小波分析-第八部分-mallat金字塔算法小波变换

合集下载

一看就懂的小波变换ppt

一看就懂的小波变换ppt

8
8
[32.5,0, 0.5,0.5,31,-29,27,-25]
Haar小波反变换:
1 1 1 0 1 0 0 0 32.5 64
1
1
1
0 -1
0
0
0
0
2
1 1 -1 0 0 1 0 0 0.5 3
1 1 -1 1 -1 0
0 1
0 -1 00
0 1
0 0
0.5
31
61 60
傅立叶变换: Of M log2 M
小波变换:
Ow M
设有信号f(t):
其傅里叶变
换为F(jΩ):
即:
f (t) 1 F ( j)e jtd
2
பைடு நூலகம் =
1
0. 8
0. 6
0. 4
0. 2
0 -0. 2 -0. 4 -0. 6
Ψ(t)
-0. 8
-1 0
2
4
6
8
10
12
14
16
18
+
1
0. 8
0. 6
二维金字塔分解算法
令I(x,y)表达大小为M N旳原始图像,l(i)表达相对于分析
小波旳低通滤波器系数,i=0,1,2,…,Nl-1, Nl表达滤波器L旳 支撑长度; h(i)表达相对于分析小波旳高通滤波器系数,
i=0,1,2,…,Nh-1, Nh表达滤波器H旳支撑长度,则
IL x,
y
1 Nl
1.2 二维小波变换(二维多尺度分析)
二维小波变换是由一维小波变换扩展而来旳,二维尺度 函数和二维小波函数可由一维尺度函数和小波函数张量 积得到,即:

小波变换课件

小波变换课件

消失矩性质
消失矩定义:小波变换在高频部分具有快速衰减的特性
消失矩性质与信号处理:在信号处理中,消失矩性质使得小波变换能够有效地提取信号的 高频成分
消失矩与多分辨率分析:消失矩性质是实现多分辨率分析的关键,能够同时获得信号在不 同尺度上的信息
消失矩的应用:在图像处理、语音识别、信号去噪等领域,消失矩性质都有着广泛的应用
图像去噪:小波变换能够将噪声与 图像信号进行分离,从而去除噪声
语音处理
小波变换在语音 信号处理中的应 用
小波变换在语音 识别和合成中的 应用
小波变换在语音 增强和去噪中的 应用
小波变换在语音 编码和压缩中的 应用
其他应用领域
信号处理 图像处理 语音处理 模式识别
小波变换的优缺点分析
小波变换的优点
用的特征信息
图像处理:小波变换在图像 处理中也有广泛的应用,如
图像压缩、去噪、增强等
图像处理
图像压缩:小波变换能够去除图像 中的冗余信息,实现高效的图像压 缩
图像融合:将多个图像的小波系数 进行融合,可以得到一个新的、包 含多个图像信息的图像
添加标题
添加标题
添加标题
添加标题
图像增强:通过调整小波系数,可 以突出图像的某些特征,提高图像 的视觉效果
多维小波变换算法:介绍多维小波变换的基本原理和算法实现,包括多维小波变换 的定义、性质、算法流程等。
多维小波变换在图像处理中的应用:介绍多维小波变换在图像处理中的应用,包括 图像压缩、图像去噪、图像增强等。
多维小波变换的优缺点:介绍多维小波变换的优缺点,包括优点如多尺度分析、方 向性、时频局部化等,以及缺点如计算量大、需要选择合适的小波基等。
数学表达式:对于任意实数a,如果f(t)的小波变换为Wf(s,a),则f(t-a)的小波变换仍为 Wf(s,a)

