[0,1],则函数f (x 2)的定义域为________.(85(10)4分)2. 已知圆的方程为x 2+(y -2)2=9,用平行于x 轴的直线把圆分成上下两个半圆,则以上半圆(包括端点)为图像的函数表达式为_____________(85广东)3. 方程40.5x x5252=-+的解是__________.(86(11)4分)4. 方程9-x -2·31-x =27的解是_________.(88(17)4分)5. 函数y =ex -1ex +1的反函数的定义域是__________.(89(15)4分)6. 函数y =x2-49的值域为_______________(89广东)7. 函数y =x +4x +2的定义域是________________(90上海)8. 设函数y =f (x )的图象关于直线x =1对称,若当x ≤1时,y =x 2+1,则当x >1时,y =_________(91年上海)9. 设函数f (x )=x 2+x +12的定义域是[n ,n +1](n 是自然数),那么在f (x )的值域中共有_______个整数(91年三南)10. 方程1-3x1+3x=3的解是___________.(92(19)3分)11. 设含有10个元素的集合的全部子集数为S ,其中由3个元素组成的子集数为T ,则TS的值为__________.(92(21)3分)12. 已知函数y =f (x )的反函数为f -1(x )=x -1(x ≥0),那么函数f (x )的定义域为_________(92上海)13. 设f (x )=4x -2x +1(x ≥0),f -1(0)=_________.(93(23)3分)注:原题中无条件x ≥0,此时f (x )不存在反函数.14. 函数y =x 2-2x +3的最小值是__________(93年上海)15. 在测量某物理量的过程中,因仪器和观察的误差,使得n 次测量分别得到a 1,a 2,…a n ,共n 个数据,我们规定所测物理量的“最佳近似值”a 是这样一个量:与其它近似值比较,a 与各数据的差的平方和最小,依此规定,从a 1,a 2,…a n 推出的a =_______. (94(20)4分)16. 函数y =lg 10x -2的定义域是________________(95上海)17. 1992年底世界人口达到54.8亿,若人口的年平均增长率为x %,2000年底世界人口数为y (亿),那么y 与x 的关系式为___________(96上海)18. 方程log 2(9x -5)=log 2(3x -2)+2的解是x =________(96上海)19. 函数y =1log0.5(2-x)的定义域为____________(96上海)20. lg 20+log 10025=________(98上海)21. 函数f (x )=a x (a >0,a ≠1)在区间[1,2]上的最大值比最小值大a2,则a =______(98上海)22. 函数y =⎩⎪⎨⎪⎧2x +3 (x≤0)x +3 (0<x≤1)-x +5 (x >1)的最大值是__________(98年上海)23. 函数y =log 22x -13-x的定义域为____________(2000上海(2)4分)24. 已知f (x )=2x +b 的反函数为y =f -1(x ),若y =f -1(x )的图像经过点Q (5,2),则b =_______(2000上海(5)4分)25. 根据上海市人大十一届三次会议上的市政府工作报告,1999年上海市完成GDP (GDP 是值国内生产总值)4035亿元,2000年上海市GDP 预期增长9%,市委、市政府提出本市常住人口每年的自然增长率将控制在0.08%,若GDP 与人口均按这样的速度增长,则要使本市人均GDP 达到或超过1999年的2倍,至少需要_________年(2000上海(6)4分)(按:1999年本市常住人口总数约1300万)26. 设函数y =f (x )是最小正周期为2的偶函数,它在区间[0,1]上的图像为如图所示的线段AB ,则在区间[1,2]上,f (x )=_____(2000上海(8)4分)27. 函数)0(1)(2≤+=x x x f 的反函数=-)(1x f ______.(2001年春上海(1)4分)28. 关于x 的函数f (x )=sin (x +φ)有以下命题:(2001年春上海(11)4分) (1)对任意的φ,f (x )都是非奇非偶函数;(2)不存在φ,使f (x )既是奇函数,又是偶函数; (3)存在φ,使f (x )是奇函数;(4)对任意的φ,f (x )都不是偶函数.其中一个假命题的序号是_______.因为当φ=_______时,该命题的结论不成立.29. 方程log 3(1-2·3x )=2x +1的解x =_____________.(2002年上海(3)4分)30. 已知函数y =f (x )(定义域为D ,值域为A )有反函数y =f -1(x ),则方程f (x )=0有解x =a ,且f (x )>x (x ∈D )的充要条件是y =f -1(x )满足___________(2002年上海(12)4分)31. 函数y =2x1+x(x ∈(-1,+∞))图象与其反函数图象的交点坐标为________.(2002年天津(13)4分)32. 函数y =a x 在[0,1]上的最大值和最小值之和为3,则a =______(2002年全国(13)4分)33. 已知函数f (x )=x21+x2,那么f (1)+f (2)+f (12)+f (3)+f (13)+f (4)+f (14)=________(2002年全国(16)、广东(16)、天津(16)4分)34. 若存在常数p >0,使得函数f (x )满足f (px )=f (px -p2)(x ∈R ),则f (x )的一个正周期为_________.(2003年春北京(16)4分)35. 已知函数f (x )=x +1,则f -1(3)=___________.(2003年春上海(1)4分)36. 已知集合A ={x ||x |≤2,x ∈R },B ={x |x ≥a }且A ⊆B ,则实数a 的取值范围是____________.(2003年春上海(5)4分)37. 若函数y =x 2+(a +2)x +3,x ∈[a ,b ]的图象关于直线x =1对称,则b =__________.(2003年春上海(11)4分) 38. 使1)(log 2+<-x x 成立的x 的取值范围是 .(2003年全国(14).4分)三、解答题1. 解方程 log 4(3-x )+log 0.25(3+x )=log 4(1-x )+log 0.25(2x +1).(85(11)7分)2. 设a ,b 是两个实数,A ={(x ,y )|x =n ,y =na +b ,n 是整数},B ={(x ,y )|x =m ,y =3m 2+15,m 是整数},C ={(x ,y )|x 2+y 2≤144}是xoy 平面内的集合,讨论是否存在a 和b 使得①A ∩B ≠φ,②(a ,b )∈C 同时成立.(85(17)12分)3. 已知集合A 和集合B 各含有12个元素,A ∩B 含有4个元素,试求同时满足下面两个条件的集合C 的个数:①C ⊆A ∪B ,且C 中含有3个元素,②C ∩A ≠φ(φ表示空集)(86(20)10分)4. 