常微分方程进展简史

合集下载

常微分方程的发展史 毕业论文

常微分方程的发展史  毕业论文

常微分方程的发展史摘要:常微分方程是17世纪与微积分同时诞生的一门理论性极强且应用广泛的数学学科之一,本文从常微分方程的起源谈起,分四个时期介绍其发展过程。

本文从常微分方程的起源发展、理论知识及基本原理、应用等方面出发,系统地介绍常微分方程的发展史和在数学发展中的重要意义。

引言:随着科技进步和工业现代化的发展,物理、化学、生物、工程、航空航天、医学、经济和金融领域中的许多原理和规律都可以描述成适当的常微分方程,如牛顿的运动定律、万有引力定律、机械能守恒定律,能量守恒定律、人口发展规律、生态种群竞争、疾病传染、遗传基因变异、股票的涨伏趋势、利率的浮动、市场均衡价格的变化等。

而数学建模通常是针对生产、管理、社会、经济等领域中提出的原始问题进行解决的过程。

这些问题基本上没有经过任何的加工处理,也没有固定的形式,也看不出明确的解决方法,因此,数学建模的过程是一项培养我们大学生创造能力和创新思维能力的“实践”,通过数学建模,把生活中的具有实际的现实意义的问题结合上所学的理论知识当中,真正做到学有所用,学以致用。

对这些问题的描述、认识和分析就归结为对相应的常微分方程描述的数学模型的研究。

因此,常微分方程的理论和方法不仅广泛应用于自然科学,而且越来越多的应用于社会科学的各个领域。

关键词:常微分方程起源发展一、常微分方程的思想萌芽微分方程就是联系着自变量,未知函数以及其导数的关系式,微分方程理论的发展是随着微积分理论的建立发展起来的。

一般地, 客观世界的事件的联系是服从一定的客观规律的, 而这种联系, 用数学语言表述出来, 即抽象为微分方程,一旦求出其解或研究清楚其动力学行为, 变量之间的规律就一目了然了。

例如在物体运动中,位移的计算就与瞬时速度之间有着紧密的联系,其结果往往形成一个微分方程, 一旦求出其解或研究清楚其动力学行为,就明确掌握了物体的运动规律。

1.1 常微分方程的产生背景随着微积分的建立,微分方程理论也发展起来。

常微分方程的发展史

常微分方程的发展史

常微分方程的发展史摘要:20世纪以来,随着大量的边缘科学诸如电磁流体力学、化学流体力学、动力气象学、海洋动力学、地下水动力学等等的产生和发展,也出现不少新型的微分方程(特别是方程组).70年代随着数学向化学和生物学的渗透,出现了大量的反应扩散方程. 从“求通解”到“求解定解问题”数学家们首先发现微分方程有无穷个解.常微分方程的解会含有一个或多个任意常数,其个数就是方程的阶数.偏微分方程的解会含有一个或多个任意函数,其个数随方程的阶数而定.命方程的解含有的任意元素(即任意常数或任意函数)作尽可能的变化,人们就可能得到方程所有的解,于是数学家就把这种含有任意元素的解称为“通解”.在很长一段时间里,人们致力于“求通解”.关键词:常微分方程,发展,起源正:常微分方程是由用微积分处理新问题而产生的,它主要经历了创立及解析理论阶段、定性理论阶段和深入发展阶段。

17 世纪,牛顿(I.Newton ,英国,1642-1727)和莱布尼兹(G.W.Leibniz ,德国,1646-1716)发明了微积分,同时也开创了微分方程的研究最初,牛顿在他的著作《自然哲学的数学原理机(1687年)中,主要研究了微分方程在天文学中的应用,随后微积分在解决物理问题上逐步显示出了巨大的威力。

但是,随着物理学提出日益复杂的问题,就需要更专门的技术,需要建立物理问题的数学模型,即建立反映该问题的微分方程。

1690 年,雅可比·伯努利(Jakob Bernouli,瑞士,1654-1705)提出了等时间题和悬链线问题.这是探求微分方程解的早期工作。

雅可比·伯努利自己解决了前者。

翌年,约翰伯努利(Johann Bernouli ,瑞士,1667-1748)、莱布尼兹和惠更斯(C.Huygens ,荷兰,1629-1695)独立地解决了后者。

有了微分方程,紧接着就是解微分方程,并对所得的结果进行物理解释,从而预测物理过程的特定性质.所以求解就成为微分方程的核心,但求解的困难很大,一个看似很简单的微分方程也没有普遍适用的方法能使我们在所有的情况下得出它的解。

常微分方程的发展史毕业论文

常微分方程的发展史毕业论文

常微分方程的发展史毕业论文常微分方程(Ordinary Differential Equations,ODE)是描述自变量只有一个的函数与其导数之间关系的数学方程。

它是应用数学中的重要分支,广泛应用于物理、工程、生物等领域。

本文将介绍常微分方程的发展史,并探讨其在数学和应用方面的重要性。

常微分方程的历史可以追溯到17世纪。

当时,牛顿的《自然哲学的数学原理》(Principia Mathematica)的出版,为微分方程的研究奠定了基础。

著名的数学家欧拉和拉普拉斯也做出了许多对微分方程的重要贡献。

19世纪,微分方程的研究取得了突破性进展。

拉格朗日、拉普拉斯和普朗克等学者提出了一些重要的微分方程理论。

其中,拉普拉斯将微分方程的理论发展为一个完整的科学,提供了定义、分类和解法。

此外,阿贝尔、亥姆霍兹和斯托克斯等学者对微分方程的特殊类型进行了深入研究。

20世纪初,随着数值计算和计算机的发展,微分方程的研究进入了一个新的阶段。

数值方法的出现使得人们能够求解更加复杂的微分方程。

例如,飞机设计需要解决空气动力学方程,而人们使用数值方法来模拟空气流动。

另一个重要的进展是变分法和泛函分析在微分方程研究中的应用,使得人们能够处理更加一般的微分方程。

随着数学和应用领域的发展,常微分方程的研究也取得了新的进展。

例如,关于常微分方程的稳定性和周期性解的研究,为深入理解动力系统的稳定性提供了理论基础。

人们还将常微分方程的方法推广到偏微分方程的研究中,为更多实际问题的建模和求解提供了工具。

在应用方面,常微分方程广泛应用于物理学、工程学和生物学等领域。

物理学中的力学、电磁学和量子力学等问题都可以用微分方程来描述。

工程学中,微分方程被用于建模和控制系统的研究与设计。

而生物学中,微分方程被用于描述生物体内的生物化学反应、人口增长和疾病传播等问题。

总之,常微分方程作为数学的重要分支,在数学理论和应用研究上都有着重要的地位。

它的发展史见证了人类对于自然界的认识和技术能力的提升,为解决复杂实际问题提供了有力的工具。

1.1基本概念及发展简史

1.1基本概念及发展简史
2T 2T 2T 2 2 0 2 x y Z
2T T 4 2 t x
1.1 微分方程
一阶与高阶微分方程/First and Higher ODE/
微分方程的阶/Order/ 在一个微分方程中所出现的未知函数的导数的最 高阶数n称为该方程的阶。 当n=1时,称为一阶微分方程; 当n>1时,称为高阶微分方程。 例如
x 的已知函数
a0 ( x) y a1( x) y a2 ( x) y g ( x)
y x2 y y sin x xex
§1.2 Basic Conception
解和隐式解/Solution/
对于方程