《小波变换》课件

《小波变换》课件

离散小波变换
定义
离散小波变换是对连续小波变换 的离散化,即将时间和频率轴进 行离散化,使小波变换能够应用 于数字信号处理。
原理
离散小波变换通过将信号进行离 散化,将连续的小波变换转换为 离散的运算,从而能够方便地应 用于数字信号处理系统。
应用
离散小波变换在图像压缩、数字 水印、音频处理等领域有广泛应 用,能够提供较好的压缩效果和 数据隐藏能力。
小波变换的应用拓展
图像处理
研究小波变换在图像压缩、去噪、增强等方面的应用,提高图像 处理的效果和效率。
语音信号处理
将小波变换应用于语音信号的降噪、特征提取等方面,提高语音 识别的准确率。
医学成像
利用小波变换对医学成像数据进行处理,提高医学影像的质量和 诊断准确率。
小波变换的算法优化
快速小波变换算法
《小波变换》ppt课 件 (2)
THE FIRST LESSON OF THE SCHOOL YEAR
目录CONTENTS
• 小波变换概述 • 小波变换的基本原理 • 小波变换的算法实现 • 小波变换在图像处理中的应用 • 小波变换的未来发展与挑战
01
小波变换概述
小波变换的定义
小波变换是一种数学分析方法,它通 过小波基函数的平移和伸缩,将信号 分解成不同频率和时间尺度的分量。
提供较好的特征提取和分类能力。
01
小波变换的算法实 现
常用的小波基函数
Haar小波
Daubechies小波
是最简单的小波,具有快速变换的特性, 但缺乏连续性和平滑性。
具有紧支撑性和良好的数学特性,广泛应 用于信号处理和图像处理。
Morlet小波
具有振荡性,适用于分析非平稳信号。

小波学习之一(单层一维离散小波变换DWT的Mallat算法C++和MATLAB实现)

小波学习之一(单层一维离散小波变换DWT的Mallat算法C++和MATLAB实现)

⼩波学习之⼀(单层⼀维离散⼩波变换DWT的Mallat算法C++和MATLAB实现)1 Mallat算法离散序列的Mallat算法分解公式如下:其中,H(n)、G(n)分别表⽰所选取的⼩波函数对应的低通和⾼通滤波器的抽头系数序列。

从Mallat算法的分解原理可知,分解后的序列就是原序列与滤波器序列的卷积再进⾏隔点抽取⽽来。

离散序列的Mallat算法重构公式如下:其中,h(n)、g(n)分别表⽰所选取的⼩波函数对应的低通和⾼通滤波器的抽头系数序列。

2 ⼩波变换实现过程(C/C++)2.1 ⼩波变换结果序列长度⼩波的Mallat算法分解后的序列长度由原序列长SoureLen和滤波器长FilterLen决定。

从Mallat算法的分解原理可知,分解后的序列就是原序列与滤波器序列的卷积再进⾏隔点抽取⽽来。

即分解抽取的结果长度为(SoureLen+FilterLen-1)/2。

2.2 获取滤波器组对于⼀些通⽤的⼩波函数,简单起见,可以通过Matlab的wfilters(‘wavename’)获取4个滤波器;特殊的⼩波函数需要⾃⾏构造获得。

下⾯以db1⼩波函数(Haar⼩波)为例,其变换与重构滤波器组的结果如下://matlab输⼊获取命令>> [Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('db1')//获取的结果Lo_D =0.7071 0.7071Hi_D =-0.7071 0.7071Lo_R =0.7071 0.7071Hi_R =0.7071 -0.70712.3 信号边界延拓在Mallat算法中,假定输⼊序列是⽆限长的,⽽实际应⽤中输⼊的信号是有限的采样序列,这就会出现信号边界处理问题。

对于边界信号的延拓⼀般有3种⽅法,即零延拓、对称延拓和周期延拓。

3种延拓⽅法⽐较情况如下:对于正交⼩波变换来说,前两种延拓⽅法实现起来⽐较简单,但重建时会产⽣边界效应,⽽且分解的层数越多,产⽣的边界效应越显著。

小波变换课件

小波变换课件

小波变换的基本思想是将信号分 解成一系列的小波函数,每个小 波函数都有自己的频率和时间尺
度。
小波变换通过平移和缩放小波函 数,能够适应不同的频率和时间 尺度,从而实现对信号的精细分
析。
小波变换的特点
01
02
03
多尺度分析
小波变换能够同时分析信 号在不同频率和时间尺度 上的特性,提供更全面的 信号信息。
图像去噪
利用小波变换去除图像中的噪声,提高图像的清晰度和质 量。
在小波变换中,噪声通常表现为高频系数较大的值,通过 设置阈值去除这些高频系数,可以达到去噪的效果。去噪 后的图像能够更好地反映原始图像的特征和细节。
图像增强
ቤተ መጻሕፍቲ ባይዱ
利用小波变换增强图像的某些特征,突出显示或改善图像的某些部分。
通过调整小波变换后的系数,可以增强图像的边缘、纹理等特定特征。这种增强 方式能够突出显示图像中的重要信息,提高图像的可读性和识别效果。
在信号处理、图像处理、语音识别等 领域有广泛应用。
特点
能够同时分析信号的时域和频域特性 ,具有灵活的时频窗口和多分辨率分 析能力。
离散小波变换
定义
离散小波变换是对连续小波变换 的离散化,通过对小波函数的离 散化处理,实现对信号的近似和
细节分析。
特点
计算效率高,适合于数字信号处理 和计算机实现。
应用
在信号处理、图像处理、数据压缩等领域有广泛应用,如语音压缩、图像压缩 、数据挖掘等。
CHAPTER 04
小波变换在图像处理中的应用
图像压缩
利用小波变换对图像进行压缩,减少存储空间和传输带宽的 需求。
通过小波变换将图像分解为不同频率的子带,去除高频细节 ,保留低频信息,从而实现图像压缩。压缩后的图像可以通 过逆小波变换重新构造,保持图像质量的同时减小数据量。