给定实数a ,a ≠0且a ≠1,设函数y =x -1ax -1(x ∈R 且x ≠1a),证明:①经过这个函数图象上任意两个不同点的直线不平行于x②这个函数的图象关于直线y =x 成轴对称图形.(88(24)12分5. 已知a >0且a ≠1,试求使方程log a (x -ak )=log a 2(x 2-a 2))6. 设f (x )是定义在R 上以2为周期的函数,对k ∈Z ,用I k 表示区间(2k -1,2k +1],已知当x ∈I 0时,f (x )=x 2.(89(24)10分)①求f (x )在I k 上的解析表达式;②对自然数k ,求集合M k ={a |使方程f (x )=ax 在I k 上有两个不相等的实根}7. 设f (x )=lg 1+2x +……+(n -1)x +nxan,其中a 是实数,n 是任意给定的自然数,且n ≥2.①如果f (x )当x ∈(-∞,1]时有意义,求a 的取值范围;②如果a ∈(0,1],证明2f (x )<f (2x )当x ≠0时成立.(90(24)10分)8. 已知f (x )=lg 1+2x +4xa3,其中a ∈R ,且0<a ≤1(90广东)①求证:当x ≠0时,有2f (x )<f (2x );②如果f (x )当x ∈(-∞,1]时有意义,求a 的取值范围9. 根据函数单调性的定义,证明函数f (x )=-x 3+1在R 上是减函数.(91(24)10分)10.已知函数f (x )=2x -12x +1(91三南)⑴证明:f (x )在(-∞,+∞)上是增函数;⑵证明:对不小于3的自然数n 都有f (n )>nn +111.已知关于x 的方程2a 2x -2-7a x -1+3=0有一个根是2,求a 的值和方程其余的根.(92三南) 12. 某地为促进淡水鱼养殖业的发展,将价格控制在适当范围内,决定对淡水鱼养殖提供政府补贴,设淡水鱼的市场价格为x 元/千克,政府补贴为t 元/千克,根据市场调查,当8≤x ≤14时,淡水鱼的市场日供应量P 千克与市场日需求量Q 千克近似地满足关系: P =1000(x +t -8) (x ≥8,t ≥0) Q =50040-(x -8)2 (8≤x ≤14)当P =Q 时的市场价格称为市场平衡价格.①将市场平衡价格表示为政府补贴的函数,并求出函数的定义域;②为使市场平衡价格不高于每千克10元,政府补贴至少为每千克多少元?(95(25)12分)13. 已知二次函数y =f (x )在x =2t +1处取得最小值-4t 2(t >0),f (1)=0(95上海) ⑴求y =f (x )的表达式;⑵若任意实数x 都满足等式f (x )g (x )+a n x +b n =x n +1(其中g (x )为多项式,n ∈N ),试用t 表示a n 和b n ;⑶设圆C n 的方程为:(x -a n )2+(y -b n )2=r n 2,圆C n 与圆C n +1外切(n =1,2,3…),{r n }是各项都为正数的等比数列,记S n 为前n 个圆的面积之和,求r n 和S n .14. 设二次函数f (x )=ax 2+bx +c (a >0),方程f (x )-x =0的两个根x 1,x 2满足0<x 1<x 2<1a.Ⅰ.当x ∈(0,x 1)时,证明x <f (x )<x 1;Ⅱ.设函数f (x )的图象关于直线x =x 0对称,证明:x 0<x12.(97(24)12分)15. 解方程3lgx -2-3lgx +4=0(99年广东10分)16. 已知二次函数f (x )=(lga )x 2+2x +4lga 的最大值为3,求a 的值(2000春京、皖) 17. 设函数f (x )=|lgx |,若0<a <b ,且f (a )>f (b ),证明:ab <1(2000春京、皖(21)12分)本小题主要考查函数的单调性、对数函数的性质、运算能力,考查分析问题解决问题的能力.满分12分.18. 已知函数f (x )=⎩⎨⎧f1(x) x∈[0,12)f2(x) x∈[12,1] 其中f 1(x )=-2(x -12)2+1,f 2(x )=-2x +2.(2000春京、皖(24)14分)(I )在下面坐标系上画出y =f (x )的图象;(II )设y =f 2(x )(x ∈[12,1])的反函数为y =g (x ),a 1=1,a 2=g (a 1), ……,a n =g (a n -1),求数列{a n }的通项公式,并求lim n→∞a n ;(III )若x 0∈[0,12),x 1=f (x 0),f (x 1)=x 0,求x 0.19. 某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示. (2000(21)12分) ⑴写出图一表示的市场售价与时间的函数关系P =f (t );写出图二表示的种植成本与时间的函数关系式Q =g (t );⑵认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大? (注:市场售价和种植成本的单位:元/10kg ,时间单位:天)20. 已知函数:f (x )=x2+2x +ax,x ∈[1,+∞)(2000上海(19)6+8=14分)⑴当a =12时,求函数f (x )的最小值;⑵若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围 21. 设函数f (x )=x2+1-ax ,其中a >0.(2000年广东(20)12分) (1)解不等式f (x )≤1;(2)证明:当a ≥1时,函数f (x )在区间[0,+∞)上是单调函数.22. 设函数f (x )=x +ax +b(a >b >0),求f (x )的单调区间,并证明f (x )在其单调区间上的单调性.(2001年春京、皖、蒙(17)12分) 23. 某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应提高的比例为0.75x ,同时预计年销售量增加的比例为0.6x .已知年利润=(出厂价-投入成本)×年销售量.(2001年春京、皖、蒙(21)12分) (Ⅰ)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(Ⅱ)为使本年度的年利润比上年有所增加,问投入成本增加的比例x 应在什么范围内?24. 已知R 为全集,A ={x|log 0.5(3-x)≥-2},B ={x|5x -2≥1},求A -∩B (2001年春上海(17)12分)25. 设f (x )是定义在R 上的偶函数,其图象关于直线x =1对称,对任意x 1、x 2∈[0,12],都有f (x 1+x 2)=f (x 1)⋅f (x 2).(2001年(22)14分)(Ⅰ)设f (1)=2,求f (12),f (14);(Ⅱ)证明f (x )是周期函数.(Ⅲ)记a n =f (2n +12n),求lim n→∞(lna n ).26. 在研究并行计算的基本算法时,有以下简单模型问题:(2002年北京(20)12分)用计算机求n 个不同的数v 1,v 2,…,v n 的和∑n i =1v i=v 1+v 2+v 3+……+v n .计算开始前,n 个数存贮在n 台由网络连接的计算机中,每台机器存一个数.计算开始后,在一个单位时间内,每台机器至多到一台其他机器中读数据,并与自己原有数据相加得到新的数据,各台机器可同时完成上述工作.为了用尽可能少的单位时间,使各台机器都得到这n 个数的和,需要设计一种读和加的方法.