2018-2019年新人教版初中数学中考精品试卷含答案(1)
人教版2018-2019学年度九年级中考数学试卷含答案
![人教版2018-2019学年度九年级中考数学试卷含答案](https://img.taocdn.com/s3/m/8a88cc96aa00b52acfc7ca9c.png)
人教版2018-2019学年度九年级中考数学模拟试卷含答案一.选择题(共10小题,满分40分,每小题4分)1.﹣2017的倒数是()A.B.﹣C.2017 D.﹣20172.已知25x=2000,80y=2000,则等于()A.2 B.1 C.D.3.光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013 km B.9.5×1012 km C.95×1011 km D.9.5×1011 km4.下面图中所示几何体的左视图是()A.B. C. D.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人7.我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8% B.9% C.10% D.11%8.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A.5 B.6 C.7 D.89.如图①,在正方形ABCD中,点P从点D出发,沿着D→A方向匀速运动,到达点A后停止运动.点Q从点D出发,沿着D→C→B→A的方向匀速运动,到达点A后停止运动.已知点P的运动速度为a,图②表示P、Q两点同时出发x秒后,△APQ的面积y与x的函数关系,则点Q的运动速度可能是()A. a B. a C.2a D.3a10.如图,AB为⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是()A.2B.3 C.3D.3二.填空题(共4小题,满分20分,每小题5分)11.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值=.12.已知关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,则m的取值范围是.13.有一个三角形纸片ABC,∠C=36°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得的两纸片均为等腰三角形,则∠A的度数可以是.14.如图,在直角坐标系中,点A(2,0),点B(0,1),过点A的直线l垂直于线段AB,点P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折180°,使点C落在点D处.若以A,D,P为顶点的三角形与△ABP相似,则所有满足此条件的点P的坐标为.三.解答题(共2小题,满分16分,每小题8分)15.(8分)化简:(1﹣)÷16.(8分)有一石拱桥的桥拱是圆弧形,如下图所示,正常水位下水面宽AB=60m,水面到拱项距离CD=18m,当洪水泛滥时,水面宽MN=32m时,高度为5m的船是否能通过该桥?请说明理由.四.解答题(共2小题,满分16分,每小题8分)17.(8分)在如图所示的网格中,每个小方格的边长都是1.(1)分别作出四边形ABCD关于y轴、原点的对称图形;(2)以原点O为中心,将△ABD顺时针旋转90°,试画出旋转后的图形,并求旋转过程中△ABD扫过图形的面积.18.(8分)学之道在于悟.希望同学们在问题(1)解决过程中有所悟,再继续探索研究问题(2).(1)如图①,∠B=∠C,BD=CE,AB=DC.①求证:△ADE为等腰三角形.②若∠B=60°,求证:△ADE为等边三角形.(2)如图②,射线AM与BN,MA⊥AB,NB⊥AB,点P是AB上一点,在射线AM 与BN上分别作点C、点 D 满足:△CPD为等腰直角三角形.(要求:利用直尺与圆规,不写作法,保留作图痕迹)五.解答题(共2小题,满分20分,每小题10分)19.(10分)随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME 与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF 的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).20.(10分)如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.21.(12分)向阳中学为了解全校学生利用课外时间阅读的情况,调查者随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表(图).根据图表信息,解答下列问题:频率分布表(1)填空:a=,b=,m=,n=;(2)将频数分布直方图补充完整;(3)阅读时间不低于5小时的6人中,有2名男生、4名女生.现从这6名学生中选取两名同学进行读书宣讲,求选取的两名学生恰好是两名女生的概率.七.解答题(共1小题,满分12分,每小题12分)22.(12分)已知抛物线的顶点为(1,﹣4),且经过点B(3,0).(Ⅰ)求该抛物线的解析式及抛物线与x轴的另一个交点A的坐标;(Ⅱ)点P(m,1)为抛物线上的一个动点,点P关于原点的对称点为P′.①当点P′落在该抛物线上时,求m的值;②当P′落在第二象限内,P′A取得最大值时,求m的值.23.(14分)阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含m,n,b的式子表示).参考答案与试题解析1.解:﹣2017的倒数是﹣.故选:B.2.解:∵25x=2000,80y=2000,∴25x=25×80,80y=25×80,∴25x﹣1=80,80y﹣1=25,∴(80y﹣1)x﹣1=80,∴(y﹣1)(x﹣1)=1,∴xy﹣x﹣y+1=1,∴xy=x+y,∵xy≠0,∴=1,∴+=1.故选:B.方法二:25x=2000∴25xy=2000y=(25×80)y=25y•80y=25y•25x=25x+y,∴xy=x+y,∴+=1,故选:B.3.解:9500 000 000 000km用科学记数法表示是9.5×1012 km,故选:B.4.解:图中所示几何体的左视图是.故选:B.5.解:∵解不等式①得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x≤2,在数轴上表示为:,故选:A.6.解:A、本次抽样调查的样本容量是=5000,正确;B、扇形图中的m为10%,正确;C、样本中选择公共交通出行的有5000×50%=2500人,正确;D、若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有50×40%=20万人,错误;故选:D.7.解:设平均每次下调的百分率为x,由题意,得6000(1﹣x)2=4860,解得:x1=0.1,x2=1.9(舍去).答:平均每次下调的百分率为10%.故选:C.8.解:∵l1∥l2∥l3,AB=5,AC=8,DF=12,∴,即,可得;DE=6,故选:B.9.解:本题采用筛选法.首先观察图象,可以发现图象由三个阶段构成,即△APQ的顶点Q所在边应有三种可能.当Q的速度低于点P时,当点P到达A时,点Q还在DC 上运动,之后,因A、P重合,△APQ的面积为零,画出图象只能有一个阶段构成,故A、B错误;当Q的速度是点P速度的2倍,当点P到点A时,点Q到点B.之后,点A、P重合,△APQ的面积为0.期间△APQ面积的变化可以看成两个阶段,与图象不符,C错误.故选:D.10.解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC是直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3,故选:C.11.解:∵①=1;②=3=1+2;③=6=1+2+3;④=10=1+2+3+4,∴=1+2+3+4+…+28=406.12.解:整理方程得:x2﹣2x﹣m=0∴a=1,b=﹣2,c=﹣m,方程有两个不相等的实数根,∴△=b2﹣4ac=4+4m>0,∴m>﹣1.13.解:由题意知△ABD与△DBC均为等腰三角形,①BC=CD,此时∠CDB=∠DBC=(180°﹣∠C)÷2=72°,∴∠BDA=180°﹣∠CDB=180°﹣72°=108°,AB=AD时,∠ABD=108°(舍去);或AB=BD,∠A=108°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=36°;②BC=BD,此时∠CDB=∠C=36°,∴∠BDA=180°﹣∠CDB=180°﹣36°=144°,AB=AD时,∠ABD=144°(舍去);或AB=BD,∠A=144°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=18°;③CD=BD,此时∠CDB=180°﹣2∠C=108°,∴∠BDA=180°﹣∠CDB=180°﹣108°=72°,AB=AD时,∠A=180°﹣2∠ADB=36°;或AB=BD,∠A=72°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=54°.综上所述,∠A的度数可以是18°或36°或54°或72°.故答案为:18°或36°或54°或72°.14.解:∵点A(2,0),点B(0,1),∴直线AB的解析式为y=﹣x+1∵直线l过点A(4,0),且l⊥AB,∴直线L的解析式为;y=2x﹣4,∠BAO+∠PAC=90°,∵PC⊥x轴,∴∠PAC+∠APC=90°,∴∠BAO=∠APC,∵∠AOB=∠ACP,∴△AOB∽△PCA,∴=,∴==,设AC=m,则PC=2m,∵△PCA≌△PDA,∴AC=AD,PC=PD,∴==,如图1:当△PAD∽△PBA时,则=,则==,∵AB==,∴AP=2,∴m2+(2m)2=(2)2,∴m=±2,当m=2时,PC=4,OC=4,P点的坐标为(4,4),当m=﹣2时,如图2,PC=4,OC=0,P点的坐标为(0,﹣4),如图3,若△PAD∽△BPA,则==,PA=AB=,则m2+(2m)2=()2,∴m=±,当m=时,PC=1,OC=,P点的坐标为(,1),当m=﹣时,如图4,PC=1,OC=,P点的坐标为(,﹣1);故答案为:P(4,4),p(0,﹣4),P(,﹣1),P(,1).15.解:原式=•=•=﹣.16.解:不能通过.设OA=R,在Rt△AOC中,AC=30,CD=18,R2=302+(R﹣18)2,R2=900+R2﹣36R+324解得R=34m连接OM,在Rt△MOE中,ME=16,OE2=OM2﹣ME2即OE2=342﹣162=900,∴OE=30,∴DE=34﹣30=4,∴不能通过.(12分)17.解:(1)所画图形如下图所示,(2)如上图所示,△A′B′D′即为△ABD顺时针旋转90°后得到的图形,在旋转过程中可知:△ABD扫过图形的面积即是线段AB所扫过的扇环面积(S1)与△ABD的面积(S2)之和(S),则有:S=S1+S2=[π×OA2﹣π×OB2]+×AD×1=[π×(22+42)﹣π×(12+12)]+×2×1=+1.18.解:(1)①证明:∵∠B=∠C,BD=CE,AB=DC,∴△ABD≌DCE,∴AB=DC,∴△ADE为等腰三角形;②∵△ABD≌△DCE,∴∠BAD=∠CDE,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=∠ADE+∠EDC,又∵∠BAD=∠CDE.∴∠ADE=∠B=60°,∴等腰△ADE为等边三角形.(2)有三种结果,如图所示:19.解:∵AC∥ME,∴∠CAB=∠AEM,在Rt△ABC中,∠CAB=28°,AC=9m,∴BC=ACtan28°≈9×0.53=4.77(m),∴BD=BC﹣CD=4.77﹣0.5=4.27(m),在Rt△BDF中,∠BDF+∠FBD=90°,在Rt△ABC中,∠CAB+∠FBC=90°,∴∠BDF=∠CAB=28°,∴DF=BDcos28°≈4.27×0.88=3.7576≈3.8 (m),答:坡道口的限高DF的长是3.8m.20.解:(1)设反比例函数解析式为y=,把B(﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6,∴反比例函数解析式为y=;把A(3,m)代入y=,可得3m=6,即m=2,∴A(3,2),设直线AB 的解析式为y=ax+b,把A(3,2),B(﹣2,﹣3)代入,可得,解得,∴直线AB 的解析式为y=x﹣1;(2)由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方;(3)存在点C.如图所示,延长AO交双曲线于点C1,∵点A与点C1关于原点对称,∴AO=C1O,∴△OBC1的面积等于△OAB的面积,此时,点C1的坐标为(﹣3,﹣2);如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于△OBC1的面积,∴△OBC2的面积等于△OAB的面积,由B(﹣2,﹣3)可得OB的解析式为y=x,可设直线C1C2的解析式为y=x+b',把C1(﹣3,﹣2)代入,可得﹣2=×(﹣3)+b',解得b'=,∴直线C1C2的解析式为y=x+,解方程组,可得C2(,);如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,设直线AC3的解析式为y=x+b“,把A(3,2)代入,可得2=×3+b“,解得b“=﹣,∴直线AC3的解析式为y=x﹣,解方程组,可得C3(﹣,﹣);综上所述,点C的坐标为(﹣3,﹣2),(,),(﹣,﹣).21.解:(1)∵本次调查的总人数b=9÷0.15=60,∴a=60﹣(9+18+12+6)=15,则m==0.25、n==0.2,故答案为:15、60、0.25、0.2;(2)补全频数分布直方图如下:(3)用X、Y表示男生、A、B、C、D表示女生,画树状图如下:由树状图知共有30种等可能结果,其中选取的两名学生恰好是两名女生的结果数为12,所以选取的两名学生恰好是两名女生的概率为=.22.解:(Ⅰ)∵抛物线的顶点为(1,﹣4),∴可设抛物线解析式为y=a(x﹣1)2﹣4,∵经过点B(3,0),∴0=a(3﹣1)2﹣4,解得a=1,∴抛物线解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3,令y=0可得x2﹣2x﹣3=0,解得x=3或x=﹣1,∴点A的坐标为(﹣1,0);(Ⅱ)①由点P(m,1)在抛物线y=x2﹣2x﹣3上,有l=m2﹣2m﹣3.又点P关于原点的对称点为P′,∴P′(﹣m,﹣1).∵点P′落在抛物线y=x2﹣2x﹣3上,∴﹣l=(﹣m)2﹣2(﹣m)﹣3,即l=﹣m2﹣2m+3,∴m2﹣2m﹣3=﹣m2﹣2m+3,解得m1=,m2=﹣;②∵P′落在第二象限内,∴点P(m,1)在第四象限,即m>0,l<0.23.解:(1)∵点H是AD的中点,∴AH=AD,∵正方形AEOH∽正方形ABCD,∴相似比为:==;故答案为:;(2)在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:=,故答案为:;(3)A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即a:b=b:a,∴a=b;故答案为:②每个小矩形都是全等的,则其边长为b和a,则b:a=a:b,∴a=b;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:b或b.。
2018年中考数学试题(含答案)
![2018年中考数学试题(含答案)](https://img.taocdn.com/s3/m/b91f0f486f1aff00bed51ea5.png)
一、选择题(本题有10小题,每小题3分,共30分) 1. 3-=( ) A. 3 B. 3- C. 31 D. 31- 2.数据1800000用科学计数法表示为( )A.68.1B.6108.1⨯C. 51018⨯D. 61018⨯3.下列计算正确的是( )A. 222=B. 222±=C. 242=D. 242±=4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是( )A.方差B. 标准差C. 中位数D. 平均数5.若线段 AM ,AN 分别是ABC ∆边上的高线和中线,则( )A.AN AM >B. AN AM ≥C. AN AM <D. AN AM ≤6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( )A. 20=-y xB. 20=+y xC. 6025=-y xD. 6025=+y x7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1~6)朝上一面的数字。
任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于( )A. 61B. 31C. 21D. 32 8.如图,已知点P 矩形ABCD 内一点(不含边界),设1θ=∠PAD ,2θ=∠PBA ,3θ=∠PCB ,4θ=∠PDC ,若︒=∠︒=∠50,80CPD APB ,则( )A.()︒=++30-3241θθθθ)( B. ()︒=++40-3142θθθθ)( C.()︒=++70-4321θθθθ)( D. ()︒=+++1804321θθθθ)( 9.四位同学在研究函数是常数)c b c bx ax y ,(2++=时,甲发现当1=x 时,函数有最小值;乙发现1-是方程02=++c bx ax 的一个根;丙发现函数的最小值为3;丁发现当2=x 时,4=y .已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A. 甲B.乙C. 丙D.丁10.如图,在ABC ∆中,点D 在AB 边上,BC DE //,与边AC 交于点E ,连结BE ,记BCE ADE ∆∆,的面积分别为21,S S ,( )A. 若AB AD >2,则2123S S >B. 若AB AD >2,则2123S S <C. 若AB AD <2,则2123S S >D. 若AB AD <2,则2123S S <二、填空题(本大题共有6个小题,每小题4分,共24分)11.计算:=-a a 312.如图,直线b a //,直线c 与直线b a ,分别交于A,B ,若︒=∠451,则=∠213.因式分解:()()=---a b b a 2 14.如图,AB 是⊙的直径,点C 是半径OA 的中点,过点C 作AB DE ⊥,交O 于点D 、E 两点,过点D 作直径DF ,连结AF ,则=∠DFA15.某日上午,甲、乙两车先后从A 地出发沿一条公路匀速前往B 地,甲车8点出发,如图是其行驶路程s (千米)随行驶时间t (小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v (单位:千米/小时)的范围是16.折叠矩形纸片ABCD 时,发现可以进行如下操作:①把ADE ∆翻折,点A 落在DC 边上的点F 处,折痕为DE ,点E 在AB 边上;②把纸片展开并铺平;③把CDG ∆翻折,点C 落在直线AE 上的点H 处,折痕为DG ,点G 在BC 边上,若AB=AD+2,EH=1,则AD=三、简答题(本大题共7个小题,共66分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分6分)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货,设平均卸货速度为v (单位:吨0/小时),卸完这批货物所需的时间为t (单位:小时)。
山东省青岛市2018年中考数学试题(含答案)(精品推荐)
![山东省青岛市2018年中考数学试题(含答案)(精品推荐)](https://img.taocdn.com/s3/m/9208755da6c30c2259019e77.png)
山东省青岛市2018年中考数学试题第Ⅰ卷(共24分)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.观察下列四个图形,中心对称图形是( )A .B .C .D .2.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为( )A .7510⨯B .7510-⨯C .60.510-⨯D .6510-⨯3.如图,点A 所表示的数的绝对值是( )A .3B .3-C . 13D .13- 4.计算()32335a a a -⋅的结果是( ) A .565a a - B .695a a - C .64a - D .64a5.如图,点A B C D 、、、在O 上,140AOC ∠=︒,点B 是AC 的中点,则D ∠的度数是( )A .70︒B .55︒C .35.5︒D .35︒6.如图,三角形纸片ABC ,,90AB AC BAC =∠=︒,点E 为AB 中点.沿过点E 的直线折叠,使点B 与点A 重合,折痕现交于点F .已知32EF =,则BC 的长是( )A 32.32.3 D .337.如图,将线段AB 绕点P 按顺时针方向旋转90︒,得到线段A B '',其中点A B 、的对应点分别是点A B ''、,,则点A '的坐标是( )A .()1,3-B .()4,0C .()3,3-D .()5,1-8.已知一次函数b y x c a=+的图象如图,则二次函数2y ax bx c =++在平面直角坐标系中的图象可能是( )A .B .C .D .第Ⅱ卷(共96分)二、填空题(每题3分,满分18分,将答案填在答题纸上)9.已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为22S S 甲乙、,则2S 甲 2S 乙(填“>”、“=”、“<”)10.计算:122cos30-︒= .11.5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y 吨,根据题意列关于,x y 的方程组为 .12.已知正方形ABCD 的边长为5,点E F 、分别在AD DC 、上,2AE D F ==,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为 .13.如图,Rt ABC ∆,90,30B C ∠=︒∠=︒,O 为AC 上一点,2OA =,以O 为圆心,以OA 为半径的圆与CB 相切于点E ,与AB 相交于点F ,连接OE OF 、,则图中阴影部分的面积是 .14.一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了 9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有 种.三、作图题:本大题满分4分.15. 已知:如图,ABC ∠,射线BC 上一点D .求作:等腰PBD ∆,使线段BD 为等腰PBD ∆的底边,点P 在ABC ∠内部,且点P 到ABC ∠两边的距离相等.四、解答题 (本大题共9小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.(1)解不等式组:21,321614x x -⎧<⎪⎨⎪+>⎩ (2)化简:22121x x x x ⎛⎫+-⋅ ⎪-⎝⎭.17.小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明 礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.18.八年级(1 )班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同 学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有 名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.19.某区域平面示意图如图,点O 在河的一侧,AC 和BC 表示两条互相垂直的公路.甲勘测员在A 处测得点O 位于北偏东45︒,乙勘测员在B 处测得点O 位于南偏西73.7︒,测得840,500AC m BC m ==.请求出点O 到BC 的距离. 参考数据:2473.7s 25in ︒≈,773.7c s 25o ︒≈,2473.7ta 7n ︒≈20.已知反比例函数的图象经过三个点()()()124,3,2,,6,A B m y C m y --,其中0m >.(1)当124y y-=时,求m的值;(2)如图,过点B C、分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标(不需要写解答过程).21.已知:如图,ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB AF=;(2)若,120AG AB BCD=∠=︒,判断四边形ACDF的形状,并证明你的结论.22.某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式26y x=-+.(1)求这种产品第一年的利润1W(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润2W至少为多少万元.23.问题提出:用若干相同的一个单位长度的细直木棒,按照下图方式搭建一个长方体框架,探究所用木棒条数的规律.问题探究: 我们先从简单的问题开始探究,从中找出解决问题的方法.探究一用若干木棒来搭建横长是m ,纵长是n 的矩形框架(m n 、是正整数),需要木棒的条数.如图①,当1,1m n ==时,横放木棒为()111⨯+条,纵放木棒为()111+⨯条,共需4条;如图②,当2,1m n ==时,横放木棒为()211⨯+条,纵放木棒为()211+⨯条,共需7条;如图③,当2,2m n ==时,横放木棒为()221⨯+)条,纵放木棒为()212+⨯条,共需12条; 如图④,当3,1m n ==时,横放木棒为()311⨯+条,纵放木棒为()311+⨯条,共需10条;如图⑤,当3,2m n ==时,横放木棒为()321⨯+条,纵放木棒为()312+⨯条,共需17条.问题(一):当4,2m n ==时,共需木棒 条. 问题(二):当矩形框架横长是m ,纵长是n 时,横放的木棒为 条,纵放的木棒为 条.探究二用若干木棒来搭建横长是m ,纵长是n ,高是s 的长方体框架(m n s 、、是正整数),需要木 棒的条数. 如图⑥,当3,2,1m n s ===时,横放与纵放木棒之和为()()()32131211=34⨯+++⨯⨯+⎡⎤⎣⎦条,竖放木棒为()()3121112+⨯+⨯=条,共需46条;如图⑦,当3,2,2m n s ===时,横放与纵放木棒之和为()()()3213122151⨯+++⨯⨯+=⎡⎤⎣⎦条,竖放木棒为()()3121224+⨯+⨯=条,共需75条;如图⑧,当3,2,3m n s ===时,横放与纵放木棒之和为()()()32131231=68⨯+++⨯⨯+⎡⎤⎣⎦条,竖放木棒为()()3121336+⨯+⨯=条,共需104条.问题(三):当长方体框架的横长是m ,纵长是n ,高是s 时,横放与纵放木棒条数之和为 条,竖放木棒条数为 条.实际应用:现在按探究二的搭建方式搭建一个纵长是2、高是4的长方体框架,总共使用了170条木棒,则这个长方体框架的横长是 .拓展应用:若按照如图方式搭建一个底面边长是10,高是5的正三棱柱框架,需要木棒 条.24.已知:如图,四边形ABCD ,//,AB DC CB AB ⊥,16,6,8AB cm BC cm CD cm ===,动点P 从点D 开始沿DA 边匀速运动,动点Q 从点A 开始沿AB 边匀速运动,它们的运动速度均为2/cm s .点P 和点Q 同时出发,以QA QP 、为边作平行四边形AQPE ,设运动的时间为()t s ,05t <<.根据题意解答下列问题:(1)用含t 的代数式表示AP ; (2)设四边形CPQB 的面积为()2S cm ,求S 与t 的函数关系式;(3)当QP BD ⊥时,求t 的值;(4)在运动过程中,是否存在某一时刻t ,使点E 在ABD ∠的平分线上?若存在,求出t 的值;若不存在,请说明理由.。