(参考)小波分析及其matlab实现

(参考)小波分析及其matlab实现

第8章 小波分析及其MATLAB 实现本文档节选自:Matlab 在数学建模中的应用,卓金武等编著, 北航出版社,2011年4月出版8.1小波分析基本理论8.1.1 Fourier 变换的局限性8.1.1.1变换的含义我们把那些定义域和因变域都不是数值或常量的函数称为变换或算子,它们是定义域和值域本身为函数集的函数,如傅里叶变换(Fourier Transform )和拉普拉斯变换(Laplace Transform ),其定义域是时间的函数,而因变域是频率的函数。

简单地说,变换的基本思想仍然是映射,变换是函数的函数。

8.1.1.2 Fourier 变换的局限性信号分析的主要目的是寻找一种简单有效的信号变换方法,使信号包含的重要特征能显示出来。

在小波变换兴起之前,Fourier 级数展开和Fourier 分析是刻画函数空间、求解微分方程、进行数学计算的有效方法和有效的数学工具。

从物理直观上看,一个周期性振动的量可以看成是具有简单频率的简谐振动的叠加。

Fourier 级数展开则是这一物理过程的数学描述,Fourier 变化和Fourier 逆变换公式如下:函数)()(1R L t f ∈的连续Fourier 变换定义为t t f ft d e )()(ˆi -⎰+∞∞-=ωω)(ˆωf 的Fourier 逆变换定义为 ωωωd e )(ˆπ21)(i ⎰+∞∞-=t f t f 从公式上看,Fourier 变换是域变换,它把时间域和频率域联系起来,在时间域上难以观察到的现象和规律,在频域往往能十分清楚地显示出来。

频谱分析的本质就是对)(ˆωf的加工、分析和滤波等处理。

Fourier 变换是平稳信号分析的最重要的工具。

然而在实际运用中,所遇到的信号大多数并不平稳,而是时变频率信号,这时人们需要知道信号在突变时刻所对应的频率成分,显然Fourier 变换的积分作用平滑了非平稳过程的突变部分,作为积分核tω-i e的幅值在任何情况下均为1,因此,在频谱)(ˆωf的任一频点值是由时间过程)(t f 在整个时间域上)(∞+-∞,上的贡献决定的;反之,时间过程)(t f 在某一时刻的状态也是由)(ˆωf在整个频率域)(∞+-∞,上贡献决定的。