比如n =2(I)(II )当n=128时,要使所有机器都得到∑n i =1v i ,至少需要多少个单位时间可完成计算?(结论不要求证明)27. 已知f (x )是定义在R 上的不恒为零的函数,且对于任意的a , b ∈R 都满足: f (a •b )=af (b )+bf (a )(2002年北京(22)13分) (I )求f (0), f (1)的值;(II )判断f (x )的奇偶性,并证明你的结论;.n S 项的和n 的前}n u {,求数列(n∈N)f(2-n)n=n u ,2=)(2f 若)I II (28. )分(19)14年上海).(2002π2,π2-(∈θ,其中]3,1-[∈x ,1-θtan ·x 2+2x =)x (f 已知函数 的最大值与最小值;)x (f 时,求函数 π6=-θ当(1).上是单调函数]3,1-[在区间)x (f =y 的取值范围,使得θ求(2)29. )分(22)14年广东002(22bx -ax =)x (f ,函数0>a 已知 ;b 2≤a ,证明:1≤)x (f 都有R ∈x 时,若对任意0>b 当(1) ;b 2≤a ≤1-b 的充要条件是1≤)|x (f |,1],[0∈x 时,证明:对任意1>b 当(2) (3)当0<b ≤1时,讨论:对任意x ∈[0,1],|f (x )|≤1的充要条件. 30. )分(21)12年全国(2002R ∈x ,1-|a -x |+2x =)x (f 为实数,函数a 设 (1)讨论f (x )函数的奇偶性 (2)求函数f (x )的最小值.31. 某租赁公司拥有汽车100辆. 当每辆车的月租金为3000元时,可全部租出. 当每辆车的月租金每增加50元时,未租出的车将会增加一辆. 租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(2003年春北京(20)12分)(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?32. 已知函数.5)(,5)(31313131--+=-=x x x g x x x f (2003年春上海(20)7+7=14分) (1) 证明f (x )是奇函数;并求f (x )的单调区间;(2) 分别计算f (4)-5f (2)g (2)和f (9)-5f (3)g (3)的值,由此概括出涉及函数f (x )和g (x )的对所有不等于零的实数x 都成立的一个等式,并加以证明. 33.(2003年(19).12分)已知.0>c 设P :函数xc y =在R 上单调递减.Q :不等式1|2|>-+c x x 的解集为R ,如果P 和Q 有且仅有一个正确,求c 的取值范围.。
函数高考真题及答案及解析

函数高考真题及答案及解析高考是每个学生都会经历的一场重要考试,而函数作为数学考试的重要一部分,往往也是考生们头疼的问题之一。
本文将带领大家回顾一些函数相关的高考真题,并附上详细的解析,帮助大家更好地掌握函数的知识。
问题一:已知函数f(x) = x^2 + 3x + 2,求f(2)的值。
解析:要求f(2)的值,就是将x替换为2,带入函数进行计算。
f(2) = 2^2 + 3(2) + 2 = 4 + 6 + 2 = 12所以f(2)的值为12。
问题二:已知函数g(x) = |x-1|,求g(-2)的值。
解析:g(x) = |x-1|表示的是x-1的绝对值。
要求g(-2)的值,就是将x替换为-2,带入函数进行计算。
g(-2) = |-2-1| = |-3| = 3所以g(-2)的值为3。
问题三:已知函数h(x) = 2x^2 + 5x - 3,求h(3)的值。
解析:同样,要求h(3)的值,就是将x替换为3,带入函数进行计算。
h(3) = 2(3)^2 + 5(3) - 3 = 2(9) + 15 - 3 = 18 + 15 - 3 = 30所以h(3)的值为30。
通过以上三个问题的解析,我们可以看出,高考函数题往往涉及到对函数表达式的替换和计算。
这种题型相对简单,只需要将给定的值代入函数进行计算即可。
下面我们再来看一些更加复杂的函数题。
问题四:已知函数P(x)满足P(x) = 2P(x-1) + 1,且P(0) = 1,求P(3)的值。
解析:根据题目所给条件,P(x)等于2P(x-1)加1。
初始条件是P(0)等于1。
要求P(3)的值,就需要使用递推的方式来解决这个问题。
首先,计算P(1)的值:P(1) = 2P(0) + 1 = 2(1) + 1 = 3接下来,计算P(2)的值:P(2) = 2P(1) + 1 = 2(3) + 1 = 7最后,计算P(3)的值:P(3) = 2P(2) + 1 = 2(7) + 1 = 15所以P(3)的值为15。
高中函数试题及答案解析

高中函数试题及答案解析试题一:函数的奇偶性1. 判断函数f(x) = x^2 - 2x + 3的奇偶性,并说明理由。
2. 若f(x)为奇函数,且f(1) = 5,求f(-1)的值。
试题二:函数的单调性3. 判断函数g(x) = -3x^2 + 6x - 2在区间(-∞, 1]上的单调性。
4. 若函数h(x) = 2x^3 - 6x^2 + 3x + 1在区间[-1, 1]上单调递减,求h'(x)的值。
试题三:复合函数的单调性5. 若f(x) = x^2 + 1,g(x) = 2x - 3,求复合函数f(g(x)),并判断其单调性。
6. 若复合函数f(g(x))在区间[-2, 1]上单调递增,求g'(x)的值。
试题四:函数的值域7. 求函数y = 3x + 2在x∈[-1, 4]上的值域。
8. 若函数y = 1/x在x∈(0, 1]上的值域为[2, +∞),求y的最小值。
试题五:函数的极值9. 求函数k(x) = x^3 - 3x^2 + 2x在x = 1处的极值。
10. 若函数m(x) = x^4 - 4x^3 + 4x^2 + 8x + 1在x = 2处取得极小值,求m'(x)和m''(x)的值。
答案解析:1. 函数f(x) = x^2 - 2x + 3为偶函数,因为f(-x) = (-x)^2 - 2(-x) + 3 = x^2 + 2x + 3 = f(x)。
2. 由于f(x)为奇函数,所以f(-1) = -f(1) = -5。
3. 函数g(x) = -3x^2 + 6x - 2在区间(-∞, 1]上单调递增,因为g'(x) = -6x + 6,当x < 1时,g'(x) > 0。