y(n) f ( x, y, y, , y(n1) )
n阶方程初值问题(Cauchy Problem)的表示
y ( n) f ( x, y, y,, y ( n1) ) ( y( x0 ) y0 , y( x0 ) y0 , y( x0 ) y0 ,, y ( n1) ( x0 ) y0n1)
若方程的解是某关系式的隐函数,称这个关系式为该方程 的隐式解。把方程解和隐式解统称为方程的解。
Solution/ 常微分方程的解的表达式中,可能包含一个或者几意常
通解和特解/General Solution and Special
§1.2 Basic Conception
数,若其所包含的独立的任意常数的个数恰好与该方程
若将函数 y (x) 代入方程后使其有意义且两端成立 即 F[ x, ( x), ( x), , ( n) ( x)] 0
则称函数 y (x)
一阶微分方程 即关系式
为该方程的一个解.

线性微分方程的历史发展和现代应用

线性微分方程的历史发展和现代应用

线性微分方程的历史发展和现代应用历史上,线性微分方程的研究始于18世纪,在数学家们的努力下,逐渐出现了一些重要的成果和定理。

在现代科学和工程学中,线性微分方程广泛应用于理论研究和实际问题的解决。

1. 历史发展18世纪,欧洲的数学家们正致力于研究微积分学的基本问题,其中一个重要问题就是微分方程。

而在这些微分方程中,线性微分方程成为了研究的主军。

著名的数学家欧拉(Euler)被认为是线性微分方程理论的始创者之一,他在1748年的《积分方程论》中提出了一些线性微分方程的基本概念和结论。

后来,拉普拉斯(Laplace)进一步发展了欧拉的理论,在他的著作《数学理论》中,对线性微分方程做出了更加深入的研究,提出了著名的拉普拉斯变换的概念,这为后来的控制系统和电路分析提供了重要工具。

19世纪末20世纪初,矩阵代数的发展也大大促进了线性微分方程的研究和应用。

矩阵理论的发现使得人们可以更加简单和方便地处理一类特殊的线性微分方程,即常系数线性微分方程,而该方程在主导了科学研究和工程实践中的许多问题的解决中发挥着至关重要的作用。

2. 常见的线性微分方程发展至今,线性微分方程已经成为一个包罗万象的大门类,其中常见的线性微分方程类型大致可以分为以下几类:- 常系数线性微分方程:此类微分方程中,系数不随时间变化,可以借助于矩阵理论、Legendre多项式等工具求解,包括简谐振动、RC电路等实际问题。

- 变系数线性微分方程:系数随时间变化,可以借助于Laplace变换、特解法等求解,例如二阶变系数线性微分方程、弹性波方程等。

- 偏微分方程(PDE):包括齐次线性偏微分方程和非齐次线性偏微分方程,是研究热传导、波动传播等领域中重要的数学工具。

3. 现代应用线性微分方程在现代科学和工程学中广泛应用,以下列举几个例子:- 控制系统理论:控制系统设计中常使用的PID控制器实际上就是一个常系数线性微分方程的解,PID参数的设置和调整可以借助线性微分方程的理论和方法解决。

常微分方程发展简史

常微分方程发展简史

常微分方程发展简史在17世纪初,牛顿和莱布尼茨的微积分发现为常微分方程的研究提供了基础。

他们建立了微分和积分的概念,并发展了微积分的基本原理。

这些成果为后来的常微分方程的研究奠定了基石。

在17世纪晚期,丹麦数学家欧拉(Euler)对常微分方程做出了很大贡献。

他提出了一阶常微分方程的解可以用指数函数来表示,并且解决了许多具体的微分方程问题。

欧拉还提出了欧拉方程,为后来的常微分方程研究奠定了基础。

在18世纪,数学家拉普拉斯(Laplace)和拉格朗日(Lagrange)继续推进了微分方程的研究。

他们提出了许多常微分方程的解法,如分离变量法、变换法和齐次化方法等。

这些方法为常微分方程的求解提供了有效的途径。

19世纪初,高斯(Gauss)提出了可微分曲线的理论,为微分方程的几何解释提供了基础。

同时,柯西(Cauchy)建立了常微分方程的数学理论,给出了数学上严格的解决方法。

他提出了柯西问题,即通过给定初始条件求解微分方程的问题。

这一问题成为后来微分方程理论的核心。

19世纪中期,数学家魏尔斯特拉斯(Weierstrass)和韦伊斯特拉斯(Weierstrass)进一步发展了微分方程的理论,提出了广义解和李普希茨条件等概念。

他们的工作为微分方程的研究提供了更加严密的数学基础。

20世纪初,数学家波安卡列(Poincaré)对常微分方程的稳定性和周期性做出了重要贡献。

他提出了位相空间和奇点的概念,并研究了常微分方程在位相空间中的变化规律。

这一工作为后来的动力系统理论的发展奠定了基础。

20世纪后期,随着计算机的发展,常微分方程的数值解法得到了广泛应用。

数学家和工程师利用计算机模拟和迭代求解的方法,可以更加准确地求解含有复杂边界条件的常微分方程。

这一进展使得常微分方程的应用领域得到了大大的拓展,包括物理学、工程学和经济学等。

总结起来,常微分方程的研究经历了几个重要的阶段,从17世纪初的微积分基础,到18世纪的解法发展,再到19世纪的理论建立,最后到20世纪的计算机应用。

微分方程发展简史

微分方程发展简史

微分方程发展史思考微分方程:大致与微积分同时产生。

事实上,求y′=f(x)的原函数问题便是最简单的微分方程。

I.牛顿本人已经解决了二体问题:在太阳引力作用下,一个单一的行星的运动。

他把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组。

用现在叫做“首次积分”的办法,完全解决了它的求解问题。

17世纪就提出了弹性问题,这类问题导致悬链线方程、振动弦的方程等等。

总之,力学、天文学、几何学等领域的许多问题都导致微分方程。

在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型……。

因而微分方程的研究是与人类社会密切相关的。

当初,数学家们把精力集中放在求微分方程的通解上,后来证明这一般不可能,于是逐步放弃了这一奢望,而转向定解问题:初值问题、边值问题、混合问题等。

但是,即便是一阶常微分方程,初等解(化为积分形式)也被证明不可能,于是转向定量方法(数值计算)、定性方法,而这首先要解决解的存在性、唯一性等理论上的问题。

方程对于学过中学数学的人来说是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。

这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解。

但是在实际工作中,常常出现一些特点和以上方程完全不同的问题。

比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。

物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个未知函数。

也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个未知的函数。

微分方程——基本概念和常微分方程的发展史

微分方程——基本概念和常微分方程的发展史

微分⽅程——基本概念和常微分⽅程的发展史1.2 基本概念和常微分⽅程的发展史⾃变量、未知函数均为实值的微分⽅程称为实值微分⽅程;未知函数取复值或变量及未知函数均取复值时称为复值微分⽅程。