(完整版)2018年广东省中考数学试卷(含答案解析版)-(1)
![(完整版)2018年广东省中考数学试卷(含答案解析版)-(1)](https://img.taocdn.com/s3/m/9c4642374028915f814dc277.png)
2018年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)(2018•广东)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3。
14 D.22.(3分)(2018•广东)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为( )A.1.442×107B.0.1442×107C.1.442×108D.0。
1442×1083.(3分)(2018•广东)如图,由5个相同正方体组合而成的几何体,它的主视图是()A. B.C.D.4.(3分)(2018•广东)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.75.(3分)(2018•广东)下列所述图形中,是轴对称图形但不是中心对称图形的是() A.圆B.菱形C.平行四边形D.等腰三角形6.(3分)(2018•广东)不等式3x﹣1≥x+3的解集是( )A.x≤4 B.x≥4 C.x≤2 D.x≥27.(3分)(2018•广东)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.8.(3分)(2018•广东)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°9.(3分)(2018•广东)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m 的取值范围是()A.m<B.m≤C.m>D.m≥10.(3分)(2018•广东)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D 路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2018•广东)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是.12.(3分)(2018•广东)分解因式:x2﹣2x+1= .13.(3分)(2018•广东)一个正数的平方根分别是x+1和x﹣5,则x= .14.(3分)(2018•广东)已知+|b﹣1|=0,则a+1= .15.(3分)(2018•广东)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)16.(3分)(2018•广东)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B 2A3B3;以此类推,…,则点B6的坐标为.三、解答题(一)17.(6分)(2018•广东)计算:|﹣2|﹣20180+()﹣118.(6分)(2018•广东)先化简,再求值:•,其中a=.19.(6分)(2018•广东)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.20.(7分)(2018•广东)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?21.(7分)(2018•广东)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.(7分)(2018•广东)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.23.(9分)(2018•广东)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.24.(9分)(2018•广东)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.25.(9分)(2018•广东)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC= °;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C 路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1。
河北省2018年中考数学试题(含答案)-精品
![河北省2018年中考数学试题(含答案)-精品](https://img.taocdn.com/s3/m/c3b7f77190c69ec3d5bb757b.png)
河北省2018年中考数学试卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形具有稳定性的是()A .B .C .D .2.一个整数8155500用科学记数法表示为108.155510,则原数中“0”的个数为()A .4 B.6 C .7 D.103.图1中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A .1l B.2l C.3l D .4l 4.将29.5变形正确的是()A .2229.590.5B .29.5(100.5)(100.5)C.2229.5102100.50.5 D.2229.5990.50.55.图2中三视图对应的几何体是()A. B.C. D.6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.图3是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-Ⅲ B.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ7.有三种不同质量的物体,“”“”“”其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不.相等,则该组是()A .B .C. D .8.已知:如图4,点P 在线段AB 外,且PA PB .求证:点P 在线段AB 的垂直平分线上.在证明该结论时,需添加辅助线,则作法不.正确的是()A .作APB 的平分线PC 交AB 于点CB .过点P 作PC AB 于点C 且AC BCC.取AB 中点C ,连接PC D .过点P 作PCAB ,垂足为C9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:13x x 甲丙,15x x 乙丁;223.6s s甲丁,22 6.3ss乙丙.则麦苗又高又整齐的是()A .甲B .乙 C.丙 D.丁10.图5中的手机截屏内容是某同学完成的作业,他做对的题数是()A .2个B .3个 C. 4个 D .5个11.如图6,快艇从P 处向正北航行到A 处时,向左转50航行到B 处,再向右转80继续航行,此时的航行方向为()A .北偏东30B .北偏东80C.北偏西30 D .北偏西5012.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形.要将它按图7的方式向外等距扩1(单位:cm ),得到新的正方形,则这根铁丝需增加()A .4cmB .8cm C.(4)acm D .(8)a cm13.若22222nnnn,则n ()A.-1B.-2C.0D.1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图8所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁15.如图9,点I 为ABC 的内心,4AB ,3AC,2BC ,将ACB 平移使其顶点与I 重合,则图中阴影部分的周长为()A.4.5B.4C.3D.216.对于题目“一段抛物线:(3)(03)L y x x c x 与直线:2l y x 有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c ,乙的结果是3c 或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.计算:123.18.若a ,b 互为相反数,则22ab.19.如图101,作BPC 平分线的反向延长线PA ,现要分别以APB ,APC ,BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC 为内角,可作出一个边长为1的正方形,此时90BPC,而90452是360(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图102所示.图102中的图案外轮廓周长是;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. 嘉淇准备完成题目:化简:2268)(652)xx x x发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:22(368)(652)x x x x ;(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21. 老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图111)和不完整的扇形图(图112),其中条形图被墨迹掩盖了一部分.(1)求条形图中被掩盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22. 如图12,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用k(k为正整数)的式子表示出数“1”所在的台阶数.A B,P为AB中点,点M为射线AC上(不与点A重合)的23. 如图13,50任意一点,连接MP,并使MP的延长线交射线BD于点N,设BPN.(1)求证:APM BPN △△≌;(2)当2MNBN 时,求的度数;(3)若BPN △的外心在该三角形的内部,直.接.写出的取值范围.24. 如图14,直角坐标系xOy 中,一次函数152yx 的图像1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图像2l 与1l 交于点C (,4)m .(1)求m 的值及2l 的解析式;(2)求AOCBOC S S △△的值;(3)一次函数1ykx 的图像为3l ,且1l ,2l ,3l 不能..围成三角形,直接..写出k 的值.25. 如图15,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧AB ,使点B 在O 右下方,且4tan3AOB.在优弧AB 上任取一点P ,且能过P 作直线//l OB交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB 上一段AP 的长为13,求AOP 的度数及x 的值;(2)求x 的最小值,并指出此时直线与AB 所在圆的位置关系;(3)若线段PQ 的长为12.5,直接..写出这时x 的值.26.图16是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道(1)k yx x交于点A ,且1AB米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间(秒)的平方成正比,且1t 时5h ;M ,A 的水平距离是vt 米.(1)求k ,并用表示h ;(2)设5v.用表示点M 的横坐标x 和纵坐标y ,并求y 与x 的关系式(不写x 的取值范围),及13y时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A 处飞出,速度分别是5米/秒、v 乙米/秒.当甲距x 轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接..写出的值及v 乙的范围.参考答案1-10、ABCCC DABDA 11-16、ABADB D17、 2 18、 0 19、14 21 20、21、22、23、24、25、26、。
2018秋季学期最新部编人教版初中数学七年级上册阶段精品试题:期中检测1-含答案+可打印
![2018秋季学期最新部编人教版初中数学七年级上册阶段精品试题:期中检测1-含答案+可打印](https://img.taocdn.com/s3/m/8bae014f1eb91a37f0115c0a.png)
2018-2019学年度第一学期七年级(上)期中数学试卷一、选择题(单项选择,每小题3分,共分).1.3的相反数是( )A.﹣3 B.﹣C.3 D.2.首届全国青运会于2015年10月18日在福州举行,据统计,共有28600名志愿者,将负责赛会服务、城市宣传、交通指引等工作,将这个数字用科学记数法表示为( ) A.286×102B.28.6×103C.2.86×104D.2.86×1053.用四舍五入法,把2.345精确到0.01的近似数是( )A.2.3 B.2.34 C.2.35 D.2.304.若一个数的倒数仍是这个数,那么这个数是( )A.1 B.﹣1 C.1或﹣1 D.05.下列各组运算中,结果为负数的是( )A.﹣(﹣3)B.(﹣3)×(﹣2)C.﹣|﹣3| D.(﹣3)26.一个矩形的周长为30,若矩形的一边长用字母x表示,则此矩形的面积为( ) A.x(15﹣x)B.x(30﹣x)C.x(30﹣2x)D.x(15+x)7.若|a|=5,|b|=1,且a﹣b<0,则a+b的值等于( )A.4或6 B.4或﹣6 C.﹣6或6 D.﹣6或﹣4二、填空题(每小题4分,共40分).8.如果把汽车向东行驶8km记作+8km,那么汽车向西行驶10km应记作__________km.9.|﹣7|=__________.10.计算:﹣2+3=__________.11.计算:(﹣1)2014+(﹣1)2015=__________.12.比较大小:0__________﹣(选用“>”、“<”或“=”号填空).13.温度3℃比﹣6℃高__________℃.14.“x的2倍与y的的和”用代数式表示为__________.15.若|x+1|+(y﹣2)2=0,则x+y=__________.16.已知数轴上有A、B两点,A点表示的数是﹣2,A、B两点的距离为3个单位长度,则满足条件的点B表示的数是__________.17.如图所示,在直线l上有若干个点A1、A2、…、A n,每相邻两点之间的距离都为1,点P是线段A1A n上的一个动点.(1)当n=3时,当点P在点__________(填A1、A2或A3)的位置时,点P分别到点A1、A2、A3的距离之和最小;(2)当n=7时,则点P分别到点A1、A2、…、A7的距离之和的最小值是__________.三、解答题(共89分).18.把下列各数分别填在相应的括号里:﹣7,3.01,2015,﹣0.142,0.1,0,99,﹣整数集合{ …}分数集合{ …}负有理数集合{ …}.19.在所给的数轴上表示下列四个数,并把这四个数按从小到大的顺序,用“<”号连接起来.﹣3,0,﹣1,1用“<”号连接起来:__________<__________<__________<__________.20.(24分)计算下列各题:(1)(﹣5)﹣(﹣8)+6﹣(+4)(2)4÷(﹣2)﹣5×(﹣3)+6(3)(﹣+)×(﹣30)(4)﹣14﹣×[5﹣(﹣3)2].21.已知:a与b互为相反数,c与d互为倒数,当x=2时,求代数式(cd)2015•x2+(a+b)2015的值.。
2018年广西钦州中考数学试卷和答案(word打印版)
![2018年广西钦州中考数学试卷和答案(word打印版)](https://img.taocdn.com/s3/m/0b892c2ff6ec4afe04a1b0717fd5360cba1a8de0.png)
2018年广西北部湾经济区六市同城初中毕业升学统一考试(六市: 南宁、北海、钦州、防城港、崇左和来宾市)数学(考试时间: 120分钟满分: 120分)一、选择题(本大题共12小题, 每小题3分, 共36分。
在每小题给出的四个选项中只有一项是符合要求的)1. -3的倒数...................................... ... )A. -.........B. .........C........D..2.下列美丽的壮锦图案是中心对称图形的.............................. )A B C D3. 2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行, 该球场可容纳81000名观众, 其中数据81000用科学记数法表示................................ ... )A.81×10...........B.8.1×10......C.8.1×10.......D.0.81×10.4.某球员参加一场篮球比赛, 比赛分4节进行, 该球员每节得分如折线统计图所示, 则该球员平均每节得.A.7.........B.8............................... ... )C.9.........D.10...........................5.下列运算正确的.................................... ... )A.a(a+1..a2+....B.(a2)..a......C.3a2+a=4a.....D.a5÷a..a36.如图, ∠ACD是△ABC的外角, CE平分∠ACD, 若∠A=60°, ∠B=40°, 则∠ECD等....... ... )A. 40...........B. 45............C. 50...........D. 55...........................................7.若m>n, 则下列不等式正确的................................. )A.m-2<n-.......B........C.6m<6.......D.-8m>-8n8.从-2, -1.2这三个数中任取两个不同的数相乘, 积为正数的概率............... ... )A.........B........C........D.9.将抛物线向左平移2个单位后, 得到新抛物线的解析式........... ... )A....B...C.....D..10.如图, 分别以等边三角形ABC的三个顶点为圆点, 以边长为半径画弧, 得到封闭图形是莱洛三角形。
(完整)2019年安徽省中考数学试题(含答案),推荐文档
![(完整)2019年安徽省中考数学试题(含答案),推荐文档](https://img.taocdn.com/s3/m/32d19efe2af90242a995e5b6.png)
2019 年安徽省初中学业水平考试数 学(试题卷)注意事项:1. 你拿到的试卷满分为 150 分,考试时间为 120 分钟。
2. 试卷包括“试题卷”和“答题卷”两部分,“试题卷”共 4 页,“答题卷”共 6 页;3. 请务必在“答题卷”上答题,在“试题卷”上答题是无效的;4. 考试结束后,请将“试题卷”和“答题卷”一井交回。
一、选择题(本大题共 10 小题,每小题 4分,满分 40 分) 每小题都给出 A ,B ,C ,D 四个选项,其中只有一个是正确的。
1. 在-2,-1,0,1 这四个数中,最小的数是A.-2B.-1C.0D.12. 计算a 3 •(-)a 的结果是A.a 2B.-a 2C.a 4D.-a 43. 一个由圆柱和圆锥组成的几何体如图水平放置,它的俯视图是4.2019 年“五一”假日期间,我省银联网络交易总金额接近 161 亿元,其中 161 亿用科学记数法表示为 A1.61×109B.1.61×1010C.1.61×1011D.1.61×1012k 5. 已知点 A (1,-3)关于 x 轴的对称点 A '在反比例函数y=x为 的图像上,则实数 k 的值1 1A.3B.C.-3D. -336. 在某时段由 50 辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这 50 辆车的车速的众数(单位:km/h )为 A.60B.50C.40D.152 187. 如图,在 Rt △ABC 中,∠ACB=90°,AC=6,BC=12,点 D 在边 BC 上,点 E 在线段AD 上,EF ⊥AC 于点 F ,EG ⊥EF 交 AB 于点 G ,若 EF=EG ,则 CD 的长为 A. 3.6B.4C.4.8D.58. 据国家统计局数据,2018 年全年国内生产总值为 90.3 万亿,比 2017 年增长 6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破 100 万亿的年份是 A.2019 年B.2020 年C.2021 年D.2022 年9. 已知三个实数 a,b,c 满足 a-2b+c=0,a+2b+c <0,则A. b>0,b 2-ac ≤0 B.b <0,b 2-ac ≤0 B. b>0,b 2-ac ≥0D.b <0,b 2-ac ≥010. 如图,在正方形 ABCD 中,点 E ,F 将对角线 AC 三等分, 且 AC=12,点 P 在正方形的边上,则满足 PE+PF=9 的点 P 的个数是 A.0B.4C.6D.82、填空题(本大共 4 小题,每小题 5 分,满分 30 分) 11. 计算 ÷的结果是。
2018年河北省中考数学试卷(含答案)
![2018年河北省中考数学试卷(含答案)](https://img.taocdn.com/s3/m/8859da3211a6f524ccbff121dd36a32d7375c78f.png)
2018年河北省中考数学试卷一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:﹣(﹣1)=()A.±1 B.﹣2 C.﹣1 D.12.计算正确的是()A.(﹣5)0=0 B.x2+x3=x5C.(ab2)3=a2b5 D.2a2•a﹣1=2a3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列运算结果为x﹣1的是()A.1﹣B.•C.÷D.5.若k≠0,b<0,则y=kx+b的图象可能是()A.B.C.D.6.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形7.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点8.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④9.如图为4×4的网格图,A,B,C,D,O均在格点上,点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心10.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD11.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙 B.丙丁 C.甲丙 D.乙丁12.在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A.=﹣5 B.=+5 C.=8x﹣5 D.=8x+513.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°14.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根 D.有一根为015.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B. C.D.16.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上二、填空题(本大题有3小题,共10分.17-18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.8的立方根是______.18.若mn=m+3,则2mn+3m﹣5mn+10=______.19.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°﹣7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=______°.…若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=______°.三、解答题(本大题有7个小题,共68分.解答应写出必要的文字说明、证明过程或演算步骤)20.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.21.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.22.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.23.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D 开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?24.某商店通过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如表:第1个第2个第3个第4个…第n个调整前的单价x(元)x1x2=6 x3=72 x4…x n调整后的单价y(元)y1y2=4 y3=59 y4…y n已知这个n玩具调整后的单价都大于2元.(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为,,猜想与的关系式,并写出推导过程.25.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为______,此时点P,A间的距离为______;点M与AB的最小距离为______,此时半圆M的弧与AB所围成的封闭图形面积为______;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)26.如图,抛物线L:y=﹣(x﹣t)(x﹣t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=(k>0,x>0)于点P,且OA•MP=12,(1)求k值;(2)当t=1时,求AB的长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标;(4)设L与双曲线有个交点的横坐标为x0,且满足4≤x0≤6,通过L位置随t变化的过程,直接写出t的取值范围.2018年河北省中考数学试卷参考答案与试题解析一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
2019年中考数学试卷(含答案)
![2019年中考数学试卷(含答案)](https://img.taocdn.com/s3/m/8168c10f312b3169a551a40a.png)
80
90
100
人数/人
1
3
x
1
已知该小组本次数学测验的平均分是 85 分,则测验成绩的众数是( )
A.80 分
B.85 分
C.90 分
D.80 分和 90 分
5.如图,在 ABC 中, ACB 90 ,分别以点 A 和点 C 为圆心,以大于 1 AC 的长为 2
半径作弧,两弧相交于点 M 和点 N ,作直线 MN 交 AB 于点 D ,交 AC 于点 E ,连接
A.a-7>b-7
二、填空题
B.6+a>b+6
C. a >b 55
ቤተ መጻሕፍቲ ባይዱ
D.-3a>-3b
13.如图,在菱形 ABCD 中,AB=5,AC=8,则菱形的面积是 .