4. 函数h(x)的导数h'(x) = 6x^2 - 12x + 3,由于h(x)在区间[-1, 1]上单调递减,所以h'(x) < 0,即6x^2 - 12x + 3 < 0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考真题汇总(函数)考试内容:集合.子集、交集、并集、补集.映射.函数(函数的记号、定义域、值域). 幂函数.函数的单调性.函数的奇偶性. 反函数.互为反函数的函数图象间的关系.指数函数.对数函数.换底公式.简单的指数方程和对数方程. 二次函数.考试要求:(1)理解集合、子集、交集、并集、补集的概念.了解空集和全集的意义,了解属于、包含、相等关系的意义,能掌握有关的术语和符号,能正确地表示一些较简单的集合.(2)了解映射的概念,在此基础上理解函数及其有关的概念掌握互为反函数的函数图象间的关系.(3)理解函数的单调性和奇偶性的概念,并能判断一些简单函数的单调性和奇偶性,能利用函数的奇偶性与图象的对称性的关系描绘函数图象.(4)掌握幂函数、指数函数、对数函数及二次函数的概念及其图象和性质,并会解简单的指数方程和对数方程.一、选择题1.在下面给出的函数中,哪一个既是区间(0,π2)上的增函数,又是以π为周期的偶函数(85(3)3分)A .y =x 2B .y =|sinx |C .y =cos 2xD .y =e sin 2x2.函数y =(0.2)-x+1的反函数是(86(2)3分) A .y =log 5x +1 B .y =log x 5+1 C .y =log 5(x -1) D .y =log 5x -13.在下列各图中,y =ax 2+bx 与y =ax +b 的图象只可能是(86(9)3分) A . B . C . D .4.设S ,T 是两个非空集合,且S ⊄T ,T ⊄S ,令X =S ∩T ,那么S ∪X =(87(1)3分) A .X B .T C .Φ D .S 5.在区间(-∞,0)上为增函数的是(87(5)3分)A .y =-log 0.5(-x )B .y =x 1-xC .y =-(x +1)2D .y =1+x 26.集合{1,2,3}的子集总共有(88(3)3分) A .7个 B .8个 C .6个 D .5个7.如果全集I ={a ,b ,c ,d ,e },M ={a ,c ,d },N ={b ,d ,e },则M -∩N -=(89(1)3分) A .φ B .{d }C .{a ,c }D .{b,e }8.与函数y=x 有相同图象的一个函数是(89(2)3分)A .y =xB .y =x2xC .y =a xlog a (a >0且a ≠1) D .y =log a a x (a >0且a ≠1)9.已知f (x )=8+2x -x 2,如果g (x )=f (2-x 2),那么g (x )(89(11)3分) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数C .在区间(-2,0)上是增函数D .在区间(0,2)上是增函数 10.方程2413log x的解是(90(1)3分) A .x =19B .x =33C .x = 3D .x=911.设全集I ={(x ,y )|x ,y ∈R },M ={(x ,y )|y -3x -2=1},N ={(x ,y )|y ≠x +1},则M —∪N —=(90(9)3分) A .φ B .{(2,3)}C .(2,3)D .{(x ,y )|y =x +1}12.如果实数x ,y 满足等式(x -2)2+y 2=3,那么yx的最大值是(90(10)3分) A .12 B .33 C .32 D . 313.函数f (x )和g (x )的定义域为R ,“f (x )和g (x )均为奇函数”是“f (x )与g (x )的积为偶函数”的(90上海) A .必要条件但非充分条件 B .充分条件但非必要条件 C .充分必要条件 D .非充分条件也非必要条件 14.如果log a 2>log b 2>0,那么(90广东) A .1<a <b B .1<b <a C .0<a <b <1 D .0<b <a <115.函数y =(x +4)2在某区间上是减函数,这区间可以是(90年广东) A .(-∞,-4] B .[-4,+∞) C .[4,+∞) D .(-∞,4]16.如果奇函数f (x )在区间[3,7]上是增函数且最小值为5,那么f (x )在区间[-7,-3]上是(91(13)3分) A .增函数且最小值为-5 B .增函数且最大值为- 5 C .减函数且最小值为-5 D .减函数且最大值为-517.设全集为R ,f (x )=sinx ,g (x )=cosx ,M ={x |f (x )≠0},N ={x |g (x )≠0},那么集合{x |f (x )g (x )=0}等于(91年⒂3分) A .M -∩N - B .M -∪N C .M -∪N D .M -∪N - 18.log89log23等于(92(1)3分)A .23B .1C .32D .219.图中曲线是幂函数y =x n 在第一象限的图象,已知n 取±2,±12四个值,则相应于曲线c 1,c 2,c 3,c 4的n依次是(92(6)3分)A .-2,-12,12,2B .2,12,-12,- 2C .-12,-2,2,12D .12,2,-2,-1220.函数y =ex -e -x 2的反函数(92(16)3分)A .是奇函数,它在(0,+∞)上是减函数B .是偶函数,它在(0,+∞)上是减函数C .是奇函数,它在(0,+∞)上是增函数D .是偶函数,它在(0,+∞)上是增函数21.如果函数f (x )=x 2+bx +c 对任意实数t 都有f (2+t )=f (2-t ),那么(92(17)3分) A .f (2)<f (1)<f (4) B .f (1)<f (2)<f (4) C .f (2)<f (4)<f (1) D .f (4)<f (2)<f (1)22.当0<a <1时,函数y =a x 和y =(a -1)x 2的图象只可能是(92年上海) AB C D3 423.设全集I =R ,集合M ={x |x2>2},N =|log x 7>log 37},那么M ∩N -=(92年三南) A .{x |x <-2= B .{x |x <-2或x ≥3= C .{x |x ≥3} D .{x |-2≤x <324.对于定义域为R 的任何奇函数f (x )都有(92年三南) A .f (x )-f (-x )>0(x ∈R ) B .f (x )-f (-x )≤0(x ∈R ) C .f (x )f (-x )≤0(x ∈R ) D .f (x )f (-x )>0(x ∈R )25.F (x )=[1+22x -1]f (x ),(x ≠0)是偶函数,且f (x )不恒等于0,则f (x )(93(8)3分)A .是奇函数B .是偶函数C .可能是奇函数也可能是偶函数D .不是奇函数也不是偶函数26.设a ,b ,c 都是正数,且3a =4b =6c ,那么(93(16)3分)A .1c =1a +1bB .2c =2a +1bC .1c =2a +2bD .2c =1a +2b27.函数y =x +a 与y =log a x 的图象可能是(93年上海) A . B . C . D .28.集年三南)A .M =NB .N ⊂MC .M ⊂ND .M ∩N =φ29.设全集I ={0,1,2,3,4},集合A ={0,1,2,3},集合B ={2,3,4},则A∪B - -=(94(1)4分) A .{0} B .{0,1} C .{0,1,4} D .{0,1,2,3,4}30.设函数f (x )=1-1-x2(-1≤x ≤0),则函数y =f -1(x )的图象是(94(12)5分) B . y 1 1 x O 1 1 x -131.f (x )=lg (10x +1),x ∈R ,那么(94(15)5分)A .g (x )=x ,h (x )=lg (10x +10-x +1) B .g (x )=lg(10x +1)+x 2,h (x )=lg(10x +1)-x 2C .g (x )=x 2,h (x )=lg (10x +1)-x 2D .g (x )=-x 2,h (x )=lg(10x +1)+x232.