02-多分辨率信号分解理论:小波变换

02-多分辨率信号分解理论:小波变换

一个多分辨率信号分解理论:小波表示摘要:多分辨率表示对于分析图像信号内容十分有效,我们研究了在一给定分辨率下逼近信号算子的性能。

显示出在分辨率12+j 和j 2下逼近信号的信息不同,通过在小波标准正交基2L 上分解这一信号可以将其提取。

小波标准正交基是一系列函数,它由扩大和转化唯一函数)(x ψ来构建。

这一分解定义了一个正交多尺度表示叫做小波表示。

它由金字塔算法来计算,其基于正交镜像滤波器的卷积。

对于图像,小波表示区分了几种空间定位。

我们研究这一表示在数据压缩,图像编码,结构辨别及分形分析上的应用。

关键词-编码,分形,多分辨率金字塔,正交镜像滤波器,结构辨别,小波变换 1. 引言在计算机视觉方面,很难由图像像素的灰度强度来直接分析一个图像的信息内容。

的确,这一数值依赖于照明条件。

更为重要的是图像强度的局部变化。

邻居的大小即对比计算处必须被采用于我们要分析的物体大小。

这一尺寸为测量图像局部变化定义了参考分辨率。

总的来说,我们想要识别的结构具有差异很大的尺寸。

因此,定义分析图像的优先或最优分辨率是不可能的。

一些研究人员发明了图像比对算法用来处理不同分辨率下的图像。

为这一目的,一种算法可以识别图像信息至一系列在不同分辨率下显现的细节。

给定一个提高分辨率的序列j r ,在分辨率j r 下的图像细节被定义为它的分辨率j r 下逼近与低分辨率1-j r 下逼近之间的信息差别。

多分辨率分解使得我们可以获得图像的尺度不变性演绎。

图像尺度随着场景与相机光学中心间的距离而变化。

当图像尺寸修改时,我们对于图像的演绎不应该变化。

多分辨率分解可以满足局部尺度不变性如果分辨率参量j r 的序列以指数形式变化。

我们假设存在分辨率一步R ∈α对于所有整数j ,j j r α=。

如果相机靠近场景时间为α,则每一物体被投影到一个2α的区域比相机焦平面更大。

即每一物体以α倍大的分辨率度量。

因此,新图片在分辨率j α下细节与先前在分辨率1+j α下图像细节相一致。

小波变换和图像处理ppt课件

小波变换和图像处理ppt课件

2
1.1 小波发展进程
小波诞生进程
局部分析
测不准原理制约 自适应问题
• 小波发展进程
– 1910, Haar families. – 1984, Morlet and
Grossman, "wavelet". – 1985, Meyer,
"orthogonal wavelet". – 1988, Mallat and Meyer,
[1] 毛安定等, 基于Daubechies小波的图像边缘检测技术[J],图学学报, 2012,33(1):63-67
[2] 罗忠亮等, 小波图像去噪研究方法概述[J],广西科学,2004,11(3):207211 [3] Chun-Lin, Liu: A Tutorial of the Wavelet Transform[D], 2010 [4] 韦力强, 谭阳红, 基于新阈值函数的小波图像去噪研究[J],科学技术与工
程,2007,7(9):2114-2117 [5] 刘国英,马国锐等,基于Markov随机场的小波域图像建模及分割[M],
北京:科学出版社 [6] 周海霞,小波变换在静态图像压缩中的应用[D],长安大学,2008 [7] 朱秀昌等,数字图像处理教程[M],北京:清华大学出版社 [8] 汪源源,现代信号处理理论和方法[M],上海:复旦大学出版社
1.6 Mallat算法

16
1.6 Mallat算法

17
1.6 Mallat算法

18
1.6 Mallat算法

19
1.6 Mallat算法
20
1.6 Mallat算法
三级分解示意图
21
2.1 分解与重构‘db1’

小波变换课件小波变换的实现技术

小波变换课件小波变换的实现技术

第4章 小波变换的实现技术4.1 Mallat 算法双正交小波变换的Mallat 算法:设{}n h h =、{}n g g =、{}n h h =、{}n g g =为实系数双正交小波滤波器。

h ,g 是小波分析滤波器,h ,g 是小波综合滤波器。

h 表示h 的逆序,即n n h h -=。

若输入信号为n a ,它的低频部分和高频部分以此为1n a -和1n d -,小波分解与重构的卷积算法:11()()n n n na D a h d D a g --⎧⎪=*⎨=*⎪⎩ n11()()n n a Uah Ud g --=*+*先进行输入信号和分析滤波器的巻积,再隔点采样,以形成低频和高频信号。

对于有限的数据量,经过多次小波变化后数据量大减,因此需对输入数据进行处理。

4.1.1 边界延拓方法下面给出几种经验方法。

1. 补零延拓是假定边界以外的信号全部为零,这种延拓方式的缺点是,如果输入信号在边界点的值与零相差很大,则零延拓意味着在边界处加入了高频成分,造成很大误差。

实际应用中很少采用。

0121,0,,,,...,,0,0,......n s s s s -2.简单周期延拓将信号看作一个周期信号,即k n k s s +=。

简单周期延拓后的信号变为这种延拓方式的不足之处在于,当信号两端边界值相差很大时,延拓后的信号将存在周期性的突变,也就是说简单周期延拓可在边界引入大量高频成分,从而产生较大误差。

3. 周期对称延拓这种方法是将原信号在边界上作对称折叠,一般分二1)当与之做卷积的滤波器为奇数时,周期延拓信号为2)当与之做卷积的滤波器为偶数时,周期延拓信号为4. 光滑常数延拓在原信号两端添加与端点数据相同的常数。