若⽆特别声明,以下均指实变量的实值微分⽅程。

1.2.1 常微分⽅程基本概念(1) 常微分⽅程和偏微分⽅程微分⽅程就是联系⾃变量、未知函数及其的关系式。

如果在微分⽅程中,⾃变量的个数只有⼀个,则称这种微分⽅程为常微分⽅程;⾃变量的个数为两个或两个以上的微分⽅程为偏微分⽅程。

⼀般的n阶常微分⽅程具有形式:F x,y,dydx,⋯,d n ydx n=0(1.38)微分⽅程中出现的未知函数最⾼阶的阶数称为微分⽅程的阶数。

此后,我们把常微分⽅程称为“微分⽅程”,有时更简称为“⽅程”。

(2) 线性和⾮线性如果⽅程(1.38)的左端为未知函数及其各阶导数的⼀次有理整式,则称(1.38)为n阶线性微分⽅程。

⼀般n阶线性微分⽅程具有形式不是线性⽅程的⽅程称为⾮线性⽅程。

例如⽅程(3) 解和隐式解如果函数y=φ(x)代⼊⽅程(1.38)后,能使它变为恒等式,则称函数y=φ(x)为⽅程(1.38)的解。

如果关系式Φ(x,y)=0决定的函数y=φ(x)是⽅程(1.38)的解,称为称Φ(x,y)=0为⽅程(1.38)的隐式解,隐式解也称为“积分”。

为了简单起见,以后我们不把解和隐式解加以区别,统称为⽅程的解。

(4) 通解和特解我们把含有n个独⽴的任意常数c1,c2,⋯,c n的解称为n阶⽅程(1.38)的通解。

为了确定微分⽅程⼀个特定的解,我们通常给出这个解所必须的条件,这就是所谓的定解条件。

常见的定解条件是初值条件和边值条件。

求微分⽅程满⾜定解条件的解,就是所谓定解问题。

当定解条件为初值条件时,相应的定解问题,就称为初值问题。

我们主要讨论初值问题。

我们把满⾜初值条件的解称为微分⽅程的特解。

初值条件不同,对应的特解也不同。

⼀般来说,特解可以通过初值条件的限制,从通解中确定任意常数⽽得到。

常微分方程发展简史—经典阶段

常微分方程发展简史—经典阶段

常微分方程发展简史—经典阶段微分方程是数学的一个重要分支,它研究函数与其导数之间的关系。

常微分方程是其中的一类,它描述了一个未知函数与其导数之间的关系。

常微分方程的研究历史可以追溯到古代,但其经典阶段始于17世纪,并且在18世纪达到了高峰。

下面将简要介绍常微分方程发展的经典阶段。

17世纪是微积分学的发展时期,许多数学家开始研究微分方程。

其中最重要的是牛顿和莱布尼茨的工作,他们独立地发现了微积分的基本原理,并将其应用于物理问题的求解。

牛顿发展了牛顿运动定律,并通过微分方程的形式来描述物体的运动。

他的工作使常微分方程成为了解决物理问题的重要工具。

18世纪是常微分方程研究的黄金时期。

数学家们开始系统地研究微分方程的性质和解法。

最著名的数学家之一是欧拉,他在微分方程领域做出了巨大贡献。

他研究了线性和非线性常微分方程,并提出了解这些方程的方法。

他的工作奠定了常微分方程的基础理论,并推动了后续的研究。

欧拉之后,许多数学家对常微分方程进行了进一步的研究。

拉普拉斯、拉格朗日和傅里叶等数学家都为微分方程的理论和解法作出了贡献。

拉普拉斯提出了一种新的解微分方程的方法,即变量分离法。

这种方法被广泛应用于解常微分方程的各种形式。

拉格朗日则研究了经典力学中的变分原理,并将其应用于解微分方程。

傅里叶的贡献是将常微分方程的解表示为正弦和余弦函数的形式,这被称为傅里叶级数展开。

此外,拉普拉斯和拉格朗日还提出了一种新的方法,即变换法。

这种方法将一个复杂的微分方程转化为一个更简单的形式,从而易于求解。

这为后来的研究提供了重要的思路。

到了19世纪,常微分方程的研究越来越深入。

高斯、庞加莱和魏尔斯特拉斯等数学家在微分方程的解法和理论方面取得了重要进展。

高斯研究了二阶常微分方程的解法,提出了高斯超几何函数的概念。

这个函数在物理学和工程学中有广泛的应用。

庞加莱提出了一种新的方法,即微分方程的数值解法。

他的工作为计算机模拟和数值计算奠定了基础。

微分方程发展简史

微分方程发展简史

微分方程发展简史
微分方程是数学中最重要的问题之一,它是用来描述研究物理和其他自然现象的数学工具。

微分方程的历史可以追溯到古希腊时期。

古希腊时期,欧几里德(Euclid)提出了一种特殊的微分方程,称为“微分比率”。

这种方程可以用来表示古希腊数学家的自然观念,即当一个量变化时,它的比率也会随之变化。

这种思想的萌芽就是微分方程。

17世纪,德国数学家弗朗兹·莱布尼茨开始研究微分方程,他以自己的名字为此方程命名,称之为“莱布尼茨方程”。

他证明了古代希腊人欧几里德和拉斐尔的想法,他们认为变量的导数和变量有关,并且可以用来解释自然界的微分方程。

在这之后,德国数学家弗洛伊德·勃兰特建立了一个更为精确的解微分方程的理论框架。

他提出了一种称为“勃兰特公式”的方法,通过数学建模可以更好地描述物理现象。

18世纪,法国数学家哥白尼和英国数学家拉斐尔也提出了关于微分方程的理论,但是他们没有将其完整地应用到物理学中。

然而,他们的工作为新一世纪发掘物理奥秘和解决重要物理问题提供了基础。

19世纪,法国数学家萨缪尔·不伦瑞克和德国数学家卡尔·马克斯·哈特曼在萨缪尔不伦瑞克方程中做出了重大贡献。

三十年来的苏联数学 (1917-1947) 常微分方程

三十年来的苏联数学 (1917-1947) 常微分方程

三十年来的苏联数学(1917-1947) 常微分方程
《三十年来的苏联数学(1917-1947)》是苏联数学的经典文献之一,其中关于常微分方程的部分包含了许多重要的成果和开创性的研究思路。