14.如图,在平面直角坐标系中,点 O 为原点,菱形 OABC 的对角线 OB 在 x 轴上,顶点
A 在反比例函数 y= 2 的图像上,则菱形的面积为_______. x
2019 年中考数学试卷(含答案)
一、选择题
1.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量 折合粮食大约是 230000000 人一年的口粮,将 230000000 用科学记数法表示为( ) A.2.3×109 B.0.23×109 C.2.3×108 D.23×107
CD .若 B 34 ,则∠BDC 的度数是( )
A. 68
B.112
C.124
D.146
6.为了绿化校园,30 名学生共种 78 棵树苗,其中男生每人种 3 棵,女生每人种 2 棵,设
男生有 x 人,女生有 y 人,根据题意,所列方程组正确的是( )
2019年中考数学试卷重难题专题【相似三角形】(含答案)
![2019年中考数学试卷重难题专题【相似三角形】(含答案)](https://img.taocdn.com/s3/m/2482de1c43323968011c92a4.png)
2019年中考数学试卷重难题专题【相似三角形】(含答案)知识点睛借助相似整合信息的通常思路:利用相似时,往往可以将_______________等信息组合搭配在一起进行研究,并能实现三类信息之间的转化,进而达到整合信息、解决问题的目的.为了借助相似实现_______________等条件的综合应用,往往会通过___________或作_________的方式来构造相似模型.构造相似模型是我们整合多个比例信息时常用的一种手段.一、单选题1.(2018·浙江初三期中)如图,在中, 是线段上的点,且, 是线段ABC D AB :1:2AD BD F 上的点, , .小亮同学随机在内部区域投针,则针扎到(阴影)BC DE BC FE BA ABC DEF 区域内的概率是( )A .B .C .D .1329518492.(2018·四川中考真题)如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE=CF=AC .连接14DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则的值为( )S △ADGS △BGHA .B .C .D .11223343.(2019·湖北沙市中学初二期末)彼此相似的矩形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…,按如图所示的方式放置.点A 1,A 2,A 3,…,和点C 1,C 2,C 3,…,分别在直线y=kx+b (k >0)和x 轴上,已知点B 1、B 2的坐标分别为(1,2),(3,4),则Bn的坐标是( )A .(2n ﹣1,2n )B .(2n ﹣,2n )12C .(2n﹣1﹣,2n﹣1)D .(2n﹣1﹣1,2n﹣1)124.(2014·浙江初三期末)如图,矩形AEHC 是由三个全等矩形拼成的,AH 与BE 、BF 、DF 、DG 、CG 分别交于点P 、Q 、K 、M 、N .设△BPQ ,△DKM ,△CNH 的面积依次为S 1,S 2,S 3.若S 1+S 3=20,则S 2的值为( )A .6B .8C .10 D .125.(2018·全国初一单元测试)如图,是三个正方形拼成的一个长方形,则∠1+∠2+∠3=( )A .60°B .75°C .90°D .105°6.(2018·广东中考模拟)如图所示,在矩形ABCD 中,AB=6,BC=8,对角线AC 、BD 相交于点O ,过点O 作OE 垂直AC 交AD 于点E ,则DE 的长是( )A .5B .C .D .32741547.(2018·广西中考真题)如图,在平面直角坐标系中,M 、N 、C 三点的坐标分别为(,1),(3,1),12(3,0),点A 为线段MN 上的一个动点,连接AC ,过点A 作交y 轴于点B ,当点A 从M 运动AB ⊥AC 到N 时,点B 随之运动,设点B 的坐标为(0,b ),则b 的取值范围是( )A .B .C .D .−14≤b ≤1−54≤b ≤1−94≤b ≤12−94≤b ≤18.(2018·江西初三期末)如图,△ABC 是一块锐角三角形材料,高线AH 长8 cm ,底边BC 长10 cm ,要把它加工成一个矩形零件,使矩形DEFG 的一边EF 在BC 上,其余两个顶点D ,G 分别在AB ,AC 上,则四边形DEFG 的最大面积为( )A .40 cm 2B .20 cm 2C .25 cm 2D .10 cm 29.(2017·江阴初级中学初三期中)如图,D 是等边△ABC 边AB 上的一点,且AD :DB =1:2,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F 分别在AC 和BC 上,则CE :CF 的值为( )A .B .C .D . 4535566710.(2017·安徽初三期中)如图,在正方形ABCD 中,点E 、F 分别在边BC ,DC 上,AE 、AF 分别交BD于点M 、N ,连接CN 、EN ,且CN =EN .下列结论:①AN =EN ,AN ⊥EN ;②BE+DF=EF ;③∠DFE =2∠AMN ;④;④图中有4对相似三角EF 2=2BM 2+2DN 2形.其中正确结论个数是( )A .5B .4C .3D .211.(2018·全国初三期末)如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,下列结论:①△AEF ∽△CAB ;②CF=2AF ;③tan ∠CAD=.其中正确的结论有 ( )2A .3个B .2个C .1个D .0个12.(2017·安徽中考模拟)如图,沿对角线AC 折叠正方形ABCD ,使得B 、D 重合,再折叠△ACD ,点D 恰好落在AC 上的点E 处,测得折痕AF 的长为3,则C 到AF 的距离CG 为:A .B .C .D .32235−113.(2019·全国初二单元测试)如图,在Rt △ABC 中,∠BAC =90°,AB =3,AC =4,点P 为BC 上任意一点,连接PA,以PA ,PC 为邻边作平行四边形PAQC ,连接PQ ,则PQ 的最小值为( )A .B .C .D .2651255314.(2019·广东中考模拟)如图,将边长为3的正方形纸片ABCD 对折,使AB 与DC 重合,折痕为EF ,展平后,再将点B 折到边CD 上,使边AB 经过点E ,折痕为GH,点B 的对应点为M ,点A 的对应点为N ,那么折痕GH 的长为( )AB .C .D1037215.如图,在矩形ABCD 中,对角线AC 、BD 相交于G ,E 为AD 的中点,连接BE 交AC 于F ,连接FD ,若∠BFA=90°,则下列四对三角形:①△BEA 与△ACD ;②△FED 与△DEB ;③△CFD 与△ABG ;④△ADF 与△EFD ,其中相似的为( )A.①④B.①②C.②③④D.①②③④二、填空题16.(2018·天津中考模拟)如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D 的坐标为______.17.(2018·山东中考真题)如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE=5,∠EAF=45°,则AF的长为_____.218.(2018·湖北中考真题)如图,将面积为32的矩形ABCD沿对角线BD折叠,点A的对应点为点P,2连接AP交BC于点E.若BE=,则AP的长为_____.19.(2017·湖北中考模拟)赵爽弦图是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,若这四个全等直角三角形的两条直角边分别平行于x轴和y轴,大正方形的顶点B1、C1、C2、C3、…、C n在直线y=- x+ 上,顶点D1、D2、D3、…、D n在x轴上,则第n个阴影小1 27 2正方形的面积为________.20.(2017·全国初三课时练习)在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作第1个正方形A1B1C1C;延长C1B1交x轴于点A2,作第2个正方形A2B2C2C1,…,按这样的规律进行下去,第2016个正方形的面积是______.21.(2018·安徽中考真题)矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.22.(2018·江苏中考真题)如图,在直角△ABC中,∠C=90°,AC=6,BC=8,P、Q分别为边BC、AB上的两个动点,若要使△APQ是等腰三角形且△BPQ是直角三角形,则AQ =________.23.(2018·贵州中考模拟)如图,在△ABC 中,BC=8,高AD=6,矩形EFGH 的一边EF 在边BC 上,其余两个顶点G 、H 分别在边AC 、AB 上,则矩形EFGH 的面积最大值为_____.24.(2017·湖北中考真题)如图,在△ABC 中,∠ACB =90°,点D ,E 分别在AC ,BC 上,且∠CDE =∠B ,将△CDE 沿DE 折叠,点C 恰好落在AB 边上的点F 处,连接CF .若AC =8,AB =10,则CD 的长为__25.(2018·乌拉特前旗第六中学中考模拟)如图,点P 是矩形ABCD 内一点,连接PA 、PB 、PC 、PD,已知AB=3,BC=4,设△PAB, △PBC, △PCD, △PDA,的面积分别为,,, ,以下判断: ① PA+PB+PC+PD 的最小S 1S 2S 3S 4值为10;②若△PAB ≌△PCD,则△PAD ≌△PBC ;③若=,则=;④若△PAB ∽△PDA,则PA=2.4.其中正S 1S 2S 3S 4确的是_____________(把所有正确的结论的序号都填在横线上)26.(2018·广西中考真题)如图,点 C 为 Rt △ACB 与 Rt △DCE 的公共点,∠ACB=∠DCE=90°,连 接 AD 、BE ,过点 C 作 CF ⊥AD 于点 F ,延长 FC 交 BE 于点 G .若 AC=BC=25,CE=15, DC=20,则的值为___________.EG BG参考答案1.B【解析】解:∵, ,∴, .DE BC 12AD BD =ADE ABC ∽13AD AE DE AB AC BC ===又∵,∴,∴, .FE BA CFE CBA ∽23CE CF CA CB ==21CF BF =设的面积,则,∴梯形面积.ADE ADE S S = 9ABC S S = DECB 8DECB S S =梯∵,∴,∴.DE BC 1112EDBF EFC S BF S FC == 平行四边形4EFC EDBF S S S == 平行四边形在平行四边形中,,∴.故BDEF 122BOF DEF BDEF S S S === 平行四边形29DEF ABC S S = 选.B 点睛:此题主要考查了几何概率问题,用到的知识点为:概率=相应的面积与总面积之比.2.C【解析】分析:首先证明AG :AB=CH :BC=1:3,推出GH ∥AC ,推出△BGH ∽△BAC ,可得,,由此即可解决问题.S △ADCS △BGH =S △BAC S △BGH =(BA BG )2=(32)2=94S △ADG S △ADC =13详解:∵四边形ABCD 是平行四边形∴AD=BC ,DC=AB ,∵AC=CA ,∴△ADC ≌△CBA ,∴S △ADC =S △ABC ,∵AE=CF=AC ,AG ∥CD ,CH ∥AD ,14∴AG :DC=AE :CE=1:3,CH :AD=CF :AF=1:3,∴AG :AB=CH :BC=1:3,∴GH ∥AC ,∴△BGH ∽△BAC ,∴,S △ADCS △BGH=S △BAC S △BGH =(BA BG )2=(32)2=94∵,S △ADG S △ADC =13∴.S △ADG S △BGH =94×13=34故选:C .点睛:本题考查平行四边形的性质、相似三角形的判定和性质、全等三角形的判定和性质、等高模型等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.3.A【解析】【分析】根据矩形的性质求出点的坐标,然后利用待定系数法求一次函数解析式求出,12A A 、k b 、从而得到一次函数解析式,再根据一次函数图像上点的坐标特征求出的坐标,然后求出3A 的坐标,...,最后根据点的坐标特征的变化规律写出的坐标即可.3B n B 【详解】,()11,2B 相似矩形的长是宽的倍,∴2点的坐标分别为, 12B B 、()()1,23,4,,∴()()120,21,4A A ,点在直线上,12A A 、y kx b =+,∴24b k b =⎧⎨+=⎩解得,22k b =⎧⎨=⎩,∴22y x =+点在直线上,3A 22y x =+,∴2328y =⨯+=点的坐标为,∴3A ()3,8点的横坐标为,∴3B 13872+⨯=点,∴()37,8B …,的坐标为.n B ()21,2n n -故选:.A 【点睛】本题考查了相似多边形的性质,一次函数图象上点的坐标特征,根据点的系列坐标判断A 出相应矩形的长,再求出宽,然后得到点的系列坐标的变化规律是解题的关键.B 4.B【解析】试题分析:∵矩形AEHC 是由三个全等矩形拼成的,∴AB=BD=CD ,AE ∥BF ∥DG ∥CH ,∴四边形BEFD ,四边形DFGC 是平行四边形,∠BQP=∠DMK=∠CHN ,∴BE ∥DF ∥CG∴∠BPQ=∠DKM=∠CNH ,∵△ABQ ∽△ADM ,△ABQ ∽△ACH ,∴,,AB AD =BQ MD =12BQ CH =AB AC =13∴△BPQ ∽△DKM ∽△CNH∴,BQ MD=12BQ CH =13∴S 1S 2=14,S 1S 3=19∴S 2=4S 1,S 3=9S 1,∵S 1+S 3=20,∴S 1=2,∴S 2=8.故选B .考点:1.矩形的性质,2.三角形的面积,3.相似三角形的判定与性质.5.C【解析】【分析】容易看出∠3=45°,关键求出∠2与∠1的和是45°,根据证AI CI =IJ IA ∆AIJ~∆CIA,得∠2=∠CAI,再由∠1+∠2=∠CAI+∠CAD =45°可推出结果.【详解】如图设三个小正方形的边长为1个单位.在正方形ABCD 中∠3=45°,则∠AIC=135°,且∠1=∠CAD .∵∠AIJ=∠CIA ,,AI CI =22,IJ IA =22即,AI CI =IJ IA 所以∆AIJ~∆CIA,所以∠2=∠CAI,又∠1=∠CAD ,则∠1+∠2=∠CAI+∠CAD =45°,∴∠1+∠2+∠3=90°.故正确选项为:C【点睛】本题考查了相似三角形的判定与性质:如果两个三角形的两条对应边的比相等,且它们所夹的角也相等,那么这两个三角形相似;相似三角形对应角相等,对应边的比相等.也考查了勾股定理以及正方形的性质.6.C【解析】【分析】先利用勾股定理求出AC 的长,然后证明△AEO ∽△ACD ,根据相似三角形对应边成比例列式求解即可.【详解】∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=AC=5,12∵EO ⊥AC ,∴∠AOE=∠ADC=90°,∵∠EAO=∠CAD ,∴△AEO ∽△ACD ,∴,AE AC=AO AD 即 ,AE 10=58解得,AE=,254∴DE=8﹣=,25474故选:C .【点睛】本题考查了矩形的性质,勾股定理,相似三角形对应边成比例的性质,根据相似三角形对应边成比例列出比例式是解题的关键.7.A【解析】分析:分两种情形:当A 与点N 、M 重合时来确定b 的最大与最小值即可.详解:如图1,当点A 与点N 重合时,CA ⊥AB ,∴MN 是直线AB 的一部分,∵N (3,1)∴OB=1,此时b=1;当点A 与点M 重合时,如图2,延长NM 交y 轴于点D ,易证△MCN ∽△BMD∴BD MN =DM NC ∵MN=3-=,DM=,CN=1125212∴BD=DM·MN CN =54∴OB=BD-OD=-1=,即b=-,541414∴b 的取值范围是.-14≤b ≤1故选A.点睛:此题考查了坐标与图形,灵活运用相似三角形的判定与性质是解此题的关键..8.B【解析】【分析】设矩形DEFG 的宽DE=x ,根据相似三角形对应高的比等于相似比列式求出DG ,再根据矩形的面积列式整理,然后根据二次函数的最值问题解答即可.【详解】如图所示:设矩形DEFG 的宽DE=x ,则AM=AH-HM=8-x ,∵矩形的对边DG ∥EF ,∴△ADG ∽△ABC ,∴,AM AH =DG BC即,8−x 8=DG 10解得DG=(8-x ),54四边形DEFG 的面积=(8-x )x=-(x 2-8x+16)+20=-(x-4)2+20,545454所以,当x=4,即DE=4时,四边形DEFG 最大面积为20cm 2.故选:B .【点睛】考查了相似三角形的应用,二次函数的最值问题,根据相似三角形的对应高的比等于相似比用矩形DEFG 的宽表示出长是解题的关键.9.A【解析】解:由折叠的性质可得,∠EDF =∠C =60º,CE =DE ,CF =DF .∵∠BDF +∠ADE =∠BDF +∠BFD =120º,∴∠ADE =∠BFD ,又∵∠A =∠B =60º,∴△AED ∽△BDF ,∴ ,设DE AD AE DF BF BD==AD =a ,BD =2a ,AB =BC =CA =3a ,再设CE ==DE =x ,CF ==DF =y ,则AE =3a -x ,BF =3a -y ,所以,整理可得ay =3ax -xy ,2ax =3ay -xy ,即xy =3ax -ay ①,xy =3ay -332x a a x y a y a-==-2ax ②;把①代入②可得3ax -ay =3ay -2ax ,所以5ax =4ay ,,即,4455x a y a ==45CE CF =故选A .点睛:主要考查了翻折变换的性质及其应用问题;解题的关键是借助相似三角形的性质分别求出CE 、CF 的长度(用含有k 的代数式表示);对综合的分析问题解决问题的能力提出了较高的要求.10.B【解析】【详解】将△ABE 绕点A 逆时针旋转90°,得到△ADH ,因为四边形ABCD 是正方形,所以AB =BC =AD , ∠BAD =∠ABC =90°,∠ABD =∠CBD =45°,在△BNA 和△BNC 中,,{BN =BN∠NBA =∠BA =BC NBC所以△BNA ≌△BNC ,所以AN =CN ,∠NEC =∠NCE =∠BAN ,因为∠NEC +∠BEN =180°,所以∠BAN +∠BEN =180°,所以∠ABC +∠ANE =180°,所以∠ANE =90°,所以AN =NE ,AN ⊥NE ,故①正确,因为∠3=45°, ∠1=∠4,所以∠2+∠4=∠2+∠1=45°,所以∠3=∠FAH =45°,因为AF =AF ,AE =AH ,所以△AFE ≌△AFH ,所以EF =FH =DF +DH =DF +BE , ∠AFH =∠AFE ,故②正确,因为∠MAN =∠NDF =45°, ∠ANM =∠NDF ,所以∠AMN =∠AFD ,又因为∠AFE =∠AFD , ∠DFE=∠AFE +∠AFD所以∠DFE =2∠AMN ,故③正确,因为∠MAN =∠EAF , ∠AMN =∠AFE ,所以△AMN ∽△AFE ,所以,NMEF =AN AE =12所以MN ,EF =2如图2中,将△ABN 绕点A 逆时针旋转90°,得到△ADG ,易证△ANG ≌△ANM , △GDN 是直角三角形,所以MN =GN ,所以,MN 2=DN 2+DG 2=DN 2+BM 2所以,故④正确,EF 2=2DN 2+2BM 2图中相似三角形有△ANE ∽△BAD ∽△BCD , △ANM ∽△AEF , △ABN ∽△FDN ,△BEM ∽△DAM 等,故⑤错误,故选B.11.B【解析】【分析】①正确.只要证明∠EAC=∠ACB ,∠ABC=∠AFE=90°即可;②正确.由AD ∥BC ,推出△AEF ∽△CBF ,推出,由AE=AD=BC ,推出=,即AE BC =AF CF 1212AF CF 12CF=2AF ;④错误,设AE=a ,AB=b ,则AD=2a ,由△BAE ∽△ADC ,有,即b=a ,可得ba =2ab 2tan ∠CAD==即可得.CD AD b 2a 【详解】如图,过D 作DM ∥BE 交AC 于N ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC=90°,AD=BC ,∵BE ⊥AC 于点F ,∴∠EAC=∠ACB ,∠ABC=∠AFE=90°,∴△AEF ∽△CAB ,故①正确;∵AD ∥BC ,∴△AEF ∽△CBF ,∴,AE BC =AF CF ∵AE=AD=BC ,1212∴=,AF CF 12∴CF=2AF ,故②正确;设AE=a ,AB=b ,则AD=2a ,由△BAE ∽△ADC ,有,即b=a ,b a =2a b 2∴tan ∠CAD===,故③错误,CD AD b 2a 22所以正确的有2个,故选B .【点睛】本题考查了相似三角形的判定和性质,矩形的性质以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.12.A【解析】试题分析:设正方形ABCD 的边长=a ,根据勾股定理得到AC =a ,根据折叠的性质得到2AE =AD =a ,∠AEF =∠D =90°,根据等腰直角三角形的性质得到EF =CE =a –a ,根据勾股定2理得到a =AC =,EF =(–1)×32+22322+22232+22到结论.