0121,,,...,,n s s s s -0121,,,...,,n s s s s -0121,,,...,,n s s s s -0,...s 1,...,n s -01221,,,...,,,n n s s s s s --0121,,,...,,n s s s s -21012,...,,,,,...n s s s s s -321212,,,...,,,,...n n n s s s s s s ---10012,,...,,,,...n n s s s s s --10112,,,...,,,n n n s s s s s ---5. 平滑延拓在原信号两端用线性外插法补充采样值,即沿着信号两端包络线的一阶导数方向增加采样值。

小波变换简介PPT课件

小波变换简介PPT课件
[H,V,D] = detcoef2 ('all',C,S,N) returns the horizontal H, vertical V, and diagonal D detail coefficients at level N.
47
X = waverec2(C,S,'wname')
reconstructs the matrix X based on the multi-level wavelet decomposition structure [C,S]
10
幅度
频率
时间窗
时间
时域加窗分析
时间
时频平面划分示意图
11
窗口傅立叶变换
12
窗口傅立叶变换
另一个缺点是:无论怎样离散化,都不能 使Gabor变换成为一组正交基;
而傅立叶变换经离散化后可得到按正交函 数展开的傅立叶级数。
13
1909: Alfred Haar
Alfred Haar对在函数空间中寻找一个与傅立叶类似 的基非常感兴趣。1909年他发现并使用了小波, 后来被命名为哈尔小波(Haar wavelets)
C 0
Wf
(a,b)a,b(t)dbda2a
a,b(t)
1 (t b)
aa
28
小波系数的意义
Wf (a,b)表示信号与尺度为a小波的相关程 度。小波系数越大,二者越相似。
F() f(t)ejtdt
W f(a,b)f(t) a,b(t)dt
29
连续小波变换的简单步骤
选择尺度为a确定的小波,与信号开始的 一段比较;
A = appcoef2(C,S,'wname',N)

小波变换课件ch4 Mallat算法及二维小波47页PPT

小波变换课件ch4 Mallat算法及二维小波47页PPT
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴
Hale Waihona Puke 46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
小波变换课件ch4 Mallat算法及二维 小波
1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯

小波mallat算法

小波mallat算法

⼩波mallat算法算法要求:输⼊序列是⼤于滤波器长度的偶数列确实可以通过编程的⼿段使算法适合所有的情况,但本⽂章的⽬的是展⽰mallat算法的过程,所以就⼀切从简了// Mallat.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include "stdio.h"/*mallat算法分解* dSIn 输⼊的序列s,dH0尺度函数展开系数,dH1⼩波函数展开系数,dSOut输出低频部分,dDOut输出⾼频部分,* nSIn_Len 输⼊序列的长度,nH_Len 滤波器的长度。