以下是一些常微分方程方面的内容概述:
线性常微分方程的研究
苏联数学家在线性常微分方程的研究方面做出了许多开创性的工作,其中最为著名的是关于斯特姆-李乔夫法的发现。

该方法是一种重要的求解线性常微分方程的方法,它不仅能够解决一般的线性方程,还能够解决广义线性方程和具有奇点的方程。

非线性常微分方程的研究
苏联数学家在非线性常微分方程的研究方面也取得了许多成果,其中最为著名的是关于微分方程的分类和求解方法的研究。

苏联数学家通过对不同类型微分方程的分类研究,提出了许多针对性的求解方法,并且在研究中还发现了许多有趣的非线性现象。

动力系统的研究
苏联数学家在动力系统的研究方面也做出了许多贡献,其中最为著名的是关于哈密尔顿系统的研究。

苏联数学家在哈密尔顿系统的研究中提出了一些新的理论和方法,如可积系统和KAM理论等,这些成果
对后来的动力系统理论和应用都产生了深远的影响。

总之,苏联数学家在常微分方程的研究方面取得了许多重要的成果和创新性的研究思路,这些成果对数学的发展和应用产生了深远的影响。

常微分方程发展简史——解析理论与定性理论阶段3常微分

常微分方程发展简史——解析理论与定性理论阶段3常微分

常微分方程发展简史——解析理论与定性理论阶段3常微分常微分方程(Ordinary Differential Equations,简称ODEs)作为数学中重要的研究领域之一,早在古代数学家就开始研究。