试题解析:设正方形ABCD 的边长=a ,则AC =a ,2∵折叠△ACD ,点D 恰好落在AC 上的点E 处,∴AE =AD =a ,∠AEF =∠D =90°,∴CE =a –a ,2∵∠ECF =45°,∴EF =CE =a –a ,2∵AF 2=AE 2+EF 2,∴32=a 2+(a –a )2,∴a =232+22∴AC =,EF =( –1)×,322+22232+22∵∠EAF =∠CAG ∠AEF =∠G =90°,∴△AEF ∽△AGC ,∴,∴CG =.ACAF =CG EF 32故选A .13.B【解析】【分析】记AC 与PQ 的交点为O ,由平行四边形的性质可知O 是AC 中点,PQ 最短也就是PO 最短;过O 作BC 的垂线P′O ,则PO 最短为P′O ;接下来可证明△P′OC 和△ABC 相似,进而利用相似三角形的性质即可求出PQ 的最小值.【详解】解:记AC 与PQ 的交点为O.∵∠BAC=90°,AB=3,AC=4,∴=5.∵四边形APCQ 是平行四边形,∴PO=QO ,CO=AO ,∴PQ 最短也就是PO 最短.过O 作BC 的垂线OP′.∵∠ACB=∠P′CO ,∠CP′O=∠CAB=90°,∴△CAB ∽△CP′O ,∴,'CO OP BCAB ∴OP′=,65∴则PQ 的最小值为2OP′=,125故答案为:.125【点睛】本题考查了勾股定理的运用、平行四边形的性质、相似三角形的判定和性质以及垂线段最短的性质,解题的关键是作高线,构造相似三角形.14.A【解析】【分析】利用翻折变换的性质结合勾股定理表示出CH 的长,得出△EDM ∽△MCH ,进而求出MC 的长,依据△GPH ≌△BCM ,可得GH=BM ,再利用勾股定理得出BM ,即可得到GH 的长.【详解】设CM =x ,设HC =y ,则BH =HM =3﹣y ,故y 2+x 2=(3﹣y )2,整理得:y =,21362x -+即CH =,21362x -+∵四边形ABCD 为正方形,∴∠B =∠C =∠D =90°,由题意可得:ED =1.5,DM =3﹣x ,∠EMH =∠B =90°,故∠HMC +∠EMD =90°,∵∠HMC +∠MHC =90°,∴∠EMD =∠MHC ,∴△EDM ∽△MCH ,∴ ,ED DM MC CH =即,21.531362x x x -=-+解得:x 1=1,x 2=3(不合题意),∴CM =1,如图,连接BM ,过点G 作GP ⊥BC ,垂足为P ,则BM ⊥GH ,∴∠PGH =∠HBM ,在△GPH 和△B CM 中,HGP CBM GP BC GPH C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GPH ≌△BCM (SAS ),∴GH =BM ,∴GH =BM.=故选:A .【点睛】此题主要考查了翻折变换的性质以及正方形的性质、相似三角形的判定与性质和勾股定理的综合运用,作辅助线构造全等三角形,正确应用相似三角形的判定与性质是解题关键.15.D【解析】【分析】根据判定三角形相似的条件对选项逐一进行判断.【详解】①根据题意得:,∠BAE =∠ADC =∠AFE =90°,∴∠AEF +∠EAF =90°,∠DAC +∠ACD =90°,∴∠AEF =∠ACD ①中两三角形相似;∴②,∵∠AEB =∠FEA,∠AFE =∠EAB =90°,∴△AFE ∽△BAE ,∴AE EF =EB AE 又,∵AE =ED ,∴ED EF =EB ED 而,∠BED =∠BED ,∴△FED ∽△DEB 故②正确;③,∵AB‖CD ,∴∠BAC =∠GCD ,且,∵∠ABE =∠DAF,∠EBD =∠EDF ∠ABG =∠ABE +∠EBD ,∴∠ABG =∠DAF +∠EDF =∠DFC ,∵∠ABG =∠DFC,∠BAG =∠DCF ,∴△CFD ∽△ABG 故③正确;④,∵△FED ∽△DEB ,∴∠EFD =∠EDB,∵AG =DG ,∴∠DAF =∠ADG ,∴∠DAF =∠EFD ,∴△ADF ∽△EFD 故④正确;故选:.D 【点睛】此题考查了相似三角形的判定:(1)有两个对应角相等的三角形相似;(2)有两个对应边的比相等,且其夹角相等,则两个三角形相似;(3)三组对应边的比相等,则两个三角形相似.16.(﹣,)45125【解析】【分析】首先过D 作DF ⊥AF 于F ,根据折叠可以证明△CDE ≌△AOE ,然后利用全等三角形的性质得到OE=DE ,OA=CD=1,设OE=x ,那么CE=3﹣x ,DE=x ,利用勾股定理即可求出OE 的长度,而利用已知条件可以证明△AEO ∽△ADF ,而AD=AB=3,接着利用相似三角形的性质即可求出DF 、AF 的长度,也就求出了D 的坐标.【详解】解:如图,过D 作DF ⊥AO 于F ,∵点B 的坐标为(1,3),∴BC=AO=1,AB=OC=3,根据折叠可知:CD=BC=OA=1,∠CDE=∠B=∠AOE=90°,AD=AB=3,在△CDE 和△AOE 中,,{∠CDE =∠AOE∠CED =∠AEOCD =AO ∴△CDE ≌△AOE ,∴OE=DE ,OA=CD=1,AE=CE ,设OE=x ,那么CE=3﹣x ,DE=x ,∴在Rt △DCE 中,CE 2=DE 2+CD 2,∴(3﹣x )2=x 2+12,∴x=,43∴OE=,AE=CE=OC﹣OE=3﹣=,434353又∵DF ⊥AF ,∴DF ∥EO ,∴△AEO ∽△ADF ,∴AE :AD=EO :DF=AO :AF ,即:3=:DF=1:AF ,5343∴DF=,AF=,12595∴OF=﹣1= ,9545∴D 的坐标为:(﹣,).45125故答案为:(﹣,).45125【点睛】此题主要考查了图形的折叠问题、相似三角形的判定与性质、全等三角形的判定与性质以及坐标与图形的性质.解题的关键是把握折叠的隐含条件,利用隐含条件得到全等三角形和相似三角形,然后利用它们的性质即可解决问题.17.4103【解析】分析:取AB 的中点M ,连接ME ,在AD 上截取ND=DF ,设DF=DN=x ,则NF=x ,再利用矩形的性质和已知条件证明△AME ∽△FNA ,利用相似三角形的性质:对2应边的比值相等可求出x 的值,在直角三角形ADF 中利用勾股定理即可求出AF 的长.详解:取AB 的中点M ,连接ME ,在AD 上截取ND=DF ,设DF=DN=x ,∵四边形ABCD 是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴NF=x ,AN=4﹣x ,2∵AB=2,∴AM=BM=1,∵AE=,AB=2,5∴BE=1,∴ME=,BM 2+BE 2=2∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF ,∴△AME ∽△FNA ,∴,AMFN=MEAN∴,12x =24-x 解得:x=43∴AF=AD 2+DF 2=4103故答案为:4103点睛:本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,18.1632【解析】【分析】设AB=a ,AD=b ,则ab=32,构建方程组求出a 、b 值即可解决问题.2【详解】设AB=a ,AD=b ,则ab=32,2由∽可得:,△ABE △DAB BEAB=ABAD∴,b =22a 2∴,a 3=64∴,,a =4b =82设PA 交BD 于O ,在中,,Rt △ABD BD =AB 2+AD 2=12∴OP =OA =AB ⋅AD BD=823∴,AP =1632故答案为:.1632【点睛】本题考查翻折变换、矩形的性质、勾股定理、相似三角形的判定与性质等知识,熟练掌握和应用相关的性质定理是解题的关键.19.2223n -⎛⎫ ⎪⎝⎭【解析】由已知可得△ A 1B 1M ≌△DA 1N 1,∴B 1M=A 1N ,A 1M=D 1N ,又A 1D 1//B 1C 1,∴OA 1:OE=OD 1:OF ,由直线y=﹣可得E (0, ),1722x +72F (7,0),∴OD 1=2OA 1,由矩形OA 1ND 1,得A 1N =2D 1N ,∴可设B 1(b,3b ),代入y=﹣得b=1,∴A 1N=2,A 1M=1,∴S 1=1;1722x +由b=1,可得C 1(3,2),同理可知S 2=( )2= ;212-233⨯⨯223⎛⎫ ⎪⎝⎭同理可知C 2( , ),S 3=( )2== ;133434241-3333⨯⨯249⎛⎫ ⎪⎝⎭423⎛⎫ ⎪⎝⎭……∴S n = .2n-223⎛⎫⎪⎝⎭点睛:本题主要考查全等三角形的判定与性质,一次函数、图形的变化规律等,能正确地识图是解题的关键.20.5×()4030【解析】解:如图,∵四边形ABCD 是正方形,∴∠ABC=∠BAD=90°,AB=BC ,∴∠ABA1=90°,∠DAO+∠BAA 1=180°﹣90°=90°,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∴∠ADO=∠BAA 1,在△AOD 和A1BA 中11AOD ABA ADO BAA ∠=∠⎧⎨∠=∠⎩∴△AOD ∽△A 1BA ,∴,∴BC=2A 1B.121OD AB AO A B ==∴A 1C=BC ,则A 2C 1=A 1C ,A 3C 2=A 2C 1,323232即后一个正方形的边长是前一个正方形的边长的倍.32∴第2016个正方形的边长为BC.201532⎛⎫ ⎪⎝⎭∵A 的坐标为(1,0),D 点坐标为(0,2),∴.=∴第2011个正方形的面积为.22015403033522BC ⎡⎤⎛⎫⎛⎫=⨯⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦故答案为.4030352⎛⎫⨯ ⎪⎝⎭21.3或1.2【解析】【分析】由△PBE ∽△DBC ,可得∠PBE=∠DBC ,继而可确定点P 在BD 上,然后再根据△APD 是等腰三角形,分DP=DA 、AP=DP 两种情况进行讨论即可得.【详解】∵四边形ABCD 是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE ∽△DBC ,∴∠PBE=∠DBC ,∴点P 在BD 上,如图1,当DP=DA=8时,BP=2,∵△PBE ∽△DBC ,∴PE :CD=PB :DB=2:10,∴PE :6=2:10,∴PE=1.2;如图2,当AP=DP 时,此时P 为BD 中点,∵△PBE ∽△DBC ,∴PE :CD=PB :DB=1:2,∴PE :6=1:2,∴PE=3;综上,PE 的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P 在线段BD 上是解题的关键.22.或154307【解析】分析:分两种情形分别求解:①如图1中,当AQ=PQ ,∠QPB=90°时,②当AQ=PQ ,∠PQB=90°时;详解:①如图1中,当AQ=PQ ,∠QPB=90°时,设AQ=PQ=x ,∵PQ ∥AC ,∴△BPQ ∽△BCA ,∴,BQBA=PQAC ∴,10−x 10=x6∴x=,154∴AQ=.154②当AQ=PQ ,∠PQB=90°时,如图2,设AQ=PQ=y .∵△BQP ∽△BCA ,∴,PQAC=BQBC ∴,y 6=10−y 8∴y=.307综上所述,满足条件的AQ 的值为或.154307点睛:本题考查勾股定理、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.23.12【解析】【分析】设HG =x ,根据相似三角形的性质用x 表示出KD ,根据矩形面积公式列出二次函数解析式,根据二次函数的性质计算即可.【详解】设HG =x .∵四边形EFGH 是矩形,∴HG ∥BC ,∴△AHG ∽△ABC ,∴=,即=,解得:HG BC AKAD x 86-KD6KD =6﹣x ,则矩形EFGH 的面积=x (6﹣x )=﹣x 2+6x =(x ﹣4)2+12,则矩形EFGH 的343434﹣34面积最大值为12.故答案为:12.【点睛】本题考查的是相似三角形的判定和性质、二次函数的性质,掌握相似三角形的判定定理和性质定理是解题的关键.24.238【解析】分析:由对称性可知CF ⊥DE ,可得∠CDE=∠ECF=∠B ,得出CF=BF ,同理可得CF=AF ,由此可得F 是AB 的中点,求得CF=5,再判定△CDF ∽△CFA ,得到CF 2=CD×CA ,进而得出CD 的长.详解:由对称性可知CF ⊥DE ,又∵∠DCE=90°,∴∠CDE=∠ECF=∠B ,∴CF=BF ,同理可得CF=AF ,∴F 是AB 的中点,∴CF=AB=5,12又∵∠DFC=∠ACF=∠A ,∠DCF=∠FCA ,∴△CDF ∽△CFA ,∴CF 2=CD×CA ,即52=CD×8,∴CD=.258故答案是:.258点睛:考查了折叠问题,四点共圆以及相似三角形的判定与性质的运用,解决问题的关键是根据四点共圆以及等量代换得到F 是AB 的中点.25.①②③④【解析】分析:①当点P 是矩形ABCD 两对角线的交点时,PA+PB+PC+PD 的值最小,根据勾股定理可得PA+PB+PC+PD 的最小值,即可判断;②根据全等三角形的性质可得PA=PC ,PB=PD ,那么P 在线段AC 、BD 的垂直平分线上,即P 是矩形ABCD 两对角线的交点,易证△PAD ≌△PBC ,即可判断;③易证S 1+S 3=S 2+S 4,所以若S 1=S 2,则S 3=S 4,即可判断;④根据相似三角形的性质可得∠PAB=∠PDA ,∠PAB+∠PAD=∠PDA+∠PAD=90°,利用三角形内角和定理得出∠APD=180°-(∠PDA+∠PAD )=90°,同理可得∠APB=90°,那么∠BPD=180°,即B 、P 、D 三点共线,根据三角形面积公式可得PA=2.4,即可判断.详解:①当点P 是矩形ABCD 两对角线的交点时,PA +PB +PC +PD 的值最小,根据勾股定理得,AC =BD =5,所以PA +PB +PC +PD 的最小值为10,故①正确;②若△PAB ≌△PCD ,则PA =PC ,PB =PD ,所以P 在线段AC 、BD 的垂直平分线上,即P 是矩形ABCD 两对角线的交点,所以△PAD ≌△PBC ,故②正确;③若=,易证+=+,则=,故③正确;S 1S 2S 1S 3S 2S 4S 3S 4④若△PAB ∼△PDA ,则∠PAB =∠PDA ,∠PAB +∠PAD =∠PDA +∠PAD =90°,∠APD =180°−(∠PDA +∠PAD )=90°,同理可得∠APB =90°,那么∠BPD =180°,B.P 、D 三点共线,P 是直角△BAD 斜边上的高,根据面积公式可得PA =2.4,故④正确.故答案为①②③④.点睛:本题考查了全等三角形的判定与性质,矩形的性质,相似三角形的性质.26.34【解析】【分析】过 E 作 EH ⊥GF 于 H ,过 B 作 BP ⊥GF 于 P ,依据△EHG ∽△BPG ,可得=,再根据EG BG EHBP △DCF ∽△CEH ,△ACF ∽△CBP ,即可得到 EH=CF ,BP=CF ,进 而得出=.34EG BG 34【详解】如图,过 E 作 EH ⊥GF 于 H ,过 B 作 BP ⊥GF 于P ,则∠EHG=∠BPG=90°,又∵∠EGH=∠BGP ,∴△EHG ∽△BPG ,∴=,EG BG EHBP ∵CF ⊥AD ,∴∠DFC=∠AFC=90°,∴∠DFC=∠CHF ,∠AFC=∠CPB , 又∵∠ACB=∠DCE=90°,∴∠CDF=∠ECH ,∠FAC=∠PCB ,∴△DCF ∽△CEH ,△ACF ∽△CBP ,∴,EHCF =CE DC ,BPCF =BCCA =1本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
2018年山东省青岛市中考数学试卷(含答案与解析)
![2018年山东省青岛市中考数学试卷(含答案与解析)](https://img.taocdn.com/s3/m/bfc29dfd8bd63186bcebbc45.png)
数学试卷 第1页(共36页) 数学试卷 第2页(共36页) 绝密★启用前山东省青岛市2018年初中学业水平考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.观察下列四个图形,中心对称图形是( )A B C D2.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.000 000 5克.将0.000 000 5用科学记数法表示为( ) A .7510⨯B .7510-⨯C .60.510-⨯D .6510-⨯ 3.如图,点A 所表示的数的绝对值是( )A .3B .3-C .13D .13-4.计算()32335a a a -⋅的结果是( ) A .565a a - B .695a a - C .64a - D .64a 5.如图,点A B C D 、、、在O 上,140AOC ∠=︒,点B 是AC 的中点,则D ∠的度数是( )A .70︒B .55︒C .35.5︒D .35︒6.如图,三角形纸片ABC ,,90AB AC BAC =∠=︒,点E 为AB 中点.沿过点E 的直线折叠,使点B 与点A 重合,折痕现交于点F .已知32EF =,则BC 的长是( )A.2B.C .3D.7.如图,将线段AB 绕点P 按顺时针方向旋转90︒,得到线段A B '',其中点A B 、的对应点分别是点A B '',,则点A '的坐标是( )A .()1,3-B .()4,0C .()3,3-D .()5,1-8.已知一次函数b y x c a=+的图象如图,则二次函数2y ax bx c =++在平面直角坐标系中的图象可能是( )(第8题)ABCD毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共36页) 数学试卷 第4页(共36页)第Ⅱ卷(非选择题 共96分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上)9.已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为22S S 甲乙、, 则2S 甲 2S 乙(填“>”、“=”、“<”)10.计算:122cos30-︒= .11.5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y 吨,根据题意列关于,x y 的方程组为 .12.已知正方形ABCD 的边长为5,点E F 、分别在AD DC 、上,2AE DF ==,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为 .13.如图,Rt ABC ∆,90,30B C ∠=︒∠=︒,O 为AC 上一点,2OA =,以O 为圆心,以OA 为半径的圆与CB 相切于点E ,与AB 相交于点F ,连接OE OF 、,则图中阴影部分的面积是 .14.一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有 种.三、画图题(本大题共1小题,共4分.请用直尺、圆规作图,不写作法,但要呆留作图痕迹)15.(本小题满分4分)已知:如图,ABC ∠,射线BC 上一点D .求作:等腰PBD △,使线段BD 为等腰PBD △的底边,点P 在ABC ∠内部,且点P 到ABC ∠两边的距离相等.四、解答题(本大题共9小题,共74分.解答应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分8分)(1)解不等式组:21,321614.x x -⎧<⎪⎨⎪+>⎩(2)化简:22121x xx x ⎛⎫+-⋅ ⎪-⎝⎭. 17.(本小题满分6分)小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.数学试卷 第5页(共36页) 数学试卷 第6页(共36页)18.(本小题满分6分)八(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了如图所示的统计图.请根据图中信息,解答下列问题: (1)共有 名同学参与问卷调查. (2)补全条形统计图和扇形统计图.(3)全校共有学生1500名学生,请估计该校学生一个月阅读2本课外书的人数约为多少.19.(本小题满分6分)某区域平面示意图如图,点O 在河的一侧,AC 和BC 表示两条互相垂直的公路.甲勘测员在A 处测得点O 位于北偏东45︒,乙勘测员在B 处测得点O 位于南偏西73.7︒,测得840,500AC m BC m ==.请求出点O 到BC 的距离.(参考数据:2473.7s 25in ︒≈,773.7c s 25o ︒≈,2473.7ta 7n ︒≈)20.(本小题满分8分)已知反比例函数的图象经过三个点()()()124,3,2,,6,A B m y C m y --,其中0m >. (1)当124y y -=时,求m 的值;(2)如图,过点B C ,分别作x 轴、y 轴的垂线,两垂线相交于点D ,点P 在x 轴上, 若PBD △的面积是8,请写出点P 坐标(不需要写解答过程).21.