当a >1时,函数y =log a x 和y =(1-a )x 的图像只可能是(94上海) A C D . y x x33.设I 是全集,集合P ,Q 满足P 结论年上海)A .P ∪Q =QB .P -∪Q =IC .P ∩Q -=φD .P∩Q=P - - -34.如果0<a <1,那么下列不等式中正确的是(94上海)A .(1-a )31>(1-a )21 B .log (1-a )(1+a )>0 C .(1-a )3>(1+a )2D .(1-a )1+a> 135.已知I 为全集,集合M ,N ⊂I ,若M ∩N =N ,则(95(1)4分) A .错误! B .错误!⊆N C .错误! D .错误!⊇N36.函数y =-1x +1的图象是(95(2)4分)A . y BC. yyx-1 O x -则是(95(11)5分) A .(0,1) B .(1,2) C .(0,2) D .[2,+∞)38.如果P ={x |(x -1)(2x -5)<0},Q ={x |0<x <10},那么(95年上海) A .P ∩Q =φ B .P ⊂Q C .Q ⊂P D .P ∪Q =R39.已知全集I =N ,集合A ={x |x =2n ,n ∈N },B ={x |x =4n ,n ∈N },则(96(1)4分)A .I =A ∪B B .I =A -∪BC .I =A ∪B -D .I =A∪B- -40.当a >1时,同一直角坐标系中,函数y =a -x ,y =log a x 的图象是(96(2)4分) y 1 O 1 x x +=(96(15)5分) A .0.5 B .-0.5 C .1.5 D .-1.542.如果log a 3>log b 3>0,那么a 、b 间的关系为(96上海) A .0<a <b <1 B .1<a <b C .0<b <a <1 D .1<b <a43.在下列图像中,二次函数y =ax 2+bx 与指数函数y =(b a)x 的图像只可能是(96上海)B C . D . |0N ={0},(97(1)4分) A .{x |0≤x <1} B .{x |0≤x <2} C .{x |0≤x ≤1} D .{x |0≤x ≤2} 45.将y =2x 的图象 A .先向左平行移动1个单位 B .先向右平行移动1个单位 C .先向上平行移动1个单位 D .先向下平行移动1个单位 再作关于直线y =x 对称的图象,可得到函数y =log 2(x +1)的图象.(97(7)4分)46.定义在区间(-∞,+∞)的奇函数f (x )为增函数;偶函数g (x )在区间[0,+∞)的图象与f (x )重合.设a >b >0,给出下列不等式: ①f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b ) ③f (a )-f (-b )>g (b )-g (-a ) ④f (a )-f (-b )<g (b )-g (-a ) 其中成立的是(97(13)5分) A .①与④ B .②与③ C .①与③ D .②与④47.三个数60.7,0.76,log 0.76的大小关系为(97上海)A .0.76<log 0.76<60.7B .0.76<60.7<log 0.76C .log 0.76<60.7<0.76D .log 0.76<0.76<60.748.函数y =a |x |(a >1)的图像是(98(2)4分)y 1 x o o x 0)数(98(5)4分)A .x (x ≠0)B .1x (x ≠0)C .-x (x ≠0)D .-1x(x ≠0)50.如果实数x ,y 满足x 2+y 2=1,那么(1-xy )(1+xy )有(98年广东)A .最小值12和最大值1B .最大值1和最小值34C .最小值34而没有最大值 D .最大值1而没有最小值51.如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是 A .(M ∩P )∩S B .(M ∩P )∪S C .(M ∩P )∩S - D .(M ∩P )∪S -(99(1)4分) 52.已知映射f :A B ,其中集合A ={-3,-2,-1,1,2,3,4},集合B 中的元素都是A 中的元素在映射f 下的象,且对任意的a ∈A ,在B 中和它对应的元素是|a |,则集合B 中的元素的个数是(99(2)4分) A .4 B .5 C .6 D .753.若函数y =f (x )的反函数是y =g (x ),f (a )=b ,ab ≠0,则g (b )=(99(3)4分) A .a B .a -1 C .b D .b - 154.设集合A 和B 都是自然数集合N ,映射f :A →B 把集合A 中的元素n 映射到集合B 中的元素2n +n ,则在映射f 下,象20的原象是(2000⑴5分) A .2 B .3 C .4 D .555.《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分别累进计算. ⑹5分) A .800~900元 B .900~1200元 C .1200~1500元 D .1500~2800元56.设全集I ={a ,b ,c ,d ,e },集合M ={a ,c ,d },N ={b ,d ,e },那么M∩N - -是(2000春京、皖(2)4分) A .ΦB .{d }C .{a ,c }D .{b ,e }57.已知f (x 6)=log 2x,那么f (8)等于(2000春京、皖)A .43B .8C .18D .1258.函数y =lg |x |(2000春京、皖(7)4分) A .是偶函数,在区间(-∞,0)上单调递增 B .是偶函数,在区间(-∞,0)上单调递减 C .是奇函数,在区间(0,+∞)上单调递增 D .是奇函数,在区间(0,+∞)上单调递减59.已知函数f (x )=ax 3+bx 2+cx +d 的图象如右图,则(2000春京、皖(14)5分) A .b ∈(-∞,0) B .b ∈(0,1) C .b ∈(1,2) D .b ∈(2,+∞)60.若集合S ={y |y =3x ,x ∈R },T ={y |y =x 2-1,x ∈R },则S ∩T 是(2000上海(15)4分) A .S B .T C .Φ D .有限集61.已知集合A ={1,2,3,4},那么A 的真子集的个数是(2000广东) A .15 B .16 C .3 D .462.设集合A 和B 都是坐标平面上的点集{(x ,y )|x ∈R ,y ∈R },映射f :A →B 把集合A 中的元素(x ,y )映射成集合B 中的元素(x +y ,x -y ),则在映射f 下,象(2,1)的原象是(2000年江西、天津(1)5分)A .(3,1)B .(32,12)C .(32,-12) D .(1,3)63.集合M ={1,2,3,4,5}的子集个数是(2001年春京、皖、蒙(1)5分) A .32 B .31 C .16 D .1564.函数f (x )=a x (a >0且a ≠1)对于任意的实数x 、y 都有(2001春京、皖、蒙(2)5分) A .f (xy )=f (x )f (y ) B .f (xy )=f (x )+f (y ) C .f (x +y )=f (x )f (y ) D .f (x +y )=f (x )+f (y ) 65.