*/int DwtFun(double *pdSIn,double *pdH0,double *pdH1,double *pdSOut,double *pdDOut,int nSIn_Len,int nH_Len) {int i,j,k;//延拓后的Len是⼀个本体长度加⼀个滤波器长度int nLen=nSIn_Len+2*nH_Len;//建⽴滤波前的序列pdSArray,滤波后的序列pdSAOut低频部分,pdDAOut⾼频部分double *pdSArray=new double[nLen];double *pdSAOut=new double[nLen];double *pdDAOut=new double[nLen];//对称延拓for(i=0;i<nLen;i++){if(i<nH_Len){pdSArray[i]=pdSIn[nH_Len-i-1];}else if(i>=nH_Len+nSIn_Len){pdSArray[i]=pdSIn[nH_Len+2*nSIn_Len-1-i];}else{pdSArray[i]=pdSIn[i-nH_Len];}}//求输出序列低频部分dSOut,⾼频部分dDOut.i->nLen,k->nH_Lendouble dSTemp,dDTemp;for(i=0;i<nLen;i++){dSTemp=0.0;dDTemp=0.0;for(k=0;k<nH_Len;k++){if((i-k)<0)continue;else{//低频部分dSTemp+=pdH0[nH_Len-k-1]*pdSArray[i-k];//⾼频部分dDTemp+=pdH1[nH_Len-k-1]*pdSArray[i-k];}}pdSAOut[i]=dSTemp;pdDAOut[i]=dDTemp;}//⼆抽取.先将pdSAOut前nH_Len长的⼀段舍弃,抽取偶数列for(i=nH_Len,j=0;i<nLen;i+=2,j++){pdSOut[j]=pdSAOut[i+1];pdDOut[j]=pdDAOut[i+1];}//返回输出序列的长度return j;delete pdSArray;pdSArray=NULL;delete pdSAOut;pdSAOut=NULL;delete pdDAOut;pdDAOut=NULL;}/*mallat 算法重构* psSIn 输⼊的低频序列,pdDIn输⼊的⾼频序列,g0,g1重构滤波器,pdOut输出序列,nSInLen输⼊序列的长度* nG_Len 滤波器长度*/int IDwtFun(double *pdSIn,double *pdDIn,double *pdG0,double *pdG1,double *pdOut,int nSInLen,int nG_Len) {int i,j,k;//建⽴⼀个数列存放插⼊后的数列int nTemp=2*nSInLen;double *pdInSertS=new double[nTemp];double *pdInSertD=new double[nTemp];//⼆插⼊j=0;for(i=0;i<nTemp;i++){if(i%2==0){pdInSertS[i]=0;pdInSertD[i]=0;}else{pdInSertS[i]=pdSIn[j];pdInSertD[i]=pdDIn[j];j++;}}//对称拓延//创建⼀个nTemp+nG_Len长的数列int nLen=nTemp+2*nG_Len;double *pdSAIn=new double[nLen];double *pdDAIn=new double[nLen];for(i=0;i<nLen;i++){if(i<nG_Len){pdSAIn[i]=pdInSertS[nG_Len-i-1];pdDAIn[i]=pdInSertD[nG_Len-i-1];}else if(i==nTemp+nG_Len){pdSAIn[i]=0.0;pdDAIn[i]=0.0;}else if(i>nTemp+nG_Len){pdSAIn[i]=pdInSertS[nG_Len+2*nTemp-i-1];pdDAIn[i]=pdInSertD[nG_Len+2*nTemp-i-1];}else{pdSAIn[i]=pdInSertS[i-nG_Len];pdDAIn[i]=pdInSertD[i-nG_Len];}}//⽤滤波器G0和G1对数列进⾏滤波double *pdSAOut=new double[nLen];double *pdDAOut=new double[nLen];double dSTemp,dDTemp;for(i=0;i<nLen;i++){dSTemp=0.0;dDTemp=0.0;for(k=0;k<nG_Len;k++){if((i-k)<0)continue;else{//低频部分dSTemp+=pdG0[nG_Len-k-1]*pdSAIn[i-k];//⾼频部分dDTemp+=pdG1[nG_Len-k-1]*pdDAIn[i-k];}}pdSAOut[i]=dSTemp;pdDAOut[i]=dDTemp;}//合并低频,⾼频for(i=2*nG_Len-1,j=0;i<nLen;i++,j++){pdOut[j]=pdSAOut[i]+pdDAOut[i];}return j;delete pdInSertS;pdInSertS=NULL;delete pdInSertD;pdInSertD=NULL;delete pdSAIn;pdSAIn=NULL;delete pdDAIn;pdDAIn=NULL;delete pdSAOut;pdSAOut=NULL;delete pdDAOut;pdDAOut=NULL;}int main(int argc, char* argv[]){int i;//db4⼩波,已经取反 h0,h1是分解滤波器,g0,g1是重构滤波器double dDb4h0[] = { 0.2303778133088964, 0.7148465705529154,0.6308807679398587, -0.0279837694168599,-0.1870348117190931, 0.0308413818355607,0.0328830116668852, -0.0105974017850690 };double dDb4h1[] = { -0.0105974017850690 , -0.0328830116668852, 0.0308413818355607 , 0.1870348117190931,-0.0279837694168599 , -0.6308807679398587,0.7148465705529154 , -0.2303778133088964};double dDb4g0[] = { -0.0105974017850690 , 0.0328830116668852,0.0308413818355607 , -0.1870348117190931,-0.0279837694168599 , 0.6308807679398587,0.7148465705529154 , 0.2303778133088964};double dDb4g1[] = { -0.2303778133088964 , 0.7148465705529154,-0.6308807679398587 , -0.0279837694168599,0.1870348117190931 , 0.0308413818355607,-0.0328830116668852 , -0.0105974017850690};//⽣成⼀个数列,本算法要求输⼊的数列是⽐滤波器长的偶数列double a[]={1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0}; //double a[]={1.0,4.0,5.5,8.2,2.7,5.2,2.0,2.0,2.0,3.0,3.0,4.0,4.0,14.0,17.0,11.0};//输出double *pdS=new double[100];double *pdD=new double[100];double *pdOut=new double[100];int l=DwtFun(a,dDb4h0,dDb4h1,pdS,pdD,16,8);for(i=0;i<l-1;i++){printf("%f\t",pdS[i]);printf("\n");}printf("*********************\n");for(i=0;i<l-1;i++){printf("%f\t",pdD[i]);printf("\n");}printf("*********************\n");int v=IDwtFun(pdS,pdD,dDb4g0,dDb4g1,pdOut,11,8);//i<v-nG_Len+1for(i=0;i<v-7;i++){printf("%f\t",pdOut[i]);printf("\n");}delete []pdS;pdS=NULL;delete []pdD;pdD=NULL;delete []pdOut;pdOut=NULL;return 0;}。