(本小题满分8分)已知:如图,ABCD ,对角线AC 与BD 相交于点E ,点G 为AD 的中点,连接CG ,CG 的延长线交BA 的延长线于点F ,连接FD . (1)求证:AB AF =.(2)若,120AG AB BCD =∠=︒,判断四边形ACDF 的形状,并证明你的结论.22.(本小题满分10分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y (万件)与售价x (元/件)之间满足函数关系式26y x =-+.(1)求这种产品第一年的利润1W (万元)与售价x (元/件)满足的函数关系式. (2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润2W 至少为多少万元.23.(本小题满分10分)问题提出:用若干相同的1个单位长度的细直木棒,按照图1方式搭建一个长方体框架,探究所用木棒条数的规律.图1问题探究:我们先从简单的问题开始探究,从中找出解决问题的方法.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共36页) 数学试卷 第8页(共36页)探究一用若干木棒来搭建横长是m ,纵长是n 的矩形框架(m n 、是正整数),需要木棒的条数. 如图2,当1,1m n ==时,横放木棒为()111⨯+条,纵放木棒为()111+⨯条,共需4条; 如图3,当2,1m n ==时,横放木棒为()211⨯+条,纵放木棒为()211+⨯条,共需7条; 如图4,当2,2m n ==时,横放木棒为()221⨯+)条,纵放木棒为()212+⨯条,共需12条;如图5,当3,1m n ==时,横放木棒为()311⨯+条,纵放木棒为()311+⨯条,共需10条; 如图6,当3,2m n ==时,横放木棒为()321⨯+条,纵放木棒为()312+⨯条,共需17条.图2图3图4图5图6问题(一):当4,2m n ==时,共需木棒 条.问题(二):当矩形框架横长是m ,纵长是n 时,横放的木棒为 条, 纵放的木棒为 条.探究二用若干木棒来搭建横长是m ,纵长是n ,高是s 的长方体框架(m n s 、、是正整数),需要木 棒的条数.如图7,当3,2,1m n s ===时,横放与纵放木棒之和为()()()32131211=34⎡⨯+++⨯⎤⨯+⎣⎦条,竖放木棒为()()3121112+⨯+⨯=条,共需46条; 如图8,当3,2,2m n s ===时,横放与纵放木棒之和为()()()3213122151⎡⨯+++⨯⎤⨯+=⎣⎦条,竖放木棒为()()3121224+⨯+⨯=条,共需75条; 如图9,当3,2,3m n s ===时,横放与纵放木棒之和为()()()32131231=68⎡⨯+++⨯⎤⨯+⎣⎦条,竖放木棒为()()3121336+⨯+⨯=条,共需104条.图7图8图9问题(三):当长方体框架的横长是m ,纵长是n ,高是s 时,横放与纵放木棒条数之和 为 条,竖放木棒条数为 条.实际应用:现在按探究二的搭建方式搭建一个纵长是2、高是4的长方体框架,总共使用了170条木棒,则这个长方体框架的横长是 .拓展应用:若按照如图10方式搭建一个底面边长是10,高是5的正三棱柱框架,需要木棒 条.图1024.(本小题满分10分)已知:如图,在四边形ABCD 中,//,AB DC CB AB ⊥,16,6,8AB cm BC cm CD cm ===,动点P 从点D 开始沿DA 边匀速运动,动点Q 从点A 开始沿AB 边匀速运动,它们的运动速度均为2/cm s .点P 和点Q 同时出发,以QA QP ,为边作AQPE ,设运动的时间为()t s ,05t <<.根据题意解答下列问题: (1)用含t 的代数式表示AP .(2)设四边形CPQB 的面积为()2S cm ,求S 与t 的函数关系式. (3)当QP BD ⊥时,求t 的值.(4)在运动过程中,是否存在某一时刻t ,使点E 在ABD ∠的平分线上?若存在,求出t 的值;若不存在,请说明理由.5 / 18山东省青岛市2018年初中学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】解:A.不是中心对称图形,故本选项错误;B.不是中心对称图形,故本选项错误;C.是中心对称图形,故本选项正确;D.不是中心对称图形,故本选项错误.故选:C . 【考点】中心对称图形的概念 2.【答案】B【解析】解:将0.0000005用科学记数法表示为7510⨯﹣.故选:B 【考点】科学记数法 3.【答案】A【解析】解:|33|=-,故选:A . 【考点】绝对值问题 4.【答案】C【解析】解:23335a a a -⋅()665a a =-64a =-.故选:C .【考点】幂的乘方运算、单项式乘以单项式 5.【答案】D【解析】解:连接OB , ∵点B 是C A 的中点,∴1702AOB AOC ∠==︒∠,由圆周角定理得,1352D AOB ∠==︒∠,故选:D .6【考点】圆心角、弧、弦的关系定理、圆周角定理 6.【答案】B 【解析】解:∵沿过点E 的直线折叠,使点B 与点A 重合, ∴45B EAF ∠=∠=︒, ∴90AFB ∠=︒, ∵点E 为AB 中点, ∴12EF AB =,32EF =,∴3AB AC ==, ∵90BAC ∠=︒,∴BC =故选:B .【考点】折叠的性质、等腰直角三角形的判断和性质、勾股定理的运用 7.【答案】D【解析】解:画图如下:则'5,1A (-), 故选:D .【考点】旋转的性质7 / 188.【答案】A【解析】解:观察函数图象可知:0ba<,0c >,∴二次函数2y ax bx c =++的图象对称轴02bx a=->,且0c >,即抛物线的对称轴在y 轴右侧,且交y 轴于正半轴. 故选:A .【考点】一次函数的图象、二次函数的图象第Ⅱ卷二、填空题 9.【答案】>【解析】解:从图看出:甲组数据比乙组数据波动大,故乙的方差较小,即22S S >乙甲. 故答案为:>. 【考点】方差的意义 10.【答案】【解析】解:212cos30︒-1=2⨯,故答案为:【考点】实数的运算、负整数指数幂、特殊角的三角函数值 11.【答案】200(115%)(110%)174x y x y +=⎧⎨-+-=⎩【解析】解:设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y 吨,根据题意得:200(115%)(110%)174x y x y +=⎧⎨-+-=⎩故答案为:200(115%)(110%)174x y x y +=⎧⎨-+-=⎩【考点】二元一次方程组 12.8【解析】解:∵四边形ABCD 为正方形, ∴90BAE D ∠=∠=︒,AB AD =, 在ABE 和DAF 中,∵AB AD BAE D AE DF =⎧⎪=⎨⎪=⎩∠∠, ∴ABE DAF SAS ≌(), ∴ABE DAF ∠=∠, ∵90ABE BEA ∠+∠=︒, ∴90DAF BEA ∠+∠=︒, ∴90AGE BGF ∠=∠=︒, ∵点H 为BF 的中点, ∴12GH BF =, ∵5BC =、523CF CD DF ===--,∴BF =,∴122GH BF ==,【考点】正方形的性质、全等三角形的判定与性质、直角三角形两锐角互余13.43π 【解答】解:∵90B ∠=︒,30C ∠=︒, ∴60A ∠=︒, ∵OA OF =,∴AOF 是等边三角形, ∴120COF ∠=︒, ∵2OA =,∴扇形OGF 的面积为:12044=3603π⨯π ∵OA 为半径的圆与CB 相切于点E ,9 / 18∴90OEC ∠=︒, ∴24OC OE ==, ∴6AC OC OA =+=, ∴132AB AC ==,∴由勾股定理可知:BC =∴△ABC的面积为:312⨯⨯∵△OAF的面积为:122⨯4433ππ-43π【考点】扇形面积公式 14.【答案】10【解析】解:这个几何体的搭法共有4种:如下图所示:故答案为:4.【考点】几何体的三视图 三、作图题1015.【答案】【解析】解:∵点P 在ABC ∠的平分线上,∴点P 到ABC ∠两边的距离相等(角平分线上的点到角的两边距离相等), ∵点P 在线段BD 的垂直平分线上,∴PB PD =(线段的垂直平分线上的点到线段的两个端点的距离相等),如图所示:【考点】复杂作图、角平分线的性质、线段的垂直平分线的性质 四、解答题16.【答案】解:(1)解不等式213x -<,得:5x <, 解不等式21614x +>,得:1x >-, 则不等式组的解集为15x -<<;(2)原式212()(1)(1)x x xx x x x +=-+- 2(x 1)=(x 1)(x 1)xx -+-11 / 18 1=1x x -+. 【考点】本题主要考查分式的混合运算和解一元一次不等式组【解析】(1)先求出各不等式的解集,再求出其公共解集即可.(2)根据分式的混合运算顺序和运算法则计算可得.17.【答案】解:不公平,列表如下:4 5 6 48 9 10 59 10 11 6 10 11 12由表可知,共有9种等可能结果,其中和为偶数的有5种结果,和为奇数的有4种结果, 所以按照小明的想法参加敬老服务活动的概率为59,按照小亮的想法参加文明礼仪宣传活动的概率为49, 由5499≠知这个游戏不公平; 【解析】首先根据题意列表,然后根据表求得所有等可能的结果与和为奇数、偶数的情况,再利用概率公式求解即可.【考点】列表法求概率18.【答案】(1)解:参与问卷调查的学生人数为8210%100+÷=()人,故答案为:100;(2)解:读4本的女生人数为10015%105⨯-=人,读2本人数所占百分比为20+18100%38%100⨯=, 补全图形如下:(3)估计该校学生一个月阅读2本课外书的人数约为150038%570⨯=人.【解析】(1)由读书1本的人数及其所占百分比可得总人数;(2)总人数乘以读4本的百分比求得其人数,减去男生人数即可得出女生人数,用读2本的人数除以总人数可得对应百分比;(3)总人数乘以样本中读2本人数所占比例.【考点】条形统计图和扇形统计图的综合运用19.【答案】解:作OM BC ⊥于M ,ON AC ⊥于N ,则四边形ONCM 为矩形,∴ON MC =,OM NC =,设OM x =,则NC x =,840AN x =-,在Rt ANO 中,45OAN ∠=︒,∴840ON AN x ==-,则840MC ON x ==-,在Rt BOM 中,7tan 24OM BM x OBM ==∠, 由题意得,784050024x x +=-, 解得,480x =, 答:点O 到BC 的距离为480 m .【解析】作OM BC ⊥于M ,ON AC ⊥于N ,设OM x =,根据矩形的性质用x 表示出OM 、MC ,根据正13 / 18切的定义用x 表示出BM ,根据题意列式计算即可.【考点】解直角三角形的应用20.【答案】解:(1)设反比例函数的解析式为k y x=, ∵反比例函数的图象经过点4,3A -(-),∴4(3)12k =-⨯=-, ∴反比例函数的解析式为12y x=, ∵反比例函数的图象经过点1(2)B m y ,,2(6,)C m y , ∴11262y m m==,2122=6m m y =, ∵124y y =-, ∴624m m-=, ∴1m =;(2)设BD 与x 轴交于点E . ∵点6(2,)B m m ,2(6,)C m m ,过点B 、C 分别作x 轴、y 轴的垂线,两垂线相交于点D , ∴2(2,)D m m ,624BD m m m=-=. ∵三角形PBD 的面积是8, ∴1•82BD PE =, ∴14•82PE m =, ∴4PE m =,∵(2,0)E m ,点P 在x 轴上,∴点P 坐标为(2,0)m -或(6,0)m .【解析】(1)先根据反比例函数的图象经过点(4,3)A --,利用待定系数法求出反比例函数的解析式为12y x=,再由反比例函数图象上点的坐标特征得出11262y m m ==,21226y m m==,然后根据124y y =-列出方程624m m-=,解方程即可求出m 的值; (2)设BD 与x 轴交于点E .根据三角形PBD 的面积是8列出方程1482PE m=,求出4PE m =,再由(2,0)E m ,点P 在x 轴上,即可求出点P 的坐标.【考点】待定系数法求反比例函数的解析式21.【答案】(1)证明:∵四边形ABCD 是平行四边形,∴BE CD ∥,AB CD =,∴AFC DCG ∠=∠,∵GA GD =,AGF CGD ∠=∠,∴AGF DGC ≌,∴AF CD =,∴AB CF =.(2)解:结论:四边形ACDF 是矩形.理由:∵AF CD =,AF CD ∥,∴四边形ACDF 是平行四边形,∵四边形ABCD 是平行四边形,∴120BAD BCD ∠=∠=︒,∴60FAG ∠=︒,∵AB AG AF ==,∴AFG 是等边三角形,∴AG GF =,15 / 18∵AGF DGC ≌,∴FG CG =,∵AG GD =,∴AD CF =,∴四边形ACDF 是矩形.【解析】(1)只要证明AB CD =,AF CD =即可解决问题;(2)结论:四边形ACDF 是矩形.根据对角线相等的平行四边形是矩形判断即可;【考点】平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质22.【答案】解:(1)21(6)(26)8032236W x x x x =--+-=-+-.(2)由题意:22032236x x =+--.解得:16x =,答:该产品第一年的售价是16元.(3)由题意:716x ≤≤,22(5)(26)2031150W x x x x =--+-=-+-,∵716x ≤≤,∴7x =时,2W 有最小值,最小值18=(万元),答:该公司第二年的利润2W 至少为18万元.【解析】(1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;(2)构建方程即可解决问题;(3)根据题意求出自变量的取值范围,再根据二次函数,利用而学会设的性质即可解决问题;【考点】二次函数的应用、一元二次方程的应用23.【答案】22(n 1)m +(1)n m +[](1)(1)(1)m n n m s ++++(1)(1)m n s ++41320【解析】解:问题(一):当4m =,2n =时,横放木棒为421⨯+()条,纵放木棒为412+⨯()条,共需22条;问题(二):当矩形框架横长是m ,纵长是n 时,横放的木棒为(n 1)m +条,纵放的木棒为(1)n m +条; 问题(三):当长方体框架的横长是m ,纵长是n ,高是s 时,横放与纵放木棒条数之和为[](1)(1)(1)m n n m s ++++条,竖放木棒条数为(1)(1)m n s ++条.实际应用:这个长方体框架的横长是 s ,则:[]32(1)5(1)34170m m m ++⨯++⨯⨯=,解得4m =,拓展应用:若按照如图2方式搭建一个底面边长是10,高是5的正三棱柱框架,横放与纵放木棒条数之和为1656990⨯=条,竖放木棒条数为605330⨯=条需要木棒1320条.故答案为22,(n 1)m +,(1)n m +,[](1)(1)(1)m n n m s ++++,(1)(1)m n s ++,4,1320;【考点】规律型—图形变化类问题24.【答案】解:(1)如图作DH AB ⊥于H ,则四边形DHBC 是矩形,∴8CD BH ==,6DH BC ==,∴8AH AB BH ==-,10AD ==,10BD ==,由题意102AP AD DP t ==--.(2)作PN AB ⊥于N .连接PB .在Rt APN 中,102PA t =-, ∴3•sin (102t)5PN PA DAH =∠=-,4•cos (102)5AN PA DAH t =∠=-, ∴41616(102)5BN AN t ==--﹣, 21313654(162t)(102t)616(102t)72252555PQB BCP S S S t t ⎡⎤=+=--+⨯⨯--=-+⎢⎥⎣⎦ (3)当PQ BD ⊥时,90PQN DBA ∠+∠=︒,∵90QPN PQN ∠+∠=︒,∴QPN DBA ∠=∠,∴3tan 5QN QPN PN ∠==, ∴4(102t)2t 3535(102t)5--=-, 解得3527t =, 经检验:3527t =是分式方程的解,17 / 18∴当35s 27t =时,PQ BD ⊥. (4)存在.理由:连接BE 交DH 于K ,作KM BD ⊥于M .当BE 平分ABD ∠时,KBH KBM ≌,∴KH KM =,8BH BM ==,设KH KM x ==,在Rt DKM 中,222()62x x =+-, 解得83x =, 作EF AB ⊥于F ,则AEF QPN ≌, ∴3(102t)5EF PN ==-,4(102t)2t 5AF QN ==--, ∴4[(102)2t]516B t F --=-, ∵KH EF ∥, ∴KH BH EF BF=, ∴88334102)16[(102]55t t t =---()-2 解得:25s 18t =, 经检验:25s 18t =是分式方程的解, ∴当25s 18t =时,点E 在ABD ∠的平分线.【解析】(1)如图作DH AB ⊥于H 则四边形DHBC 是矩形,利用勾股定理求出AD 的长即可解决问题;(2)作PN AB ⊥于N .连接PB ,根据PQB BCP S S S =+,计算即可;(3)当PQ BD ⊥时,90PQN DBA ∠+∠=︒,90QPN PQN ∠+∠=︒,推出QPN DBA ∠=∠,推出3tan 5QN QPN PN ∠==,由此构建方程即可解解题问题; (4)存在.连接BE 交DH 于K ,作KM BD ⊥于M .当BE 平分ABD ∠时,KBH KBM ≌,推出,8KH KM BH BM ===,设KH KM x ==,在Rt DKM 中,22(6)22x x =+-,解得83x =,作EF AB ⊥于F ,则AEF QPN ≌,推出3(102t)5EF PN ==-,4(102t)2t 5AF QN ==--,推出416(102t)2t 5BF ⎡⎤=---⎢⎥⎣⎦,由KH EF ∥,可得KH BH EF BF =,由此构建方程即可解决问题; 【考点】解直角三角形、锐角三角函数、全等三角形的判定和性质、平行线分线段成比例定理。
【3套试卷】中考数学免费试题及答案
![【3套试卷】中考数学免费试题及答案](https://img.taocdn.com/s3/m/c5d8559c84254b35effd3426.png)