然而,对于常微分方程的深入研究直到16世纪才真正开始。

定性理论阶段在常微分方程的发展历史中,定性理论阶段是一个重要的里程碑。

在17世纪,欧洲的许多数学家开始对常微分方程进行研究,并取得了一些重要的成果。

其中最著名的数学家是伯努利家族,他们的研究成果对定性理论的发展产生了巨大的影响。

定性理论的主要目标是研究常微分方程的解的性质,而不是具体的解的形式。

欧拉则提出了一种提供常微分方程解单值化的方法,通过引入无穷远点的概念,将复杂的解变为简单的解。

之后,拉普拉斯又发展了一种完全不同的方法,基于群论的观点,用幂级数来表示解,并通过对幂级数的收敛性进行分析。

解析理论阶段19世纪初,解析理论阶段开始。

拉格朗日和伽罗瓦两位法国数学家在解析理论的发展中发挥了关键的作用。

伽罗瓦则通过研究方程的对称性和置换群的理论,将求解常微分方程的问题转化为求解多项式方程的问题。

他的工作对解析理论的发展产生了深远的影响。

除了法国数学家的贡献外,俄罗斯数学家切布雪夫和德国数学家雅可比也做出了重要的贡献。

切布雪夫发展了关于常微分方程解的唯一性和存在性的理论,而雅可比则通过引入雅可比行列式,研究了常微分方程解的特征。

总结总的来说,常微分方程的发展经历了三个阶段:古代数学家的初步研究、定性理论阶段和解析理论阶段。

定性理论阶段主要是研究解的特性,而解析理论阶段则关注具体的解的形式。

这些理论的发展为后来的数学家提供了基础,也为应用数学领域的发展打下了坚实的基础。

常微分方程的发展史

常微分方程的发展史

常微分方程的发展史古希腊时期,数学家们已经开始研究变化率的概念。

柏拉图的学派研究了一些与变化有关的问题,但没有形成完整的理论体系。

欧几里得和阿基米德的工作也涉及到变化率的概念,但不是以微分方程的形式出现。

到了17世纪,微积分的出现为常微分方程的形成奠定了基础。

众所周知,牛顿和莱布尼茨几乎同时独立发现了微积分学,为数学提供了解决变化问题的新方法。

牛顿在《自然哲学的数学原理》中系统地描述了微积分学,这其中就包括了常微分方程的基本概念和方法。

在牛顿和莱布尼茨之后,许多数学家对常微分方程进行了深入研究。

欧拉和拉格朗日都做出了重要贡献。

欧拉在常微分方程的解法中独创地引入了指数函数,并建立了常微分方程的一种通用解法。

拉格朗日则提出了常微分方程的拉格朗日变换方法,使其在特定问题的求解中更加简化。

到了18世纪,高斯和拉普拉斯等数学家对常微分方程的研究取得了突破性进展。

高斯提出了“用有限项解”的概念,选取了特定形式的函数作为常微分方程的解,从而解决了一些常微分方程的特解问题。

19世纪是常微分方程研究的繁荣时期。

该时期的数学家们在解析解法、级数解、特解以及数值解的研究方法上取得了长足进展。

拉普拉斯为生物、物理和天文学中的实际问题提供了常微分方程的解析解。

波利亚和卡尔内斯则为常微分方程的级数解提供了系统的研究方法。

20世纪是常微分方程研究的极其重要时期。

在此期间,常微分方程与控制论、动力系统等领域发生了深入的交叉。

著名数学家皮卡尔引入了皮卡尔定理,研究非线性常微分方程的局部解存在性和唯一性。

此外,20世纪还出现了新的数值方法,例如欧拉法和龙格-库塔法,用于求解常微分方程的数值解。

从西蒙,泰勒爵士到费曼,众多科学家和数学家在其研究中广泛使用常微分方程。

无论是经济学、物理学、工程学,还是生物学、化学等领域,常微分方程都有着重要的应用。

总结起来,常微分方程是以微积分学为基础的数学分支,其发展历史可以追溯到古希腊时期。

从牛顿和莱布尼茨的发现开始,数学家们对常微分方程进行了深入研究并取得了重要进展。

常微分方程的起源与发展

常微分方程的起源与发展

F / : 5 6 #B / 5 " H C 0 86 # # G
茨同年则在同一家 杂 志 的 另 一 篇 文 章 中 ! 称微分 方程为特征三角形 的 边 的 函 数 ! 并给出了线性方 程= " = * # I# *$ *$的通解表达式 % @ @ :O#
* ! I*= I*= # $ ! $ $ *= *$#( *$ ( * :D @# O#
#$
全力冲击仍不得其解 & 3 ? ! 3年法国数学家刘维尔 证明 意 大 利 数 学 家 黎 卡 提 3 $ 6 !年提出的黎卡提
6 " 方程 = = * # I# *$ *$ *$的解一般 @ @ :O# @ :<#
$
#$
不能通过初等函数 的 积 分 来 表 达 ! 从而让大家明 白了不是 什 么 方 程 的 通 解 都 可 以 用 积 分 手 段 求 出的 & 由于碰了黎卡提方程的钉子 ! 从3 ? 世纪下半 叶到 3 人们从求通解的热潮转向研究常微 % 世纪 ! 分方程定解问题的 适 定 性 理 论 ! 此ቤተ መጻሕፍቲ ባይዱ段为常微分 方程发展的适定性理论阶段 & 柯西建立了柯西问题 3 % 世纪 6 # 年代 ! = = @ # H# *! @$ = * < * #@ @# #$ # > 解的存 在 唯 一 性 定 理 & 德国数学家李普 3 ? $ " 年! 希兹提出著名的 , 李 普 希 兹 条 件! 对柯西的存在 唯一性定理作了改进 & 在适定性的研究中 ! 与柯西 + 李普希兹同一时 期! 还 有 皮 亚 拿 和 比 卡! 他们先后于3 ? $ 4年和 皮亚拿在 3 ? $ G 年给出常微分方程的逐 次 逼 近 法 ! 仅仅 要 求 H# 点邻域连续的条件 *! * @$在 # @ #! #$ 后来这方面的理 下证明了柯西问题 解 的 存 在 性 & 论有了很大发展 ! 这些基本理论包括 % 解的存在及 唯一解 ! 延 展 性! 解 的 整 体 存 在 性! 解对初值和参 奇解等等 & 这些问题是 数的连续依赖性和可微性 ! 微分方程的一般基础理论问题 & % 常微分方程的解析理论阶段 ! ! ! 以解析理论为研究内容 3 % 世纪为常微分方程 发 展 的 解 析 理 论 阶 段 ! 这一阶段的主要成 果 是 微 分 方 程 的 解 析 理 论 ! 运 用幂级数和广义幂 级 数 解 法 ! 求出一些重要的二 阶线性方程的级数 解 ! 并得到极其重要的一些特 殊函数 & 开始系统地 3 ? 3 G 年贝塞尔研究行星 运 动 时 ! 6 6 6 研究贝塞尔方程 * @ $ 这 M:* E: # * !; @ @ # #! 个方程 的 特 殊 情 形 早 在 3 $ # "年雅科布(伯努利 给莱布尼茨的信中 就 已 提 到 & 后来丹尼尔(伯努 利和欧拉也都讨论 过 这 一 方 程 ! 傅立叶与泊松也 讨论 过 它 & 贝塞尔得到了此方程的两个基本解 ! T *$和 T!; # *$ T *$称 为 第 一 类 贝 塞 尔 函 数 ;# ;# 或 ; 阶贝塞尔函数 ! T!; # *$称 为 第 二 类 贝 塞 尔 函 " 4

浅谈微分方程的起源与发展史

浅谈微分方程的起源与发展史

浅谈微分方程的起源与发展史摘要:微分方程起源于17世纪,简单的微分方程分别是牛顿、莱布尼茨和伯努利从几何和力学问题上解决的问题。

这些早期发现开始于1690年,这逐渐导致一些特殊的微分方程的“特殊技能”的发展.虽然这些特殊的技术只适用于相对较少的情况下,但是他们可以解决许多微分方程在力学和几何中的问题,所以,他们的研究具有非常重要的现实意义。

这些特殊的方法和问题,将有助于我们解决很多问题。

引言:很多的科学问题是需要人们根据事物的变化率来确定事物的特征.比如,我们可以试着用已知的速度或加速度来计算粒子的位置,又比如,一些放射性物质可能是已知的衰变率,这就要求我们在一个给定的时间内确定材料的总量。

通过这些例子,我们可以发现,如果知道自变量、未知函数以及函数的导数(或者微分)组成的关系式,得到的就是微分方程。

最后再通过微分方程求出未知函数.关键字:微分方程起源发展史一、微分方程的思想萌芽微分方程就是联系着自变量,未知函数以及其导数的关系式。

微分方程理论的发展是跟随着微积分理论的建立发展起来的,一般地,客观世界的时间要服从一定的客观规律,这种连接,用数学语言表达,即是抽象为微分方程,一旦获得或研究的解决方案是明确的空气动力学行为,变量之间的规律是一目了然的。

例如在物体运动中,唯一的计算就与瞬间速度之间有着紧密的联系,其结果往往形成一个微分方程,一旦求出解或研究清楚气动力学行为,就明确的掌握了物体的运动规律。

1.1微分方程的起源:微分方程起源于17世纪,简单的微分方程分别是牛顿、莱布尼茨和伯努利从几何和力学问题上解决的问题。

这些早期发现开始于1690年,这逐渐导致一些特殊的微分方程的“特殊技能”的发展。

1.2微分方程在实际问题中的应用:运用微分方程理论解决一些实际问题,即根据生物学,物理学,化学,几何学等学科的实际问题及相关知识建立微分方程,讨论该方程解的性质,并由所得的解或解的性质反过来解释该实际过程。

物质运动和它的变化规律在数学上是用函数关系描述的,但是在实际问题中往往不能直接写出反映运动规律的函数,却比较容易建立这些变量与他们的导数之间的关系式,即微分方程。

常微分方程的形成与发展

常微分方程的形成与发展

常微分方程的形成与发展常微分方程(Ordinary Differential Equations, ODEs)是数学中的一个重要分支,它描述了未知函数的导数与自变量之间的关系。

常微分方程的形成与发展涉及了很多数学家的研究工作,下面将从古希腊时期的微分方程雏形开始介绍。

微分方程的雏形可以追溯到公元前250年,亚历山大的狄氏方程(Dido's equation)。

狄氏方程是腓尼基王后狄多在建立迦太基城市时遇到的一个问题。

她希望修建一条半圆形的城墙,使得城墙围起的面积最大。

经过求解,她得到了半圆的解,这是一种具有最大面积的形状。

这个问题可以用微分方程的形式表示,即通过求解方程的极值问题来获得最优解。

在17世纪,微积分的发展促进了微分方程的研究。

众多著名的数学家如牛顿、莱布尼茨、欧拉等都对微分方程进行了深入研究,使得微分方程得到了扎实的理论基础。

牛顿在其《自然哲学的数学原理》中首次提出了微分方程的概念,并利用微分方程来描述物体的运动。

他通过对运动物体的速度进行微分得到了物体的加速度。

牛顿开创性地应用微分方程来建立物理学中的数学模型。

在18世纪,欧拉对微分方程作出了重要贡献。

他通过引入复数来解决了一阶线性常微分方程的问题。

此外,欧拉还开发了许多常见的微分方程求解方法,如变量分离、积分因子等。

欧拉的工作为后来的微分方程的研究奠定了基础。

19世纪,数学家拉普拉斯和拉格朗日进一步推动了微分方程的发展。

拉普拉斯系统地研究了线性常微分方程,并加入了对边界条件的考虑,使得求解微分方程的方法更加完善。

拉格朗日则在变分计算(Calculus of Variations)中提出了最值问题的欧拉-拉格朗日方程,使微分方程研究又进了一步。

20世纪,微分方程得到了更为广泛的应用和深入的研究。

具有代表性的成果包括霍普夫林恩(Heinz Hopf)的动力系统理论、庞加莱(Henri Poincaré)的混沌理论、卡尔曼(Rudolf E. Kálmán)的控制理论等。