函数y =-1-x 的反函数是(2001春京、皖、蒙(4)5分)A .y =x 2-1(-1≤x ≤0)B .y =x 2-1(0≤x ≤1)C .y =1-x 2(x ≤0)D .y =1-x 2(0≤x ≤1)66.已知f (x 6)=log 2x ,那么f (8)等于(2001春京、皖、蒙(7)5分)A .43B .8C .18D .1267.若定义在区间(-1, 0) 内的函数f (x )=log 2a (x +1) 满足f (x )>0, 则a 的取值范围是(2001年(4)5分)A .(12,+∞)B .(0,12]C .(0,12) D .(0,+∞)68.设f (x )、g (x )都是单调函数,有如下四个命题:(2001年(10)5分) ①若f (x )单调递增,g (x )单调递增,则f (x )-g (x )单调递增; ②若f (x )单调递增,g (x )单调递减,则f (x )-g (x )单调递增; ③若f (x )单调递减,g (x )单调递增,则f (x )-g (x )单调递减; ④若f (x )单调递减,g (x )单调递减,则f (x )-g (x )单调递减; 其中,正确的命题是 A .②③ B .①④ C .①③ D .②④69.满足条件M ∪{1}={1,2,3}的集合M 的个数是(2002年北京(1)5分) A .1 B .2 C .3 D .470.下列四个函数中,以π为最小正周期,且在区间(π2,π)上为减函数的是(2002年北京(3)5分)A .y =cos 2x B .y =2|sinx | C .y =(13)cosx D .y =-cotx71.如图所示,f i (x )(i =1,2,3,4)是定义在[0, 1]上的四个函数,其中满足性质:“对[0, 1]中任意的x 1和x 2,任意λ∈[0, 1], f [λx 1+(1-λ)x 2]≤λf (x 1)+(1-λ)f (x 2)恒成立”的只有(2002年北京(12)5分)A.f1(x),f3(x) B.f2(x) C.f2(x),f3(x) D.f4(x)72.一般地,家庭用电量(千瓦时)与气温(℃)有一定的关系,用图(1)表示某年12个月中每月的平均气温,图(2)表示某家庭在这年12个月中每月的用电量,根据这些信息,以下关于该家庭用电量与气温间关系的叙述中,正确的是(2002年上海(16)4分)图(1) 图(2) A.气温最高时,用电量最多B.气温最低时,用电量最少C.当气温大于某一值时,用电量随气温增高而增加D.当气温小于某一值时,用电量随气温降低而增加73.集合M={x|x=k2+14,k∈Z},N={x|x=k4+12,k∈Z},则(2002年全国(5)、广东(5)、天津(6)5分)A.M=NB.M⊂NC.N⊂MD.M∩N=φ74.函数f(x)=x|x+a|+b是奇函数的充要条件是(2002年广东(7)5分)A.ab=0B.a+b=0C.a=bD.a2+b2=075.函数y=1-1x-1(2002年广东(9)5分) A.在(-1,+∞)内单调递增B.在(-1,+∞)内单调递减C.在(1,+∞)内单调递增D.在(1,+∞)内单调递减76.函数y=x2+bx+c(x∈[0,+∞))是单调函数的充要条件是(2002年全国(9)、天津(8)5分)A.b≥0B.b≤0C.b>0D.b<077.据2002年3月9日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95 933亿元,比上年增长7.3%”,如果“十·五”期间(2001年——2005年)每年的国内生产总值都按此年增长率增长,那么到“十·五”末我国国内年生产总值约为(2002年全国(12)、广东(12)、天津(12)5分) A.115 000亿元B.120 000亿元C.127 000亿元D.135 000亿元78. 函数y=1-1x-1的图像是(2002年全国(10)5分)用电量A .B .C .D .79.若集合M ={y |y =2-x },P ={y |y =x -1},则M ∩P =(2003年春北京(1)5分)A .{y |y >1}B .{y |y ≥1}C .{y |y >0}D .{y |y ≥0}80.若f (x )=x -1x,则方程f (4x )=x 的根是(2003年春北京(2)5分)A .12B .-12C .2D .-281.关于函数f (x )=(sinx )2-(23)|x|+12,有下面四个结论:(1)f (x )是奇函数(2)当x >2003时, f (x )>12恒成立 (3)f (x )的最大值是32(4)f (x )的最小值是-12其中正确结论的个数为(2003年春上海(16)4分)A .1个B .2个C .3个D .4个83.设函数的取值范围是则若0021,1)(,.0,,0,12)(x x f x x x x f x >⎪⎩⎪⎨⎧>≤-=-(2003年全国(3)5分) A .(-1,1) B .(-1,+∞)C .),0()2,(+∞⋃--∞D .),1()1,(+∞⋃--∞二、填空题1. 设函数f (x )的定义域是[0,1],则函数f (x 2)的定义域为________.(85(10)4分)2. 已知圆的方程为x 2+(y -2)2=9,用平行于x 轴的直线把圆分成上下两个半圆,则以上半圆(包括端点)为图像的函数表达式为_____________(85广东) 3. 方程40.5x x5252=-+的解是__________.(86(11)4分) 4. 方程9-x-2·31-x=27的解是_________.(88(17)4分) 5. 函数y=ex -1ex +1的反函数的定义域是__________.(89(15)4分) 6. 函数y =x2-49的值域为_______________(89广东) 7. 函数y=x +4x +2的定义域是________________(90上海)8. 设函数y =f (x )的图象关于直线x =1对称,若当x ≤1时,y =x 2+1,则当x >1时,y =_________(91年上海)9. 设函数f (x )=x 2+x +12的定义域是[n ,n +1](n 是自然数),那么在f (x )的值域中共有_______个整数(91年三南)10. 方程1-3x 1+3x=3的解是___________.(92(19)3分)11.设含有10个元素的集合的全部子集数为S ,其中由3个元素组成的子集数为T ,则TS的值为__________.(92(21)3分)12. 已知函数y =f (x )的反函数为f -1(x )=x -1(x ≥0),那么函数f (x )的定义域为_________(92上海)13. 设f (x )=4x -2x +1(x ≥0),f -1(0)=_________.(93(23)3分)注:原题中无条件x ≥0,此时f (x )不存在反函数.14. 函数y =x 2-2x +3的最小值是__________(93年上海)15. 在测量某物理量的过程中,因仪器和观察的误差,使得n 次测量分别得到a 1,a 2,…a n ,共n 个数据,我们规定所测物理量的“最佳近似值”a 是这样一个量:与其它近似值比较,a 与各数据的差的平方和最小,依此规定,从a 1,a 2,…a n 推出的a =_______. (94(20)4分)16. 函数y =lg 10x -2的定义域是________________(95上海)17. 1992年底世界人口达到54.8亿,若人口的年平均增长率为x %,2000年底世界人口数为y (亿),那么y 与x 的关系式为___________(96上海)18. 