小波变换与多分辨分析资料

小波变换与多分辨分析资料
3


(a)
(b)
正弦波和小波 (a) 正弦波曲线; (b) 小波曲线
4
5
与傅里叶变换相比,小波变换的优点:
1.小波变换同时提供了信号的时间-频率信息, 而DFT只是提供了频率信息。
2.小波分析是利用多种 “小波基函数” 对 “ 原始信号” 进行分解,而傅里叶变换的基函 数为三角函数。
3. 小波变换为原始信号提供了多分辨表达能力 ,在某一个分辨度检测不到的现象,在另一个 分辨度却很容易观察处理。
• 哈尔基函数是最古老也是最简单的正交小波。 • 哈尔变换本身是可分离的,也是对称的,可以用
下述矩阵形式表达:
T=HFHT
其中,F是一个N×N图像矩阵,H是N×N变换矩阵,T
是N×N变换的结果
13
4x4 Haar变换矩阵
1 1 1 1
H4
1
1
4
2
1 2
1 0
1
0
0 0 2 2
14
j,k (x) 2 j /2(2 j x k)
j z, k z
则集合{ j,k ( x)}是 ( x)的展开函数集。从上式可以看出,
k决定了 j,k ( x)在x轴的位置,j决定了 j,k (x)的宽度,即
沿x轴的宽或窄的程度,而2 j / 2 控制其高度或幅度。由于
j,k (x)的形状随j发生变化, (x)被称为尺度函数。
尺度及小波函数空间的关系
22
第一讲核心知识点
[1]小波变换与DFT变换相比优点是什么?为什么引 入图象变换?
[2]金字塔分解与子带编码的关系如何? [3]多分辨展开为什么引入尺度函数,尺度函数存在
什么特点?小波函数与尺度函数的关系是什么?

《小波分析》PPT课件

《小波分析》PPT课件

级数的系数k, j 正好是信号f(x)的
小波变W f换a, b
在二进离散点:
2k , 2k j
(37)
上的取值。这说明:对于正交小波来说,任 何信号在二进离散点上的小波变换包含了它 的小波变换的全部信息,所以
正交小波具有优美的谱吸收特点。
小波变换与Fourier变换
Fourier变换:
➢ 对于任何信号f(x),只有当它是时间有 限时,它的谱F()(Fourier变换)才是频 率吸收的;
a ,b
a ,b
a ,b
b aE a , b + aE a
E a a , E a a
(32)
Appendix B Fig.2. 小波在时-频相平面上的窗
1
0
2 t
t0
t1
2.3.4. 小波的时-频特性
小 波 时 - 频 窗 的 面 4积 恒 等


小波的时-频窗是时-频相平面中的
注释
注释:如果小波母函数 x

Fourier
0
变换
在原0点 0
是于连是续

x的d,x 那 0么公式(2)说
R

这说明函数 x 有波动的特点,公
式(1)又说明函x数
有衰减的特
点,因此 ,x称函数
为“小
1.2 小波变换(Wavelet Transform)
对 于 任 意 的 函 数f x或L2R者 信
对于正交小波 x , k, j x; k, j Z 2
是一个标准正交基,所以,对于任何信号 f(X),可以展开成小波级数:
f x
k, j k, j x
k j
(35)

小波总结

小波总结

摘要:这段时间学习了小波以及小波变换的基础知识,学习了快速小波变换的基本原理,练习了基于小波的图像处理的基本方法。

关键词:小波,小波变换,Mallat 算法,基于小波的图像处理一、小波和小波变换的定义小波就是满足可容许条件的具有特殊性质的函数或称小波基函数,而小波变换就是选择适当的基本小波或称母波,通过对基本小波平移、伸缩而形成的一系列的小波,然后将欲分析的信号投影到由平移、伸缩小波构成的信号空间中。