7.1 常微分方程发展历史

7.1 常微分方程发展历史

常微分方程发展历史常微分方程在微积分概念出现后即已出现,对常微分方程的研究可分为几个阶段。

发展初期是对具体的常微分方程希望能用初等函数或超越函数表示其解,属于“求通解”时代。

莱布尼茨(Leibniz)曾专门研究利用变量变换解决一阶微分方程的求解问题,而欧拉(Euler)则试图用积分因子统一处理,伯努利(Bernoulli)、里卡蒂(Riccati)微分方程就是在研究初等积分时提出后人以他们的名字命名的方程。

早期的常微分方程的求解热潮被刘维尔(Liouville)于1841年证明里卡蒂方程不存在一般的初等解而中断。

加上柯西(Cauchy)初值问题的提出,常微分方程从“求通解”转向“求定解”时代。

首先是对常微分方程定解问题包括初值和边值问题的解的存在性、唯一性等解的性质的研究。

其次,针对线性微分方程,特别是二阶线性微分方程,通过专门定义一些特殊函数以求解特殊方程,如贝塞尔(Bessel)函数、勒让德(Legendre)多项式等,这促成了微分方程与(复变)函数论结合产生微分方程解析理论。

同时,由于天文计算的需要促进了常微分方程摄动理论以及小参数、幕级数等近似方法的研究。

19世纪末,天体力学中的太阳系稳定性问题需研究常微分方程解的大范围性态,从而使常微分方程的研究从“求定解问题”转向“求所有解”的新时代。

首先,庞加莱(Poincare)创立了定性理论和方法研究常微分方程解的大范围性态。

由于希尔伯特(Hilbert)提出20世纪23个数学问题中关于极限环个数的第16问题,大大促进了定性理论的发展。

另一方面李雅普诺夫(Lyapunov)提出的运动稳定性理论,用于解决方程解的初值扰动不影响原方程解的趋向问题,在天文、物理及工程技术中得到广泛应用,先后在前苏联、美国受到极大重视。

同时,伯克霍夫(Birkhoff)在20世纪初在动力系统方面开辟了一个新领域,由于拓扑方法的渗入,20世纪50年代后经阿诺德(Arnold)、斯梅尔(Smale)等大数学家的参与而得到蓬勃发展。

常微分方程1.1ppt

常微分方程1.1ppt

x x0
n 1 dy d y (1) ( n 1) y y , y , , y 时, 0 0 0 n 1 dx dx
(1.15)
定解问题:求微分方程满足定解条件(初值条件)的解 相应的定解问题就称为初值问题。 这是本课程讨论的重点。
初值问题(柯西Cauchy问题):当定解条件是初值条件时,
1)17世纪至18世纪, 微分方程发展初期, 求通解时代. 2)19世纪初中叶,转向求特解时代,存在唯一性,微分方 程的解析理论,近似解法
3)19世纪末到20世纪50年代,又一次地转向所有解的大 范围的分析,定性和稳定性理论,动力系统(Birkhoff, Arnold,Smale) 4)20世纪六十年代以后到现在,又从求所有解转向求特 解,新性质的新方程和解,混沌、孤立子和分形等。
代表xy平面上的一条曲线,就称之为微分方程的积分 曲线。
而微分方程的通解 y
( x, c) 代表xy平面上的一
族曲线,就称之为微分方程的积分曲线族。
dy 其上每一点 ( x, y )处的切线斜率 刚好等于函数 dx
满足初始条件 y0 ( x0 ) 的特解就是通过点 ( x0 , y0 ) 的一条积分曲线。 y ( x) 为方程(1.17)的积分曲线的充要条件是
du k (u u a ) dt
(1.1)
其中k是比例常数,方程(1.1)就是物体冷却过程的数学模
du 型,它含有未知函数u及它的(一阶)导数 ,这样的方 dt
程,就称为(一阶)微分方程。 将(1.1)改写成
d (u u a ) kdt (u u a )
(1.2)
变量u和t被分离出来了, 对上式两边积分得
dy f ( x) dx

常微分方程发展简史

常微分方程发展简史

第三讲常微分方程发展简史——解析理论与定性理论阶段3、常微分方程解析理论阶段:19 世纪19 世纪为常微分方程发展的解析理论阶段. 作为微分方程向复数域的推广, 微分方程解析理论是由Cauchy 开创的. 在Cauchy 之后,重点转向大范围的研究。

级数解和特殊函数这一阶段的主要结果之一是运用幂级数和广义幂级数解法, 求出一些重要的二阶线性方程的级数解, 并得到极其重要的一些特殊函数.常微分方程是17、18 世纪在直接回答物理问题中兴起的. 在着手处理更为复杂的物理现象, 特殊是在弦振动的研究中, 数学家们得到了偏微分方程. 用变量分离法解偏微分方程的努力导致求解常微分方程的问题. 此外, 因为偏微分方程都是以各种不同的坐标系表出的, 所以得到的常微分方程是目生的, 并且不能用封闭形式解出. 为了求解应用分离变量法与偏微分方程后得到的常微分方程, 数学家们没有过分忧虑解的存在性和解应具有的形式, 而转向无穷级数的方法. 应用分离变量法解偏微分方程而得到的常微分方程中最重要的是Bessel 方程.x 2 y+ xy+ (x2 n2 )y = 0其中参数n 和x 都可以是复的.对Bessel 来说, n 和x 都是实的. 此方程的特殊情形早在1703 年BernoulliJacobi 给 Leibnitz 的信中就已提到, 后来 Bernoulli Daniel 、Euler 、Fourier 、 Poisson 等都讨论过此问题. 对此方程的解的最早的系统研究是由 Bessel 在研 究行星运动时作出的. 对每一个n , 此方程存在两个独立的基本解, 记作J (x) 和nY (x) , 分别称为第一类 Bessel 函数和第二类 Bessel 函数, 它们都是特殊函数 n或者广义函数(初等函数之外的函数) . Bessel 自 1816 年开始研究此方程, 首 先给出了积分关系式J (x) = q 2j 几 cos(nu 一 x sin u)du.n 2几 01818 年 Bessel 证明了 J (x) 有无穷多个零点. 1824 年, Bessel 对整数n 给出了n递推关系式xJ (x) 一 2nJ (x) + xJ (x) = 0n +1 n n 一1和其他的关于第一类 Bessel 函数的关系式.后来又有众多的数学家(研究天体力学的数学家)独立地得到了 Bessel 函数及其表达式和关系式. Bessel 为微分方程解析理论作出了巨大贡献。