中考一模数学试卷及答案一、选择题(共10 题,每小题3分,共30分)1. 由5a=6b(a≠0,b≠0),可得比例式( )A.B.C.D.2.若△ABC∽△DEF,相似比为3∶2,则对应面积的比为( )A.3∶2 B.3∶5 C.4∶9 D.9∶43.如图是由几个大小相同的小立方块所搭成的几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是( )A.B.C.D.4.如图,下列条件中,可以判定△ACD和△ABC相似的是( )A.B.C.AC2=AD·AB D.CD2=AD·BD 5.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于( )A.B.C.D.6.如图,沿AC方向修山路,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=145°,BD=500米,∠BDE=55°,使A、C、E在一条直线上,那么点E与D的距离是( )A.500cos55°米B.500cos35°米C.500sin55°米D.500tan55°米7.已知反比例函数,则下列结论中不正确的是( )A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小8.小明和同学约好周末去公园游玩,他从学校出发,全程2.1千米,此时距他和同学的见面时间还有18分钟,已知他每分钟走90米,途中发现自己可能迟到,于是改骑共享单车,速度为每分钟210米,如果小明不迟到,至少骑车多少分钟?设骑车x分钟,则列出的不等式为( )A.210x+90(18-x)<2.1B.210x+90(18-x)≥2100C.210x+90(18-x)≤2100D.210x+90(18-x)≥2.19.如图所示,河堤横断面迎水坡AB的坡比是1∶,堤高BC=5 m,则坡面AB的长是( )A.10 m B.m C.15 m D.m10.已知二次函数的图象如图所示,则反比例函数与一次函数的图象可能是( )A.B.C.D.二、填空题(共6 题,每小题3分,共18分)11. 已知反比例函数的图像经过点(-3,-1),则k= .12.已知,将如图的三角板的直角顶点放置在直线AB上的点O处,使斜边CD∥AB.则∠α的余弦值为.13.如图,路灯距离地面8 m,身高1.6 m的小明站在距离灯的底部(点O)20 m的A处,则小明的影子AM的长为 m.14.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为.15.已知一个圆锥的三视图如图所示,则这个圆锥的侧面积为.16.如图,平行于x轴的直线与函数(k1>0,x>0),(k2>0,x>0)的图象分别交于A,B两点,点A在点B的右侧,C为x轴上的一个动点.若△ABC的面积为4,则k1-k2的值为.三、解答题(共9 题,72分)17.(4分)计算:.18.(4分)如图已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2∶1.19.(4分)如图,在△ABC中,AD⊥BC于点D,AB=8,∠ABD=30°,∠CAD=45°,求BC的长.20.(6分)某气球内充满了一定量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气球内的气压大于140 kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01 m3)21.(8分)如图:直线y=x与反比例函数(k>0)的图象在第一象限内交于点A(2,m).(1)求m、k的值;(2)点B在y轴负半轴上,若△AOB的面积为2,求AB所在直线的函数表达式.22.(10 分)如图,在正方形ABCD中,点G在边BC上(不与点B,C重合),连接AG,作DE⊥AG于点E,BF⊥AG于点F,设.(1)求证:AE=BF;(2)连接BE,DF,设∠EDF=α,∠EBF=β.求证:23.(10 分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.(1)求证:AC平分∠DAB;(2)若,求tan∠BDC的值.24.(12 分)已知:A(a,y1),B(2a,y2)是反比例函数(k>0)图象上的两点.(1)比较y1与y2的大小关系;(2)若A、B两点在一次函数第一象限的图象上(如图所示),分别过A、B两点作x轴的垂线,垂足分别为C、D,连接OA、OB,且,求a的值;(3)在(2)的条件下,如果3m=﹣4x+24,,求使得m>n的x的取值范围.25.(14 分)在平面直角坐标系中,点A(m,m+1)在反比例函数的图象上.(1)求点A的坐标;(2)若直角∠NAM绕点A旋转,射线AN分别交x轴、y轴于点B、N,射线AM交x轴于点M,连接MN.①当点B和点N分别在x轴的负半轴和y轴的正半轴时,若△BAM∽△MON,求点N的坐标;②在直角∠NAM绕点A旋转的过程中,∠AMN的大小是否会发生变化?请说明理由.答案:1-5 BDCCB6-10 ADBAC11.312.13.514. 915.16.817.解:原式.18.解:(1)如图所示,点C1的坐标是(2,﹣2);(2)如图所示.19.解:∵AD⊥BC于点D,∴∠ADB=∠ADC=90°.在Rt△ABD中,∵AB=8,∠ABD=30°,∴,.在Rt△ADC中,∵∠CAD=45°,∠ADC=90°,∴∠ACD=∠CAD=45°∴DC=AD=4,∴.20.解:(1)设,由题意知,所以k=96,故该函数的解析式为;(2)当P=140 kPa时,(m3).所以为了安全起见,气体的体积应不少于0.69 m3.21.解:(1)∵直线y=x经过点A(2,m),∴m=2,∴A(2,2),∵A在的图象上,∴k=4.(2)设B(0,n),由题意:,∴n=﹣2,∴B(0,﹣2),设AB所在直线的解析式为y=k′x+b,则有,∴,∴AB所在直线的解析式为y=2x﹣2.22.解:(1)∵四边形ABCD是正方形,∴∠BAF+∠EAD=90°,又∵DE⊥AG,∴∠EAD+∠ADE=90°,∴∠ADE=∠BAF,又∵BF⊥AG,∴∠DEA=∠AFB=90°,又∵AD=AB∴Rt△DAE≌Rt△ABF,∴AE=BF(2)易知Rt△BFG∽Rt△DEA,所以,在Rt△DEF和Rt△BEF中,,∴∴23.(1)证明:∵DC是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴AD∥CO,∴∠DAC=∠ACO,∵OA=OC,∴∠OAC=∠ACO,∴∠DAC=∠CAO,∴AC平分∠DAB.(2)解:设线段AD与⊙O相交于点M如图,连接BM、OC交于点N.∵AB是直径,∴∠AMB=90°,由(1)知AD∥OC,∴∠ONB=∠AMB=90°=∠CNB,由垂径定理可知MN=BN∵OC=OB,∴∠OCB=∠OBC,∴,设BN=4k,BC=5k,则CN=3k,∵∠CDM=∠DMN=∠DCN=90°,∴四边形DMNC是矩形,∴DM=CN=3k,MN=BN=4k,CD∥BM,∴∠CDB=∠DBM,∴.24.解:(1)∵A、B是反比例函数(k>0)图象上的两点,∴a≠0,当a>0时,A、B在第一象限,由a<2a可知,y1>y2,同理,a<0时,y1<y2;(2)∵A(a,y1)、B(2a,y2)在反比例函数(k>0)的图象上,∴,,∴y1=2y2.又∵点A(a,y1)、B(2a,y2)在一次函数的图象上,∴,,∴,∴b=4a,∵又∵∴∴,∴a2=4,∵a>0,∴a=2.(3)由(2)得,A(2,),B(4,),将A,B两点代入得解得∴一次函数的解析式为,反比例函数的解析式为:,A、B两点的横坐标分别为2、4,∵3m=﹣4x+24,,∴、,因此使得m>n的x的取值范围就是反比例函数的图象在一次函数图象下方的点中横坐标的取值范围,从图象可以看出2<x<4或x<0.25.解:(1)∵点A(m,m+1)在反比例函数的图象上.∴;解得m1=3,m2=-4∵m>0,∴m=3,∴点A的坐标是(3,4).(2)①如图,过点A作AC⊥y轴于C,作AD⊥x轴于D,则AC=3,AD=4,∠ACN=∠ADM=90°,设ON=x,则CN=4﹣x,∵△BAM∽△MON,∴∠ABM=∠NMO∴NB=NM,∵NO⊥BM,∴OB=OM=OA=5∵CA∥BO,∴△CAN∽△OBN,∴∴,解得∴点N的坐标为(0,);②在直角∠NAM绕点A旋转的过程中,∠AMN的大小不会发生变化.理由:当点B和点N分别在x轴的负半轴和y轴的正半轴时,∵∠CAD=∠NAM=90°,∴∠CAN=∠DAM,∴△CAN∽△DAM,∴∴∴∠AMN的大小不会发生变化.当点B和点N分别在x轴的非负半轴和y轴的非正半轴时,同理可证∠AMN的大小不会发生变化.中考第一次模拟考试数学试卷姓名:得分:日期:一、选择题(本大题共10 小题,共40 分)1、(4分) 点关于原点对称的点的坐标是()A. B. C. D.2、(4分) 下列事件中,属于随机事件的是()B.某篮球运动员投篮一次,命中.A.掷一枚质地均匀的正方体骰子,向上的一面点数小于7C.在只装了红球的袋子中摸到黑球D.在三张分别标有数字2,4,6,的卡片中摸两球,数字和是偶数3、(4分) 如图,点E在四边形ABCD的边BC的延长线上,则下列两个角是同位角的是()A.和B.C.D.4、(4分) 下列事件中,最适合采用全面调查的是()A.对某班全体学生出生日期的调查B.对全国中小学生节水意识的调查C.对某批次的灯泡使用寿命的调查.D.对厦门市初中学生每天阅读时间的调查5、(4分) 对于的图象,下列叙述正确的是()B.开口向下A.顶点坐标为C.当,y随x的增大而增大D.对称轴是直线6、(4分) 青山村种的水稻2010年平均每公顷产7200kg,设水稻每公顷产量的年平均增长率为x,则2012年平均每公顷比2011年增加的产量是()A. B. C. D.7、(4分) 如图,正六边形中,分别是的中点,绕正六边形的中心经逆时针旋转后与重合,则旋转角度是()A.60°B.90°C.120°D.180°8、(4分) 已知两个不同的一元二次方程的判别式互为相反数,下列判断正确的是()A.两个方程一定都有解B.两个方程一定没有解C.两个方程一定有公共解D.两个方程至少一个方程有解.9、(4分) 某创意工作室6位员工的月工资如图所示,因业务需要,现决定招聘一名新员工,若新员工的工资为元,则下列关于现在7位员工工资的平均数和方差的说法正确的是()A.平均数不变,方差变大B.平均数不变,方差变小C.平均数不变,方差不变D.平均数变小,方差不变10、(4分) 已知(其中为常数,且),乐老师在用描点法画其的图象时,列出如下表格,根据该表格,下列判断中不正确的是()A. B.一元二次方程没有实数根C.当时D.一元二次方程有一根比3大二、填空题(本大题共 6 小题,共24 分)11、(4分) 计算:=12、(4分) 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为13、(4分) 方程的根是14、(4分) 一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是15、(4分) 已知,计算16、(4分) 如图,在菱形中,分别是边的中点,于点P,,则的度数是三、解答题(本大题共9 小题,共86 分)17、(8分) (1)不等式组的解集.(2)先化简,再求值:其中18、(8分) 画出函数的图象19、(8分) 在两个不透明的袋子中分别装入一些相同的纸牌,甲袋内的4张牌分别标记数字1、2、3、4:乙袋内的3张牌分别标记数字2、3、4.从甲、乙两个袋子里分别随机摸出一张牌,求两张牌上的标数相同的概率.20、(8分) 如图,在,以为直径的分别交于点,点F在的延长线上,且.(1)求证:直线是的切线。
2018年安徽省中考数学试卷(答案解析版)
![2018年安徽省中考数学试卷(答案解析版)](https://img.taocdn.com/s3/m/fef19f16b90d6c85ed3ac60d.png)
2018年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每小题4分,满分40分)1. 的绝对值是()A. B. 8 C. D.【答案】B【详解】数轴上表示数-8的点到原点的距离是8,所以-8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.2. 2017年我赛粮食总产量为635.2亿斤,其中635.2亿科学记数法表示()A. B. C. D.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】635.2亿=63520000000,63520000000小数点向左移10位得到6.352,所以635.2亿用科学记数法表示为:6.352×108,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3. 下列运算正确的是()A. B. C. D.【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.4. 一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A. (A)B. (B)C. (C)D. (D)【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【详解】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.5. 下列分解因式正确的是()A. B.C. D.【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. =(x-2)2,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.6. 据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.7. 若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8. 为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:类于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,,=4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,,=6.4,所以只有D选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.9. □ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A. BE=DFB. AE=CFC. AF//CED. ∠BAE=∠DCF【答案】B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.10. 如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为()A. B. C. D.【答案】A【解析】【分析】由已知易得AC=2,∠ACD=45°,分0≤x≤1、1<x≤2、2<x≤3三种情况结合等腰直角三角形的性质即可得到相应的函数解析式,由此即可判断.【详解】由正方形的性质,已知正方形ABCD的边长为,易得正方形的对角线AC=2,∠ACD=45°,如图,当0≤x≤1时,y=2,如图,当1<x≤2时,y=2m+2n=2(m+n)= 2,如图,当2<x≤3时,y=2,综上,只有选项A符合,故选A.【点睛】本题考查了动点问题的函数图象,涉及到正方形的性质,等腰直角三角形的性质,勾股定理等,结合图形正确分类是解题的关键.二、填空题(本大共4小题,每小题5分,满分30分)11. 不等式的解集是___________.【答案】x>10【解析】【分析】按去分母、移项、合并同类项的步骤进行求解即可得.【详解】去分母,得 x-8>2,移项,得 x>2+8,合并同类项,得 x>10,故答案为:x>10.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的基本步骤及注意事项是解题的关键.12. 如图,菱形ABOC的AB,AC分别与⊙O相切于点D、E,若点D是AB的中点,则∠DOE__________.【答案】60°【解析】【分析】由AB,AC分别与⊙O相切于点D、E,可得∠BDO=∠ADO=∠AEO=90°,根据已知条件可得到BD=OB,在Rt△OBD中,求得∠B=60°,继而可得∠A=120°,再利用四边形的内角和即可求得∠DOE 的度数.【详解】∵AB,AC分别与⊙O相切于点D、E,∴∠BDO=∠ADO=∠AEO=90°,∵四边形ABOC是菱形,∴AB=BO,∠A+∠B=180°,∵BD=AB,∴BD=OB,在Rt△OBD中,∠ODB=90°,BD=OB,∴cos∠B=,∴∠B=60°,∴∠A=120°,∴∠DOE=360°-120°-90°-90°=60°,故答案为:60°.【点睛】本题考查了切线的性质,菱形的性质,解直角三角形的应用等,熟练掌握相关的性质是解题的关键.13. 如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是_________ .【答案】y=x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2时,y==3,∴A(2,3),B(2,0),∵y=kx过点 A(2,3),∴3=2k,∴k=,∴y=x,∵直线y=x平移后经过点B,∴设平移后的解析式为y=x+b,则有0=3+b,解得:b=-3,∴平移后的解析式为:y=x-3,故答案为:y=x-3.【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.14. 矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD 是等腰三角形,则PE的长为数___________.【答案】3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.三、解答题15. 计算:【答案】7【解析】【分析】先分别进行0次幂的计算、二次根式的乘法运算,然后再按运算顺序进行计算即可. 【详解】=1+2+=1+2+4=7.【点睛】本题考查了实数的运算,熟练掌握实数的运算法则、0次幂的运算法则是解题的关键.16. 《孙子算经》中有过样一道题,原文如下:“今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.【答案】城中有75户人家.【解析】【分析】设城中有x户人家,根据今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,可得方程x+x=100,解方程即可得.【详解】设城中有x户人家,由题意得x+x=100,解得x=75,答:城中有75户人家.【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列方程进行求解是关键.17. 如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;(2)将线段绕点逆时针旋转90°得到线段.画出线段;(3)以为顶点的四边形的面积是个平方单位.【答案】(1)画图见解析;(2)画图见解析;(3)20【解析】【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.【详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1 B1 A2是正方形,AA1=,所以四边形AA1 B1 A2的在面积为:=20,故答案为:20.【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.18. 观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式: (用含n的等式表示),并证明.【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.【详解】(1)观察可知第6个等式为:,故答案为:;(2)猜想:,证明:左边====1,右边=1,∴左边=右边,∴原等式成立,∴第n个等式为:,故答案为:.【点睛】本题考查了规律题,通过观察、归纳、抽象出等式的规律与序号的关系是解题的关键.19. 为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)【答案】旗杆AB高约18米.【解析】【分析】如图先证明△FDE∽△ABE,从而得,在Rt△FEA中,由tan∠AFE=,通过运算求得AB的值即可.【详解】如图,∵FM//BD,∴∠FED=∠MFE=45°,∵∠DEF=∠BEA,∴∠AEB=45°,∴∠FEA=90°,∵∠FDE=∠ABE=90°,∴△FDE∽△ABE,∴,在Rt△FEA中,∠AFE=∠MFE+∠MFA=45°+39.3°=84.3°,tan84.3°=,∴,∴AB=1.8×10.02≈18,答:旗杆AB高约18米.【点睛】本题考查了解直角三角形的应用,相似三角形的判定与性质,得到是解题的关键.20. 如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【答案】(1)画图见解析;(2)CE=【解析】【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AB、AC有交点,再分别以这两个交点为圆心,以大于这两点距离的一半为半径画弧,两弧交于一点,过点A与这点作射线,与圆交于点E ,据此作图即可;(2)连接OE交BC于点F,连接OC、CE,由AE平分∠BAC,可推导得出OE⊥BC,然后在Rt△OFC中,由勾股定理可求得FC的长,在Rt△EFC中,由勾股定理即可求得CE的长.【详解】(1)如图所示,射线AE就是所求作的角平分线;(2)连接OE交BC于点F,连接OC、CE,∵AE平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在Rt△OFC中,由勾股定理可得FC==,在Rt△EFC中,由勾股定理可得CE==.【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC是解题的关键.21. “校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.【答案】(1)50,30%;(2)不能,理由见解析;(3)P=【解析】【分析】(1)由直方图可知59.5~69.5分数段有5人,由扇形统计图可知这一分数段人占10%,据此可得选手总数,然后求出89.5~99.5这一分数段所占的百分比,用1减去其他分数段的百分比即可得到分数段69.5~79.5所占的百分比;(2)观察可知79.5~99.5这一分数段的人数占了60%,据此即可判断出该选手是否获奖;(3)画树状图得到所有可能的情况,再找出符合条件的情况后,用概率公式进行求解即可.【详解】(1)本次比赛选手共有(2+3)÷10%=50(人),“89.5~99.5”这一组人数占百分比为:(8+4)÷50×100%=24%,所以“69.5~79.5”这一组人数占总人数的百分比为:1-10%-24%-36%=30%,故答案为:50,30%;(2)不能;由统计图知,79.5~89.5和89.5~99.5两组占参赛选手60%,而78<79.5,所以他不能获奖;(3)由题意得树状图如下由树状图知,共有12种等可能结果,其中恰好选中1男1女的8结果共有种,故P==.【点睛】本题考查了直方图、扇形图、概率,结合统计图找到必要信息进行解题是关键.22. 小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?【答案】(1)W1=-2x²+60x+8000,W2=-19x+950;(2)当x=10时,W总最大为9160元.【解析】【分析】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉(50-x)盆,根据盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元,②花卉的平均每盆利润始终不变,即可得到利润W1,W2与x的关系式;(2)由W总=W1+W2可得关于x的二次函数,利用二次函数的性质即可得.【详解】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉[100-(50+x)]=(50-x)盆,由题意得W1=(50+x)(160-2x)=-2x²+60x+8000,W2=19(50-x)=-19x+950;(2)W总=W1+W2=-2x²+60x+8000+(-19x+950)=-2x²+41x+8950,∵-2<0,=10.25,故当x=10时,W总最大,W总最大=-2×10²+41×10+8950=9160.【点睛】本题考查了二次函数的应用,弄清题意,找准数量关系列出函数解析式是解题的关键.23. 如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【答案】(1)证明见解析;(2)∠EMF=100°;(3)证明见解析.【解析】【分析】(1)在Rt△DCB和Rt△DEB中,利用直角三角形斜边中线等于斜边一半进行证明即可得;(2)根据直角三角形两锐角互余可得∠ABC=40°,根据CM=MB,可得∠MCB=∠CBM,从而可得∠CMD=2∠CBM,继而可得∠CME=2∠CBA=80°,根据邻补角的定义即可求得∠EMF的度数;【详解】(1)∵M为BD中点,Rt△DCB中,MC=BD,Rt△DEB中,EM=BD,∴MC=ME;(2)∵∠BAC=50°,∠ACB=90°,∴∠ABC=90°-50°=40°,∵CM=MB,∴∠MCB=∠CBM,∴∠CMD=∠MCB+∠CBM=2∠CBM,同理,∠DME=2∠EBM,∴∠CME=2∠CBA=80°,∴∠EMF=180°-80°=100°;(3)∵△DAE≌△CEM,CM=EM,∴AE=EM,DE=CM,∠CME=∠DEA=90°,∠ECM=∠ADE,∵CM=EM,∴AE=ED,∴∠DAE=∠ADE=45°,∴∠ABC=45°,∠ECM=45°,又∵CM=ME=BD=DM,∴DE=EM=DM,∴△DEM是等边三角形,∴∠EDM=60°,∴∠MBE=30°,∵CM=BM,∴∠BCM=∠CBM,∵∠MCB+∠ACE=45°,∠CBM+∠MBE=45°,∴∠ACE=∠MBE=30°,∴∠ACM=∠ACE+∠ECM=75°,连接AM,∵AE=EM=MB,∴∠MEB=∠EBM=30°,∠AME=∠MEB=15°,∵∠CME=90°,∴∠CMA=90°-15°=75°=∠ACM,∴AC=AM,∵N为CM中点,∴AN⊥CM,∵CM⊥EM,∴AN∥CM.【点睛】本题考查了三角形全等的性质、直角三角形斜边中线的性质、等腰三角形的判定与性质、三角形外角的性质等,综合性较强,正确添加辅助线、灵活应用相关知识是解题的关键.。