方程log 2(9x -5)=log 2(3x -2)+2的解是x =________(96上海)19. 函数y =1log0.5(2-x)的定义域为____________(96上海)20. lg 20+log 10025=________(98上海)21. 函数f (x )=a x (a >0,a ≠1)在区间[1,2]上的最大值比最小值大a2,则a =______(98上海)22. 函数y =⎩⎪⎨⎪⎧2x +3 (x≤0)x +3 (0<x≤1)-x +5 (x >1)的最大值是__________(98年上海)23. 函数y =log 22x -13-x的定义域为____________(2000上海(2)4分)24. 已知f (x )=2x +b 的反函数为y =f -1(x ),若y =f -1(x )的图像经过点Q (5,2),则b =_______(2000上海(5)4分)25. 根据上海市人大十一届三次会议上的市政府工作报告,1999年上海市完成GDP (GDP 是值国内生产总值)4035亿元,2000年上海市GDP 预期增长9%,市委、市政府提出本市常住人口每年的自然增长率将控制在0.08%,若GDP 与人口均按这样的速度增长,则要使本市人均GDP 达到或超过1999年的2倍,至少需要_________年(2000上海(6)4分)(按:1999年本市常住人口总数约1300万)26. 设函数y =f (x )是最小正周期为2的偶函数,它在区间[0,1]上的图像为如图所示的线段AB ,则在区间[1,2]上,f (x )=_____(2000上海(8)4分)27. 函数)0(1)(2≤+=x x x f 的反函数=-)(1x f ______.(2001年春上海(1)4分)28. 关于x 的函数f (x )=sin (x +φ)有以下命题:(2001年春上海(11)4分) (1)对任意的φ,f (x )都是非奇非偶函数; (2)不存在φ,使f (x )既是奇函数,又是偶函数; (3)存在φ,使f (x )是奇函数; (4)对任意的φ,f (x )都不是偶函数. 其中一个假命题的序号是_______.因为当φ=_______时,该命题的结论不成立.29. 方程log 3(1-2·3x )=2x +1的解x =_____________.(2002年上海(3)4分)30. 已知函数y =f (x )(定义域为D ,值域为A )有反函数y =f -1(x ),则方程f (x )=0有解x =a ,且f (x )>x (x ∈D )的充要条件是y =f -1(x )满足___________(2002年上海(12)4分)31. 函数y =2x1+x(x ∈(-1,+∞))图象与其反函数图象的交点坐标为________.(2002年天津(13)4分)32. 函数y =a x 在[0,1]上的最大值和最小值之和为3,则a =______(2002年全国(13)4分)33. 已知函数f (x )=x21+x2,那么f (1)+f (2)+f (12)+f (3)+f (13)+f (4)+f (14)=________(2002年全国(16)、广东(16)、天津(16)4分)34. 若存在常数p >0,使得函数f (x )满足f (px )=f (px -p2)(x ∈R ),则f (x )的一个正周期为_________.(2003年春北京(16)4分)35. 已知函数f (x )=x +1,则f -1(3)=___________.(2003年春上海(1)4分)36. 已知集合A ={x ||x |≤2,x ∈R },B ={x |x ≥a }且A ⊆B ,则实数a 的取值范围是____________.(2003年春上海(5)4分)37. 若函数y =x 2+(a +2)x +3,x ∈[a ,b ]的图象关于直线x =1对称,则b =__________.(2003年春上海(11)4分)38. 使1)(log 2+<-x x 成立的x 的取值范围是 .(2003年全国(14).4分)三、解答题1. 解方程 log 4(3-x )+log 0.25(3+x )=log 4(1-x )+log 0.25(2x +1).(85(11)7分)2. 设a ,b 是两个实数,A ={(x ,y )|x =n ,y =na +b ,n 是整数},B ={(x ,y )|x =m ,y =3m 2+15,m 是整数},C ={(x ,y )|x 2+y 2≤144}是xoy 平面内的集合,讨论是否存在a 和b 使得①A ∩B ≠φ,②(a ,b )∈C 同时成立.(85(17)12分)3. 已知集合A 和集合B 各含有12个元素,A ∩B 含有4个元素,试求同时满足下面两个条件的集合C 的个数:①C ⊆A ∪B ,且C 中含有3个元素,②C ∩A ≠φ(φ表示空集)(86(20)10分)4. 给定实数a ,a ≠0且a ≠1,设函数y =x -1ax -1(x ∈R 且x ≠1a),证明:①经过这个函数图象上任意两个不x 轴;②这个函数的图象关于直线y =x 分)5. 已知a >0且a ≠1,试求使方程log a (x -ak )=log a 2(x 2分)6. 设f (x )是定义在R 上以2为周期的函数,对k ∈Z ,用I k 表示区间(2k -1,2k +1],已知当x ∈I 0时,f (x )=x 2.(89(24)10分) ①求f (x )在I k 上的解析表达式; ②对自然数k ,求集合M k ={a |使方程f (x )=ax 在I k 上有两个不相等的实根}7. 设f (x )=lg 1+2x +……+(n -1)x +nxan,其中a 是实数,n 是任意给定的自然数,且n ≥2.①如果f (x )当x ∈(-∞,1]时有意义,求a 的取值范围; ②如果a ∈(0,1],证明2f (x )<f (2x )当x ≠0时成立.(90(24)10分)8. 已知f (x )=lg 1+2x +4xa3,其中a ∈R ,广东)①求证:当x ≠0时,有x ); ②如果f (x )当x ∈(-∞,1]时有意义范围9. 根据函数单调性的定义,证明函数f (x )=-x 3+1在分)10.已知函数f (x )=2x -12x +1(91三南)⑴证明:f (x )在(-∞,+∞)上是增函数;⑵证明:对不小于3的自然数n 都有f (n )>nn +111.已知关于x 的方程2a 2x -2-7a x -1+3=0有一个根是2,求a 的值和方程其余的根.(92三南) 12. 某地为促进淡水鱼养殖业的发展,将价格控制在适当范围内,决定对淡水鱼养殖提供政府补贴,设淡水鱼的市场价格为x 元/千克,政府补贴为t 元/千克,根据市场调查,当8≤x ≤14时,淡水鱼的市场日供应量P 千克与市场日需求量Q 千克近似地满足关系: P =1000(x +t -8) (x ≥8,t ≥0) Q =50040-(x -8)2 (8≤x ≤14) 当P =Q 时的市场价格称为市场平衡价格. ①将市场平衡价格表示为政府补贴的函数,并求出函数的定义域; ②为使市场平衡价格不高于每千克10元,政府补贴至少为每千克多少元?(95(25)12分)13. 