尤建功 常微分方程

尤建功 常微分方程

尤建功常微分方程尤建功是中国著名的数学家,他在常微分方程领域做出了众多重要贡献。

常微分方程作为数学的一个分支,是研究关于函数的微分方程的理论和方法的学科,是应用广泛的数学工具之一。

常微分方程在物理学、工程学以及生命科学等领域中都有广泛的应用,因此深入研究常微分方程具有重要的理论和实际意义。

常微分方程的研究可以追溯到17世纪,当时德国数学家莱布尼茨和狄拉克为了解决机械问题中的运动学方程而提出了这个领域的基本概念。

随后,欧拉、拉格朗日、拉普拉斯等数学家又进一步完善了常微分方程的理论和方法。

尤建功在这个丰富的学科研究历史上,以其深入的思考和创造性的工作,为常微分方程的发展作出了重要贡献。

尤建功的研究成果主要集中在非线性常微分方程和辛结构的保持等方面。

他通过对非线性常微分方程进行深入的研究,提出了一系列创新性的理论和方法,为解决非线性常微分方程的存在性、唯一性和稳定性问题提供了重要的工具和思路。

此外,尤建功还研究了辛结构的保持问题,这在力学系统和混沌理论中具有重要的应用价值。

尤建功的研究成果不仅在学术上有重要意义,也对实际问题的解决起到了指导作用。

例如,在常微分方程的应用中,许多问题需要建立数学模型来描述和求解。

尤建功的工作为解决实际问题提供了数学模型的建立和求解方法,尤其是在生物医学领域的研究中具有重要的意义。

例如,他应用非线性常微分方程的理论和方法,对人体癌细胞的动力学行为进行了数学建模和分析,为了解癌症的发生与发展提供了有价值的参考。

尤建功的研究成果不仅在国内广泛应用,也获得了国际数学界的高度认可。

他的论文在国际一流数学期刊上发表,并多次受邀参加国际数学大会等学术会议。

他的工作为中国的数学研究做出了重要贡献,也为后辈数学家的成长提供了指导和榜样。

总之,尤建功在常微分方程领域的研究成果具有非常重要的理论和实际意义。

他的工作为常微分方程的发展提供了重要的理论基础和解决方法,为解决实际问题和推动学科进步作出了重要贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三讲 常微分方程发展简史——解析理论与定性理论阶段3、常微分方程解析理论阶段:19世纪19世纪为常微分方程发展的解析理论阶段. 作为微分方程向复数域的推广, 微分方程解析理论是由Cauchy 开创的. 在Cauchy 之后,重点转向大范围的研究。

级数解和特殊函数这一阶段的主要结果之一是运用幂级数和广义幂级数解法, 求出一些重要的二阶线性方程的级数解, 并得到极其重要的一些特殊函数.常微分方程是17、18世纪在直接回答物理问题中兴起的. 在着手处理更为复杂的物理现象, 特别是在弦振动的研究中, 数学家们得到了偏微分方程. 用变量分离法解偏微分方程的努力导致求解常微分方程的问题. 此外, 因为偏微分方程都是以各种不同的坐标系表出的, 所以得到的常微分方程是陌生的, 并且不能用封闭形式解出. 为了求解应用分离变量法与偏微分方程后得到的常微分方程, 数学家们没有过分忧虑解的存在性和解应具有的形式, 而转向无穷级数的方法. 应用分离变量法解偏微分方程而得到的常微分方程中最重要的是Bessel 方程. 222()0x y xy x n y '''++-=其中参数和都可以是复的.n x 对Bessel 来说, 和都是实的. 此方程的特殊情形早在1703年Bernoulli Jacobi 给n x Leibnitz 的信中就已提到, 后来Bernoulli Daniel 、Euler 、Fourier 、Poisson 等都讨论过此问题. 对此方程的解的最早的系统研究是由Bessel 在研究行星运动时作出的. 对每个, 此方n 程存在两个独立的基本解, 记作和, 分别称为第一类Bessel 函数和第二类()n J x ()n Y x Bessel 函数, 它们都是特殊函数或广义函数(初等函数之外的函数). Bessel 自1816年开始研究此方程, 首先给出了积分关系式20()cos(sin ).2n q J x nu x u du ππ=-⎰1818年Bessel 证明了有无穷多个零点. 1824年, Bessel 对整数给出了递推关系式()n J x n 11()2()()0n n n xJ x nJ x xJ x +--+=和其他的关于第一类Bessel 函数的关系式.后来又有众多的数学家(研究天体力学的数学家)独立地得到了Bessel 函数及其表达式和关系式. Bessel 为微分方程解析理论作出了巨大贡献。

解析理论中另一重要内容是Legendre 方程的级数解和Legendre 多项式方面的结果. 1784年, Legendre 研究了Legendre 方程, 给出了幂级数形式的解, 2(1)20x y xy y λ'''-++=得到了Legendre 多项式. 与此同时, Hermite C 研究了方程, 得到了其幂20y xy y λ'''-+=级数解,当为非负偶数时即为著名的Hermite 多项式. Tchebyshevy 在研究方程λ的解时, 得到了Tchebyshevy 多项式.22(1)0x y xy p y '''--+=1821年, Gauss 研究了Gauss 几何方程.(1)[(1)]0x x y y y γαβαβ'''-+-++-=这个方程及其级数解2(1)(1)(,,,)1112(1)F x x x αβααββαβγγγγ++=+++⋅⋅⋅+ 早已为人们所熟知了,因为它已由Euler 研究过. 此级数称为超几何级数, 包含了几乎所有的当时已知的初等函数和许多像Bessel 函数、球函数那样的超越函数. 除了证明此级数的一些性质外,Gauss 还建立了著名的关系式 .()()(,,,1)()()F γγαβαβγγαγβΓΓ--=Γ-Γ-Gauss 还建立了此级数的收敛性。

记号应归源于Gauss.(,,,)F x αβγ这一时期关于常微分方程级数解和特殊函数方面的工作还有很多, 这里不一一介绍. 奇点理论、自守函数19世纪中期,常微分方程的研究走上了一个新的历程。