七数上(RJ)-2018年甘肃省兰州市中考数学试卷含答案(Word版)--2018年各地中考真题
![七数上(RJ)-2018年甘肃省兰州市中考数学试卷含答案(Word版)--2018年各地中考真题](https://img.taocdn.com/s3/m/b8071d03f111f18583d05af7.png)
甘肃省兰州市2018年中考数学试卷(解析版)一、选择题(本大题共12小题,每小题4分,共48分) 1.-2018的绝对值是( C ).2.如图是有5个完全相同的小正方形组成的几何体,则该几何体的主视图是( A ).A .B .C .D .3.据中国电子商务研究中心(100EC .CN )发布《2017年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资.数据1159.56亿元用科学计数法可表示为( C ) A.1159.56×108元 B.11.5956×1010元 C.1.15956×1011元 D.1.15956×108元4.下列二次根式中,是最简二次根式的是( B ).A.18B.13C.27D.12 5如图,AB//CD,AD =CD ,∠1=65°则∠2的度数是( A ) A .50° B .60° C .65° D .70°6.下列计算正确的是( D )A.ab a a 532=⋅B.1243a a a =⋅C.24226)3-b a b a =( D.22352a a a a =+÷ 7.如图,边长为4的等边△ABC 中,D 、E 分别是AB 、AC 的中点,则△ADE 的面积是( A )A.3B.23 C.433 D.328.如图,矩形ABCD 中,AB =3,BC =4,BE//DF 且BE 与DF 之间的距离为3,则AE 的长度是( C ) A. 7 B .83 C .87 D .859.如图,将口ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F .若∠ABD =48°,∠CFD =40°,则∠E 为( B ) A .102° B .112° C .122° D .92°(第7题)C AE D BABCDEF10.关于x 的分式方程112=++x ax 的解为负数,则a 的取值范围为( D ) A. a >1 B .a <1 C .a <1且a ≠-2 D .a >1且a ≠2D.解析:化简得x =a -1<0(x ≠-1)即a>1且a ≠2.11.如图,已知二次函数)0(2≠++=a c bx ax y 的图像如图所示,有下列5个结论: ①0>abc ;②b -a >c ;③)1)((b a ;a 3024的实数>⑤>;④>≠++-++m b am m c c b a .其中正确的结论有( B ) A.①②③ B.②③⑤ C.②③④ D.③④⑤B.解析:开口向下,a<0,与y 轴交点在上方,c>0,021>ab x x -=+,即b>0,故0<abc ;x =-1时,y =a -b +c<0,故b -a>c ;x =2时,y =4a +2b +c<0;acx x =21是2到3之间的数x -1到0之间的数>-3,故3a<-c ;⑤式化解得,0)(2<+-+b a bm am ,0)1()1(2<b m a m -+-,无论m 大于1还是≤1,该式总成立,故⑤成立,即答案为B .12.如图,抛物线2457212+-=x x y 与x 轴的交于点A 、B ,把抛物线在x 轴即其下方的部分记作C 1,将C 1向左平移得C 2,C 2与x 轴的交于点B 、D .若直线m x y +=21与C 1、C 2共有三个不同的交点,则m 的取值范围是( C )A.25-m 845<<-B.21-m 829<<-C.25-m 829<<-D.21-m 845<<- C.解析:在y =2457212+-x x 中,令y =0,解得x 1=9,x 2=5,∴点A ,B 的坐标分别为(9,0),(5,0).∵C 2是由C 1向左平移得到的,∴点D 的坐标为(1,0),C 2对应的函数解析式为y =AEBDCFyODABC 2C 1第11题图xO y-1123212--)(x =253212+-x x (1≤x≤5).当直线y =m x +21与C 2相切时,可知关于x 的一元二次方程253212+-x x =m x +21有两个相等的实数根,即方程x 2-7x +5-2m =0有两个相等的实数根,∴Δ=(-7)2-4×1×(5-2m )=0,解得m =829-.当直线y =m x +21过点B 时,可得0=m +⨯521,解得m =25-.如图,故当829-<m<25-,直线y =m x +21与C 1,C 2共有3个不同的交点.二、填空题:本大题共4小题,每小题3分,共24分. 13.因式分解:32y y x -= .y(x +y)(x -y)14.不等式组⎪⎩⎪⎨⎧>+->+x x x x 32-133475)1(2的解集为 .-1<x<3.15.如图,△ABC 的外接圆O 的半径为3,∠C =55°,则劣弧AB 的长是 .π211.13. 如图,M 、N 是正方形ABCD 的边CD 上的两个动点,满足AM =BN ,连接AB 交BN 于点E ,连接DE 交AM 于点F ,连接CF ,若正方形的边长为6,则线段CF 的最小值是 .OA CBN 第16题图 M F E D B AC353-三、解答题(本大题共11小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(5分)计算:()︒+++⎪⎭⎫ ⎝⎛--45tan 2-13-2102π.解:2-71)12(14=+--+=原式.18.解方程:02232=--x x . 解:移项,得3x 2-2x =2,配方,得3(x -31)2=37, 解得x 1=371+,x 2=371- .19.先化简,再求值:12)143(--÷---x x x x x ,其中21=x .解:原式=211442--⋅-+-x x x x x =2+x ,代入21=x 得原式=25.20. (6分)如图,在Rt △ABC 中.(1)利用尺度作图,在BC 边上求作一点P ,使得点P 到AB 的距离(PD 的长)等于PC 的长; (2)利用尺规作图,作出(1)中的线段PD .(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)解:∠A 的角平分线作法.作图略. 21.(7分)学校开展“书香校园”活动以来,受到同学们的广泛帮助,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计图表.学生借阅图书的次数统计表 学生借阅图书的次数统计图 借阅图书的次数 0次 1次 2次 3次 4次及以上人数 7 13 a 10 3请你根据统计图表中的信息,解答下列问题: (1)a = ,b = ;(2)该调查统计数据的中位数是 ,众数是 ; (3)请计算扇形统计图中的“3次”所对应的圆心角的度数;C A B第20题图 2次 0次 1次 26% 3次 b% 4次及以上(4)若该校共有2000名学生,根据调查结果,统计该校学生在一周内借阅图书“4次及以上”的人数.解:(1)17,20%.310137%2613----÷=a =17,b =()%261310÷÷=20%;(2)10,10.由中位数和众数的定义即可得;(3)72°.360°⨯20%=72°; (4)120人.1205032000=⨯(人) 22.(7分)在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状是、大小完全相同.李强从布袋里随机取出一个小球,记下数字为x ,王芳在剩下的3个小球中随机取出一个小球,记下数字为y ,这样就确定了点M 的坐标(x ,y ). (1)画树状图或列表,写出点M 所有可能的坐标; (2)求点M (x ,y )在函数y =x +1的图像上的概率.解:(1)x 1 1 1 2 2 2 3 3 3 4 4 4 y 2 3 4 1 3 4 1 2 4 1 2 3 (2)41.解:一共12个点坐标,有三个点坐标在上面.23. (7分)如图,斜坡BE ,坡顶B 到水平地面的距离AB 为3米,坡底AE 为18米,在B 处,E 处分别测得CD 顶部点D 的仰角为30°,60°.求CD 的高度.(结果保留根)解:过B 点作CD 的垂线,垂足为F,设CD =x 米,则DF =(x -3)(米),BF =AC ,BF =)x(330tan 米=︒DE,AC =AE +CE=x CD 331830tan 18+=︒⋅+,即x x 33183+=, 解得,39=x ,即CD 长为93米.24.(7分)某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商家管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天起每天的单价均比前一天降1元,通过市场调查发现,该商品单价每降1元,每天的销售量增加2件,设第x 天(1≤x≤30,且x 为整数)的销量为y 件. (1)直接写出y 与x 的函数关系式;(2)设第x 天的利润为w 元,试求出w 与x 之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?解:(1)y =38+2x ;解析:y =40+2(x -1)=2x +38;(2)()()[]1580145382----+=x x w =()20412122+--x故x =21时,w 值最大,为2041元,即第21天时,利润最大,最大利润为2041元.25.(8分)如图,在平面直角坐标系中,一次函数y 1=ax +b 的图像与反比例函数xky =2的图像交于点A (1,2)和B (-2,m ).(1)求一次函数和反比例函数的表达式;B A DC F E(2)请直接写出21y >y 时,x 的取值范围;(3)过点B 做BE//x 轴,BE AD ⊥于点D ,点C 是直线BE 上一点,若AC =2CD ,求点C 的坐标.解:(1)xy x y 2;121=+=;解析:代入点坐标即可;(3)()),1(0,2+∞- ;解析:观察图像可知;(3)C 点的坐标为()()1-3-11,31,和-+;解析:易知D (1,-1),设C 点坐标为(x ,-1),故AC =223)1(+-x ,BC =1-x ,由AC =2BC 可知,224BC AC =,即()()2221431-=+-x x ,解得313121-=+=x x ,,故C 点的坐标为()()1-3-11,31,和-+. 26.(8分)如图,在∆ABC 中,过点C 作CD//AB ,E 是AC 的中点,连接DE 并延长,交AB 于点F ,交CB 的延长线于点G .连接AD 、CF . (1)求证:四边形AFCD 是平行四边形;(2)若GB =3,BC =6,BF =23,求AB 的长. 证明(1).//)(//是平行四边形四边形又△△又∵的中点是∵AFCD CDAF CD AF ASA CED AEF CEAE CED AEF DCE FAE CD AF CE AE AC E ∴=∴≅∴=∠=∠∠=∠∴=∴(2)y 2 y 1y x DO A E B 第25题图ADCBEFG第26题图6,29,29//=+=∴====∴BF AF AB CD AF CD CD BF GC GB GCD GBF CDBF 又代入数值,可得∽△易得△∵即AB 的长为6. 27.(9分)如图,AB 为圆O 的直径,C 为圆O 上的一点,D 为BA 延长线上的一点,B ACD ∠=∠. (1)求证:DC 为圆O 的切线;(2)线段DF 分别交AC ,BC 于点E ,F ,且CEF ∠=45°,圆O 的半径为5,53sin =B ,求CF 的长.(1)连接OC ,.909090的切线是圆的直径是圆∵∵O CD CD OC OCA DAC OCB OCA ACB O AB OCB OBC OCOB ∴⊥∴︒=∠+∠∴︒=∠+∠∴︒=∠∴∠=∠∴= (2)解析:由∠CEF =45°,∠ACB =90°,可知,∠CFE =∠CEF =45°,即CF =CE . 由53sin =B ,可得AC =6,由勾股定理得,BC =8,设CF =CE =x ,由∠CDE =∠BDF ,∠ECD =∠FBD ,可知,△CED 相似于△BFD ,即①x xCD FD CE BF -==8,由∠CFD =∠AED ,∠EDA =∠FDC ,可知△CFD 相似于△AED ,即②x x ED FD AE CF -==6,联立①②得,724=x ,即CF 的长为724.28.(12分)如图,抛物线42-+=bx ax y 经过A (-3,6),B (5,-4)两点,与y 轴交于点C ,连接AB ,AC ,BC .(1)求抛物线的表达式;(2)求证:AB 平分CAO ∠;(3)抛物线的对称轴上是否存在点M ,使得ABM ∆是以AB 为直角边的直角三角形.若存在,求AFCOB DEy出点M 的坐标;若不存在,说明理由.解:(1)将A ,B 两点的坐标分别代入,得⎩⎨⎧-=-+=--,44525,0439b a b a解得⎪⎪⎩⎪⎪⎨⎧-==,65,61b a故抛物线的表达式为y =465612--=x x y .(2)证明:设直线AB 的表达式为y =kx +b’, 则⎩⎨⎧-=+=+-,4'5,0'3b k b k解得⎪⎪⎩⎪⎪⎨⎧-=-=,23',21b k故直线AB 的表达式为y =2321--x . 设直线AB 与y 轴的交点为点D ,则点D 的坐标为(0,23-). 易得点C 的坐标为(0,-4),则由勾股定理,可得AC =5)04(]30[22=--+--)(. 设点B 到直线AC 的距离为h , 则52132121⨯⨯+⨯⨯=⨯CD CD AC h , 解得h =4.易得点B 到x 轴的距离为4, 故AB 平分∠CAO . (3)存在.易得抛物线的对称轴为直线25=x , 设点M 的坐标为(m ,25).由勾股定理,得AB 2=[5-(-3)]2+(-4-0)2=80,AM 2=[25-(-3)]2+(m -0)2=4121+m 2,BM 2=(25-5)2+[m -(-4)]2=m 2+8m +489. 当AM 为该直角三角形的斜边时, 有AM 2=AB 2+BM 2,即4121+m 2=80+m 2+8m +489,解得m =-9, 故此时点M 的坐标为(25,-9). 当BM 为该直角三角形的斜边时, 有BM 2=AB 2+AM 2,即m 2+8m +489=80+4121+m 2, 解得m =11,故此时点M 的坐标为(25,11). 综上所述,点M 的坐标为(25,-9)或(25,11).。
2018年中考数学真题知识分类练习试卷:方程(含答案)
![2018年中考数学真题知识分类练习试卷:方程(含答案)](https://img.taocdn.com/s3/m/010e1440a45177232f60a24b.png)
方程一、单选题1.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有个,小房间有个.下列方程正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】A2.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x辆,37座客车y辆,根据题意可列出方程组()A. B. C. D.【来源】浙江省温州市2018年中考数学试卷【答案】A3.方程组的解是()A. B. C. D.【来源】天津市2018年中考数学试题【答案】A【解析】分析:根据加减消元法,可得方程组的解.详解:,①-②得x=6,把x=6代入①,得y=4,原方程组的解为.故选A.点睛:本题考查了解二元一次方程组,利用加减消元法是解题关键.4.夏季来临,某超市试销、两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A. B.C. D.【来源】山东省泰安市2018年中考数学试题5.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为()A. -2B. 2C. -4D. 4【来源】江苏省盐城市2018年中考数学试题【答案】B【解析】分析:根据一元二次方程的解的定义,把把x=1代入方程得关于k的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0,解得k=2.故选:B.点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.6.已知关于的一元二次方程有两个不相等的实数根,若,则的值是( )A. 2B. -1C. 2或-1D. 不存在【来源】山东省潍坊市2018年中考数学试题【答案】A7.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A. 2%B. 4.4%C. 20%D. 44%【来源】四川省宜宾市2018年中考数学试题【答案】C8.一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A. ﹣2B. 1C. 2D. 0【来源】四川省宜宾市2018年中考数学试题【答案】D【解析】分析:根据根与系数的关系可得出x1x2=0,此题得解.详解:∵一元二次方程x2﹣2x=0的两根分别为x1和x2,故选D.点睛:本题考查了根与系数的关系,牢记两根之积等于是解题的关键.学科#网9.关于的一元二次方程的根的情况是()A. 有两不相等实数根B. 有两相等实数根C. 无实数根D. 不能确定【来源】湖南省娄底市2018年中考数学试题【答案】A【解析】【分析】根据一元二次方程的根的判别式进行判断即可.【详解】,△=[-(k+3)]2-4k=k2+6k+9-4k=(k+1)2+8,∵(k+1)2≥0,∴(k+1)2+8>0,即△>0,∴方程有两个不相等实数根,故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.10.关于的一元二次方程有两个实数根,则的取值范围是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】C11.欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是()A. 的长B. 的长C. 的长D. 的长【来源】2018年浙江省舟山市中考数学试题12.若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【来源】安徽省2018年中考数学试题【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a 的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13.一元二次方程根的情况是()A. 无实数根B. 有一个正根,一个负根C. 有两个正根,且都小于3D. 有两个正根,且有一根大于3【来源】山东省泰安市2018年中考数学试题【答案】D【解析】分析:直接整理原方程,进而解方程得出x的值.详解:(x+1)(x﹣3)=2x﹣5整理得:x2﹣2x﹣3=2x﹣5,则x2﹣4x+2=0,(x﹣2)2=2,解得:x1=2+>3,x2=2﹣,故有两个正根,且有一根大于3.故选D.点睛:本题主要考查了一元二次方程的解法,正确解方程是解题的关键.14.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A. B.C. D.【来源】山东省淄博市2018年中考数学试题15.分式方程的解是()A. B. C. D.【来源】四川省成都市2018年中考数学试题【答案】A【解析】分析:观察可得最简公分母是x(x-2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.详解:,去分母,方程两边同时乘以x(x-2)得:(x+1)(x-2)+x=x(x-2),x2-x-2+x=x2-2x,x=1,经检验,x=1是原分式方程的解,故选A.点睛:考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.学科#网16.分式方程的解为()A. B. C. D. 无解【来源】山东省德州市2018年中考数学试题【答案】D17.若数使关于x的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合条件的所有整数的和为()A. B. C. 1 D. 2【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C二、填空题18.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:利用关于x、y的二元一次方程组的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想找到两个方程组的联系再求解的方法更好.详解:∵关于x、y的二元一次方程组的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组整理为:解得:点睛:本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.19.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。