这种平移、放大、缩小是小波变换的一个特点,因而可以在不同的频率范围,不同的时间位置对信号进行分析。

小波变换是一种线性变换,它将信号分解成不同幅值(分辨率)的分量。

假定是内的实或复值函数,当且仅当下式成立时函数被看成小波,其中为函数的傅里叶变换函数: +∞<⎰∞+∞-ωωψd w |||)(|2上述意味着⎰+∞∞-=0)(t d t ψ即是振荡的且面积为零)(a 1a )(a t t τψτψ-=、、 其中为小波函数,a 为尺度常数,为位置常数,则上式是由原像小波通过平移和伸缩得到的。

小波变换定义为:t d a t t f a Wf )(*)(a1),(τψτ-=⎰+∞∞- 其中:f(t)属于的任意函数,Wf(a, )代表含尺度和位置常数的小波变换,*即进行卷积运算。

小波变换取决于两个参数:尺度a 和位置,它们在实数范围内不断地变化,对于比较小的a 值,小波集中在时间域而小波变换给出信号的宏观信息;而当a 值比较大时,小波扩展,小波变换给出宏观信息。

小波变换是一种窗口大小固定不变,但其形状可以改变的局部化分析方法。

小波变换在信号的高频部分可以取得较好的时间分辨率;在信号的低频部分,可以取得较好的频率分辨率,从而能有效地从信号(如语音、图像等)中提取信息。

二、快速小波算法—Mallat 算法1. 一维信号的拓延 在Mallat 算法的推导中,假定输入序列是无限长的,而实际应用中常常是分时采样,即输入序列为有限长.此时,滤波器系数与输入序列卷积时就会出现轮空的现象.因此有必要对原始信号进行边界延拓,减小边界误差.解决的方法通常有补零法、周期延拓法和对称延拓法.设输入信号为f(n),长度为srcLen,滤波器长度为filterLen.下面给出信号边界处理几种方法的具体表达式如下:1)周期拓延法:将原来有限长的输入序列拓展成周期的序列.周期延拓可适用于任何小波变换,但可能导致输入序列边缘的不连续,使得高频系数较大.这种方式的拓延卷积后与源信号的长度一致。

小波变换及分析原理知识

小波变换及分析原理知识

- 252 -小波分析原理1.1 小波变换及小波函数的多样性小波是函数空间2()L R 中满足下述条件的一个函数或者信号()x ψ:2ˆ().R C d ψψωωω+=<∞⎰式中,*{0}R R =-表示非零实数全体,ˆ()ψω是()x ψ的傅里叶变换,()x ψ成为小波母函数。

对于实数对(,)a b ,参数a 为非零实数,函数(,)()x b a b x a ψ-⎛⎫=⎪⎝⎭称为由小波母函数()x ψ生成的依赖于参数对(,)a b 的连续小波函数,简称小波。

其中:a 称为伸缩因子;b 称为平移因子。

对信号()f x 的连续小波变换则定义为,(,)()(),()f a b Rx b W a b f x dx f x x a ψψ-⎛⎫==〈〉 ⎪⎝⎭其逆变换(回复信号或重构信号)为*1()(,)fR R x b f x W a b dadb C a ψψ⨯-⎛⎫=⎪⎝⎭⎰⎰ 信号()f x 的离散小波变换定义为2(2,2)2()(2)j j j j f W k f x x k dx ψ+∞---∞=-⎰其逆变换(恢复信号或重构信号)为(2,2)()(2,2)()j j j j fk j k f t C Wk x ψ+∞+∞=-∞=-∞=∑∑其中,C 是一个与信号无关的常数。

显然小波函数具有多样性。

在MA TLAB 小波工具箱中提供了多种小波幻术,包括Harr 小波,Daubecheies (dbN )小波系,Symlets (symN )小波系,ReverseBior (rbio )小波系,Meyer (meyer )小波,Dmeyer (dmey )小波,Morlet(morl)小波,Complex Gaussian(cgau)小波系,Complex morlet(cmor)小波系,Lemarie (lem )小波系等。

实际应用中应根据支撑长度、对称性、正则性等标准选择合适的小波函数。

- 253 -1.2 小波的多尺度分解与重构1988年Mallat 在构造正交小波基时提出多尺度的概念,给出了离散正交二进小波变换的金字塔算法,其小波分析树形结构如图1所示,即任何函数2()()f x L R ∈都可以根据分辨率为2N-的()f x 的低频部分(近似部分)和分辨率为2(1)j j N -≤≤下()f x 的高频部分(细节部分)完全重构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档