已知二次函数y =f (x )在x =2t +1处取得最小值-4t 2(t >0),f (1)=0(95上海)⑴求y =f (x )的表达式;⑵若任意实数x 都满足等式f (x )g (x )+a n x +b n =x n +1(其中g (x )为多项式,n ∈N ),试用t 表示a n 和b n ;⑶设圆C n 的方程为:(x -a n )2+(y -b n )2=r n 2,圆C n 与圆C n +1外切(n =1,2,3…),{r n }是各项都为正数的等比数列,记S n 为前n 个圆的面积之和,求r n 和S n .14. 设二次函数f (x )=ax 2+bx +c (a >0),方程f (x )-x =0的两个根x 1,x 2满足0<x 1<x 2<1a.Ⅰ.当x ∈(0,x 1)时,证明x <f (x )<x 1;Ⅱ.设函数f (x )的图象关于直线x =x 0对称,证明:x 0<x12.(97(24)12分)15. 解方程3lgx -2-3lgx +4=0(99年广东10分)16. 已知二次函数f (x )=(lga )x 2+2x +4lga 的最大值为3,求a 的值(2000春京、皖) 17. 设函数f (x )=|lgx |,若0<a <b ,且f (a )>f (b ),证明:ab <1(2000春京、皖(21)12分)本小题主要考查函数的单调性、对数函数的性质、运算能力,考查分析问题解决问题的能力.满分12分.18. 已知函数f (x )=⎩⎨⎧f1(x) x∈[0,12)f2(x) x∈[12,1]其中f 1(x )=-2(x -12)2+1,f 2(x )=-2x +2.(2000春京、皖(24)14分) (I )在下面坐标系上画出y =f (x )的图象;(II )设y =f 2(x )(x ∈[12,1])的反函数为y =g (x ),a 1=1,a 2=g (a 1), ……,a n =g (a n -1),求数列{a n }的通项公式,并求lim n→∞a n ;(III )若x 0∈[0,12),x 1=f (x 0),f (x 1)=x 0,求x 0.19. 某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示. (2000(21)12分) ⑴写出图一表示的市场售价与时间的函数关系P =f (t ); 写出图二表示的种植成本与时间的函数关系式Q =g (t ); ⑵认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大? (注:市场售价和种植成本的单位:元/10kg ,时间单位:天)20. 已知函数:f (x )=x2+2x +ax ,x ∈[1,+∞)(2000上海(19)6+8=14分)⑴当a =12时,求函数f (x )的最小值;⑵若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围 21. 设函数f (x )=x2+1-ax ,其中a >0.(2000年广东(20)12分) (1)解不等式f (x )≤1; (2)证明:当a ≥1时,函数f (x )在区间[0,+∞)上是单调函数.22. 设函数f (x )=x +ax +b(a >b >0),求f (x )的单调区间,并证明f (x )在其单调区间上的单调性.(2001年春京、皖、蒙(17)12分) 23. 某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为 1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应提高的比例为0.75x ,同时预计年销售量增加的比例为0.6x .已知年利润=(出厂价-投入成本)×年销售量.(2001年春京、皖、蒙(21)12分) (Ⅰ)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式; (Ⅱ)为使本年度的年利润比上年有所增加,问投入成本增加的比例x 应在什么范围内?24. 已知R 为全集,A ={x|log 0.5(3-x)≥-2},B ={x|5x -2≥1},求A -∩B(2001年春上海(17)12分)25.设f(x)是定义在R上的偶函数,其图象关于直线x=1对称,对任意x1、x2∈[0,12],都有f(x1+x2)=f(x1)⋅f(x2).(2001年(22)14分)(Ⅰ)设f(1)=2,求f(12),f(14);(Ⅱ)证明f(x)是周期函数.(Ⅲ)记a n=f(2n+12n ),求limn→∞(lna n).26.在研究并行计算的基本算法时,有以下简单模型问题:(2002年北京(20)12分)用计算机求n个不同的数v1,v2,…,v n的和∑ni=1v i=v1+v2+v3+……+v n.计算开始前,n个数存贮在n 台由网络连接的计算机中,每台机器存一个数.计算开始后,在一个单位时间内,每台机器至多到一台其他机器中读数据,并与自己原有数据相加得到新的数据,各台机器可同时完成上述工作.为了用尽可能少的单位时间.........,使各台机器都得到这n个数的和,需要设计一种读和加的方法.比如n=2(II)当n=128时,要使所有机器都得到∑ni=1v i,至少需要多少个单位时间可完成计算?(结论不要求证明)27.已知f(x)是定义在R上的不恒为零的函数,且对于任意的a,b∈R都满足:f(a•b)=af(b)+bf(a)(2002年北京(22)13分)(I)求f(0),f(1)的值;(II)判断f(x)的奇偶性,并证明你的结论;(III)若f(2)=2,u n=f(2-n)n(n∈N),求数列{u n}的前n项的和S n.28.已知函数f(x)=x2+2x·tanθ-1,x∈[-1,3],其中θ∈(-π2,π2).(2002年上海(19)14分)(1)当θ=-π6时,求函数f(x)的最大值与最小值;(2)求θ的取值范围,使得y=f(x)在区间[-1,3]上是单调函数.29.已知a>0,函数f(x)=ax-bx2(2002年广东(22)14分)(1)当b>0时,若对任意x∈R都有f(x)≤1,证明:a≤2b;30. 设a 为实数,函数f (x )=x 2+|x -a |-1,x ∈R (2002年全国(21)12分) (1)讨论f (x )函数的奇偶性 (2)求函数f (x )的最小值. 31. 某租赁公司拥有汽车100辆. 当每辆车的月租金为3000元时,可全部租出. 当每辆车的月租金每增加50元时,未租出的车将会增加一辆. 租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(2003年春北京(20)12分) (Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车? (Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少? 32. 已知函数.5)(,5)(31313131--+=-=x x x g xx x f (2003年春上海(20)7+7=14分)(1) 证明f (x )是奇函数;并求f (x )的单调区间; (2) 分别计算f (4)-5f (2)g (2)和f (9)-5f (3)g (3)的值,由此概括出涉及函数f (x )和g (x )的对所有不等于零的实数x 都成立的一个等式,并加以证明. 33.(2003年(19).12分)已知.0>c 设P :函数xc y =在R 上单调递减.Q :不等式1|2|>-+c x x 的解集为R ,如果P 和Q 有且仅有一个正确,求c 的取值范围.。