存在性定理和Sturm-Liouville 理论都预先假设在考虑解的区域内,微分方程包含解析函数或至少包含连续函数。

另一方面,某些已经考虑过的微分方程,如Bessel 方程、Legendre 方程、Gauss 超几何方程,如果表示成具有变系数的线性齐次$n$解常微分方程且最高阶导数项系数为1时,它们的系数具有奇异性,在奇异点的邻域内级数解的形式是特别的,所以数学家们便转而研究奇点邻域内的解,也就是一个或多个系数在其上奇异的那种点的邻域内的解。

对于这个问题,Gauss 关于超几何级数的工作指明了道路。

先导者是Riemann 和Fuchs (Weierstrass 的学生和他在柏林的继承者)。

此理论被称为线性常微分方程的Riemann-Fuchs L 奇点理论,这是19世纪常微分方程解析理论中一个非常重要的成果。

奇点邻域内的解的研究是由Briot(1866年)和Bounque(1856年)起始的,他们的关于一阶线性方程的结果很快就得到了推广,在这个新领域中,人们的注意力集中于形为()(1)1()()0n n n y p z y p z y -++⋅⋅⋅+=的线性常微分方程,其中除在孤立奇点外是复变数$z$的单值解析函数。

此方程之所()i p z 以受到重视,是因为它的解包括所有初等函数甚至某些高等函数。

这方面的重要工作还有Briot A A 和Bouquet J 的由常微分方程出发建立的椭圆函数(特殊的自守函数)的一般理论、Fuchs 和Poincare 的关于一阶非线性微分方程的理论, 最后是1882年至1884年Poincare J 的工作和Klein F 在1884年的工作由于自守函数理论而使微分方程解析理论臻于顶峰. 这样, 微分方程和自守函数建立了密切的联系.当自守函数理论还正处在创立的阶段时,天文学方面的工作激起了对一个二阶常微分方程的兴趣。

此方程源于著名的体问题。

体问题可以用一句话写出来:在三维空间N N 中给定个质点,如果在它们之间只有万有引力的作用,那么在给定它们的初始位置和速N 度的条件下,它们会怎样在空间中运动。

最简单的例子就是太阳系中太阳,地球和月球的运动。

在浩瀚的宇宙中,星球的大小可以忽略不及,所以我们可以把它们看成质点。

如果不计太阳系其他星球的影响,那么它们的运动就只是在引力的作用下产生的,所以我们就可以把它们的运动看成一个三体问题。

我们知道地球和月球都在进行一种周期性运动,这样我们才有了年,月和日的概念。

所以大家不难想象周期运动可能是三体问题的一种解。

1877年Hill George William (美国数学家)私人出版了关于月球近地点运动的一篇具有卓越创见性的论文。

1878年,他在AJM 上又发表了一篇关于月球运动的论文,创立了周期系数的线性齐次微分方程的数学理论。

Hill 的一个基本思想是对月球运动的诸微分方程确定一个近似于实际观察到的运动的周期解。

于是他对这个周期解变差写出方程,便得到了一个带有周期系数的四阶线性常微分方程组。

知道了某些积分后,他将此四阶方程组化简为单独一个二阶线性微分方程22()0,d x t x dt θ+=其中为周期的偶函数。

Hill 证明了此二阶方程存在周期解,因而证实了月球近地点()t θπ的运动是周期性的,开创了周期系数方程的研究。

在他的证明中,首先将展开为Fourier 级数,然后用待定系数法确定级数解。

他()t θ的方法用到了无穷行列式和无穷线性方程组,证明不够严格,他的工作一直受人嘲笑。

1885-1886年,Poincare 证明了Hill 的证明手法的收敛性。

Poincare 对Hill 的成就的注意和完善,使Hill 和有关课题著名了。

Poincare 参与了Hill 方程的研究,在Hill 的工作的刺激下,Poincare 为支配行星运动以及行星和卫星轨道稳定性的微分方程的周期解的研究开辟了一条新的途径,开创了常微分方程定性研究的新时代。

4、常微分方程定性理论阶段:19世纪末期和20世纪初期从时间上看, 19世纪末期和20世纪初期是常微分方程发展的第三个阶段. 这个阶段常微分方程在三个方面有重大发展, 都与Poincare 的工作相联系。

一是微分方程的解析理论, 前面已作论述;二是Poincare 的定性理论;三是Liapunov 的稳定性理论.Poincare 的定性理论在代数学中,五次代数方程没有一般的根式求解公式这一事实并不防碍Sturm 创立用代数方法决定实根个数的新成就。

类似地,在非线性方程一般不能求``初等解"的事实下,Poincare 独立开创了常微分方程实域定性理论这一新分支。

1881-1886年, Poincare 同一标题下连续发表了四篇论文,开创了常微分方程实域定性理论. 他只求通过考察微分方程本身就可以回答的关于稳定性等问题的方法, 为微分方程定性理论奠定了坚实的基础.1892年至1898年间, Poincare刻画了天体力学系统运动的特征, 并引导到微分方程定性理论的创立. 他发现微分方程的奇点起着关键作用.他把奇点分为鞍点、结点、焦点和中心四类, 讨论了解在各种奇点附近的性态. Poincare将他的论文定名为《论微分方程所定义的积分曲线》是突出了他所研究的主题和应用的方法。

这一新分支的内容包括奇点附近积分曲线的分布、极限环(即孤立周期解)、奇点的大范围分布、环面上的积分曲线、以及三维空间周期解附近积分曲线的情形等等。

Poincare关于常微分方程定性理论的一系列课题, 成为动力系统理论的开端.Poincare的定性理论在研究思想上成功突破了常微分方程定量求解的束缚, 其创新之处体现在以下几个方面:由复域的研究又转到实域的研究,由定量研究转向定性研究,由分析方法转为分析和几何方法的有机结合,由函数作为对象的研究转到曲线作为对象的研究,由个别解的研究转到解的集体的研究,由解的解析性质的研究转到解所定义的积分曲线的几何拓扑性质的定性研究,由应用等式转到应用不等式,由局部研究转向全局研究。

常微分方程定性理论另一位主要创始人是挪威数学家Bendixson, 从1900年起,他开始从事Poincare所开创的微分方程轨线的拓扑性质的研究工作, 1901年发表了著名论文《由微分方程定义的曲线》。

1926年至1927年Birkhoff G以三体问题为背景继承和发展了Poincare的工作, 创立了动力系统理论. 到了20世纪30年代, 由于新的物理、力学以及工程技术和自动控制等问题的推动, 使微分方程定性理论中的概念、问题和方法又在新的条件下得到发展.1937年, Andronov A和Pontryagin L提出了结构稳定性概念, 并严格证明了其充要条件, 使动力系统的研究向大范围发展.由于天体力学,特别是"三体问题"的需要,庞加莱总结了天文学家A.林斯泰特等人的方法,系统地整理在《天体力学的新方法》一书中,并加以发展成为摄动理论或小参数理论。

相关文档
最新文档