2018年吉林省中考数学试卷(含答案与解析)
![2018年吉林省中考数学试卷(含答案与解析)](https://img.taocdn.com/s3/m/f76b355b58fafab069dc02af.png)
数学试卷 第1页(共46页) 数学试卷 第2页(共46页)绝密★启用前吉林省2018年初中毕业生学业水平考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共12分)一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算(1)(2)-⨯-的结果是( ) A .2B .1C .2-D .3- 2.图是由4个相同的小正方体组成的立体图形,它的主视图是( )ABCD 3.下列计算结果为6a 的是( )A .23a a B .122a a ÷ C .23()aD .23()a -4.如图,将木条a ,b 与c 钉在一起,170︒=∠,250︒∠=,要使木条a 与b 平行,木条a 旋转的度数至少是 ( )A .10︒B .20︒C .50︒D .70︒5.如图,将ABC △折叠,使点A 与BC 边中点D 重合,折痕为MN ,若9AB =,6BC =,则DNB △的周长为( )A .12B .13C .14D .156.国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x 只,兔y 只,可列方程组为( )A .35,2294x y x y +=⎧⎨+=⎩B .35,4294x y x y +=⎧⎨+=⎩C .35,4494x y x y +=⎧⎨+=⎩D .35,2494x y x y +=⎧⎨+=⎩ 第Ⅱ卷(非选择题 共108分)二、填空题(本大题共8小题,每小题3分,共24分.请把答案填在题中的横线上) 7..8.买单价3元的圆珠笔m 支,应付 元.9.若4a b +=,1ab =,则22a b ab += .10.若关于x 的一元二次方程220x x m +-=有两个相等的实数根,则m 的值为 .11.如图,在平面直角坐标系中,(4,0)A ,(0,3)B ,以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,则点C 坐标为 .12.如图是测量河宽的示意图,AE 与BC 相交于点D ,90B C ︒==∠∠,测得120 mBD =,60 m DC =,50 m EC =,求得河宽AB = m .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共46页) 数学试卷 第4页(共46页)13.如图,A ,B ,C ,D 是O 上的四个点,AB BC =,若58AOB ︒=∠,则BDC =∠ 度.14.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k .若12k =,则该等腰三角形的顶角为 度.三、解答题(本大题共12小题,共84分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分5分)某同学化简(2)()()a a b a b a b +-+-出现了错误,解答过程如下: 原式222()2a ab a b =+--(第一步)2222a a b a b=--+(第二步) 22a b b =-(第三步)(1)该同学解答过程从第 步开始出错,错误原因是 ; (2)写出此题正确的解答过程. 16.(本小题满分5分)如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,且BE CF =. 求证:ABE BCF △≌△.17.(本小题满分5分)一个不透明的口袋中有三个小球,上面分别标有字母A ,B ,C ,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.18.(本小题满分5分)在平面直角坐标系中,反比例函数(0)ky k x=≠图象与一次函数2y x =+图象的一个交点为P ,且点P 的横坐标为1,求该反比例函数的解析式.19.(本小题满分7分)根据以上信息,解答下列问题.(1)冰冰同学所列方程中的x 表示 ,庆庆同学所列方程中的y 表示 ; (2)两个方程中任选一个,并写出它的等量关系; (3)解(2)中你所选择的方程,并回答老师提出的问题.数学试卷 第5页(共46页) 数学试卷 第6页(共46页)20.(本小题满分7分)如图是由边长为1的小正方形组成的84⨯网格,每个小正方形的顶点叫做格点,点A ,B ,C ,D 均在格点上,在网格中将点D 按下列步骤移动:第一步:点D 绕点A 顺时针旋转180︒得到点1D ; 第二步:点1D 绕点B 顺时针旋转得90︒到点2D ; 第三步:点2D 绕点C 顺时针旋转90︒回到点D . (1)请用圆规画出点12D D D D →→→经过的路径; (2)所画图形是 对称图形; (3)求所画图形的周长(结果保留π).21.(本小题满分7分)数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺.请帮助组长林平完成方案内容,用含a ,b ,α的代数式表示旗杆AB 的高度. 数学活动方案活动时间:2018年4月2日 活动地点:学校操场 填表人:林平22.(本小题满分7分)为了调查甲、乙两台包装机分装标准质量为400 g 奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题. 收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g )如下: 甲:400,400,408,406,410,409,400,393,394,395 乙:403,404,396,399,402,402,405,397,402,398 整理数据:表一分析数据:表二-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共46页) 数学试卷 第8页(共46页)得出结论:包装机分装情况比较好的是 (填甲或乙),说明你的理由. 23.(本小题满分8分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30 min .小东骑自行车以300 m/min 的速度直接回家,两人离家的路程(m)y 与各自离开出发地的时间(min)x 之间的函数图象如图所示 (1)家与图书馆之间的路程为 m ,小玲步行的速度为 m/min ; (2)求小东离家的路程y 关于x 的函数解析式,并写出自变量的取值范围; (3)求两人相遇的时间.24.(本小题满分8分)如图1,在ABC △中,AB AC =,过AB 上一点D 作DE AC ∥交BC 于点E ,以E 为顶点,ED 为一边,作DEF A =∠∠,另一边EF 交AC 于点F . (1)求证:四边形ADEF 为平行四边形;(2)当点D 为AB 中点时,ADEF 的形状为 ;(3)延长图1中的DE 到点G ,使EG DE =,连接AE ,AG ,FG ,得到图2,若AD AG =,判断四边形AEGF 的形状,并说明理由.图1图225.(本小题满分10分)如图,在矩形ABCD 中, 2 cm AB =,30ADB ︒=∠.P ,Q 两点分别从A ,B 同时出发,点P 沿折线AB BC -运动,在AB 上的速度是2 cm/s ,在BC 上的速度是;点Q 在BD 上以2 cm/s 的速度向终点D 运动,过点P 作PN AD ⊥,垂足为点N .连接PQ ,以PQ ,PN 为邻边作□PQMN .设运动的时间为(s)x ,□PQMN 与矩形ABCD 重叠部分的图形面积为2)(cm y(1)当PQ AB ⊥时,x = ;(2)求y 关于x 的函数解析式,并写出x 的取值范围;(3)直线AM 将矩形ABCD 的面积分成1:3两部分时,直接写出x 的值.备用图26.(本小题满分10分)如图,在平面直角坐标系中,抛物线223(0)y ax ax a a =+-<与x 轴相交于A ,B 两点,与y 轴相交于点C ,顶点为D ,直线DC 与x 轴相交于点E . (1)当1a =-时,抛物线顶点D 的坐标为 ,OE = ; (2)OE 的长是否与a 值有关,说明你的理由; (3)设DEO β=∠,4560β︒︒≤≤,求a 的取值范围;(4)以DE 为斜边,在直线DE 的左下方作等腰直角三角形PDE .设(,)P m n ,直接写出n关于m的函数解析式及自变量m的取值范围.数学试卷第9页(共46页)数学试卷第10页(共46页)6吉林省2018年初中毕业生学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】(1)(2)2-⨯-= 故选A . 【考点】有理数的运算. 2.【答案】B【解析】从正面看已知几何体,得到的平面图形是,故选B .【考点】几何体的主视图. 3.【答案】C【解析】23235 a a a a +==,12210122=a a a a -=÷,36223)=(a a a ⨯=,236()a a -=-,故选C . 【考点】整式的运算. 4.【答案】B【解析】根据题意,若使木条a 与b 平行,且木条a 旋转度数最少,则木条a 应按顺时针方向旋转的度数为1220︒-=∠∠,故选B .【考点】平行线的性质、旋转的性质. 5.【答案】A【解析】由翻折可知AN DN =,∴DNB △的周长为DN NB BD AN NB BD AB BD ++=++=+,∵9AB =,6BC =,点D 是BC 的中点,∴3BD =,∴DNB △的周长为9312+=,故选A .【考点】轴对称的性质、中点定义. 6.【答案】D【解析】根据题意,因为每只鸡有1个头和2只脚,每只免有1个头和4只脚,由“鸡兔共有35个头”得35x y +=,由“鸡兔共有94只脚”得2494x y +=,列出方程组为35,2494,x y x y +=⎧⎨+=⎩故选D .【考点】列方程组解应用题.第Ⅱ卷二.填空题7.【答案】4.【考点】二次根式的运算.8.【答案】3m【解析】根据题意,每支圆珠笔3元,m支圆珠笔3m元,则应付3m元.【考点】列代数式表示数.9.【答案】4【解析】∵4a b+=,1ab=,∴22()144a b ab ab a b+=+=⨯=.【考点】分解因式,求代数式的值.10.【答案】1-【解析】由题意知2241(=)0m⨯⨯--=∆,解得1m=-,即m的值为1-.【考点】]一元二次方程的根的判别式.11.【答案】(1,0)-【解析】根据题意,由点A的坐标(4,0)得4OA=,由点B的坐标(0,3)得3OB=,在Rt OAB△中,由勾股定理可得5AB=,∴5AC=,∴1OC AC OA=-=,又∵点C在x轴的负半轴上,∴点C的坐标为(1,0)-.【考点】勾股定理、平面直角坐标系内点的坐标.12.【答案】100【解析】∵90B C︒==∠∠,ADB EDC=∠∠,∴ABD ECD△∽△,∵AB BDEC CD=,又120 mBD=,60 mDC=,50 mEC=,则可得100 mAB=,即河宽AB为100 m.【考点】相似三角形的判定和性质.13.【答案】29【解析】如图,作AB所对的圆周角AEB∠,则1=2AEB AOB∠∠,∵°=58AOB∠,°=29AEB∠,又∵AB BC=,∴°29BDC AEB==∠∠.7 / 238【考点】圆周角定理及其推论. 14.【答案】36【解析】由题意可知当12k =时,设这个等腰三角形的顶角为°x .则它的一个底角为°(2)x ,根据三角形的内角和定理得22180x x x ++=,解得36x =,则这个等腰三角形的顶角是°36. 【考点】新定义、等腰三角形的性质、三角形的内角和定理. 三、解答题 15.【答案】(1)二; 去括号法则用错(2)原式222()2a ab a b =+--222()2a a b a b =+--22a b b =+【解析】(1)二; 去括号法则用错(2)原式222()2a ab a b =+--222()2a a b a b =+--22a b b =+评分说明:第(1)题,与“去括号法则用错”等同的说法均给分. 【考点】整式的化简16.【答案】证明:在正方形ABCD 中,9 / 23AB BC =,°90ABC C ==∠∠∵BE CF = ∴ABE BCF △≌△.【解析】证明:在正方形ABCD 中,AB BC =,°90ABC C ==∠∠∵BE CF = ∴ABE BCF △≌△.【考点】正方形的性质、全等三角形的判定. 17.【答案】13【解析】解法一:根据题意.可以画出如下树状图:从树状图可以看出,所有可能出现的结果共有9种,其中小球上字母相同的结果有3种,所以()3193P ==字母相同.10从表中可以看出,所有可能出现的结果共有9种,其中小球上字母相同的结果有3种,所以()3193P ==字母相同. 【考点】随机事件发生的概率.18.【答案】解:∵点P 的横坐标为1,∴1x =, ∵点P 在直线2y x =+上,∴3y =. ∴(1,3)P 将(1,3)P 代人ky x=中,∴3k =. ∴该反比例函数的解析式为3y x=. 【解析】解:∵点P 的横坐标为1,∴1x =, ∵点P 在直线2y x =+上,∴3y =. ∴(1,3)P 将(1,3)P 代人ky x=中,∴3k =. ∴该反比例函数的解析式为3y x=. 【考点】]一次函数、反比例函数的图象与性质. 19.【答案】解:(1)甲队每天修路的长度;甲队修路400米所用的天数(乙队修路600米所的天数). (2)选冰冰所列方程(选第一个方程),甲队修路400米与乙队修路800米所用时间相等; 选庆庆所列方程(选第二个方程),乙队每天修路长度与甲队每天修路长度的差等于20米. (3)选第一个方程:40060020x x =+解方程,得40x =. 经检验:40x =是原分式方程的解且符合题意. ∴40x =.答:甲队每天修路40米. 选第二个方程:11 / 2360040020y y-=.解方程,得10y =. 经检验:10y =是原分式方程的解且符合题意. ∴400=4010. 答:甲队每天修路40米.【解析】解:(1)甲队每天修路的长度;甲队修路400米所用的天数(乙队修路600米所的天数). (2)选冰冰所列方程(选第一个方程),甲队修路400米与乙队修路800米所用时间相等; 选庆庆所列方程(选第二个方程),乙队每天修路长度与甲队每天修路长度的差等于20米. (3)选第一个方程:40060020x x =+解方程,得40x =. 经检验:40x =是原分式方程的解且符合题意. ∴40x =.答:甲队每天修路40米. 选第二个方程:60040020y y-=.解方程,得10y =. 经检验:10y =是原分式方程的解且符合题意. ∴400=4010. 答:甲队每天修路40米. 【考点】列分式方程解应用题. 20.【答案】解:(1)(2)轴.(3)所画图形周长2π42π4=+2=4π+4π=8π24⨯⨯⨯. 【解析】解:(1)(2)轴.(3)所画图形周长2π42π4=+2=4π+4π=8π24⨯⨯⨯. 【考点】]基本作图一一作弧、轴对称图形和中心对称图形的概念、扇形的弧长. 21.【答案】【解析】测量步骤:(1)测角仪. (2)皮尺.计算过程:如图,ADE α=∠,DE BC a ==,BE CD b ==.在Rt ADE △中,角°90AED =∠. ∵tan AE ADE DE=∠. ∴ tan AE ED ADE =∠. ∴ tan αAE a =.∴( tan α)AB AE EB b a =+=+(米). 【解析】测量步骤:(1)测角仪. (2)皮尺.13 / 23计算过程:如图,ADE α=∠,DE BC a ==,BE CD b ==.在Rt ADE △中,角°90AED =∠. ∵tan AEADE DE=∠. ∴ tan AE ED ADE =∠. ∴ tan αAE a =.∴( tan α)AB AE EB b a =+=+(米).【考点】]基本作图一一作弧、轴对称图形和中心对称图形的概念、扇形的弧长. 22.【答案】表二甲,理由:从中位数(众数)角度说,甲的中位数(众数)为标准质量400 g . 乙,理由:从方差角度说,乙的方差小,分装情况更稳定 从平均数角度说,乙的平均数更接近标准质量400 g.【解析】表一表二甲,理由:从中位数(众数)角度说,甲的中位数(众数)为标准质量400 g.乙,理由:从方差角度说,乙的方差小,分装情况更稳定从平均数角度说,乙的平均数更接近标准质量400 g【考点】数据的整理、统计知识的应用.23.【答案】(1)4 000100(2)如图,∵小东从图书馆到家的时间4 00040(h)3003x==,∴40(,0)3D.15 / 23设CD 的解析式为(0)y kx b k =+≠, ∵图像过40(,0)3D 和(0,4 000)C 两点. ∴400,3 4 000.k b b ⎧+=⎪⎨⎪=⎩解得300,4 000.k b =-⎧⎨=⎩∴CD 的解析式为300 4 000y x =-+.∴小乐离家的路程y 与x 的解析式为40300 4 000(0)3y x x =-+≤≤. (3)设OA 的解析式为(0)y k x k ''=≠. ∵图象过点(10,2 000)A , ∴10 2 000k '=,∴200k '=. ∴OA 的解析式为200(010)y x x =≤≤∴200,300 4 000.y x y x =⎧⎨=-+⎩解得8,1 600.x y =⎧⎨=⎩答:两人出发后8分钟相遇. 【解析】(1)4 000 100(2)如图,∵小东从图书馆到家的时间 4 00040(h)3003x ==,∴40(,0)3D .设CD 的解析式为(0)y kx b k =+≠, ∵图像过40(,0)3D 和(0,4 000)C 两点.∴400,3 4 000.k b b ⎧+=⎪⎨⎪=⎩解得300,4 000.k b =-⎧⎨=⎩∴CD 的解析式为300 4 000y x =-+.∴小乐离家的路程y 与x 的解析式为40300 4 000(0)3y x x =-+≤≤. (3)设OA 的解析式为(0)y k x k ''=≠. ∵图象过点(10,2 000)A , ∴10 2 000k '=,∴200k '=. ∴OA 的解析式为200(010)y x x =≤≤∴200,300 4 000.y x y x =⎧⎨=-+⎩解得8,1 600.x y =⎧⎨=⎩ 答:两人出发后8分钟相遇. 【考点】一次函数的应用.24.【答案】(1)如图1,∵DE AC ∥,∴DEF EFC =∠∠图1∵DEF A =∠∠,∴A EFC =∠∠. ∴EF AB ∥.∴四边形ADEF 为平行四边形. (2)菱形(3)结论:四边形AEGF 为矩形.理由:如图2,由(1)知,四边形ADEF 为平行四边形.图2∴AF DE ∥,AD EF =,17 / 23∵EG ED =,∴AF EG ∥, ∴四边形AEGF 是平行四边形, ∵AD AG =,∴AG EF = ∴四边形AEGF 是矩形.【解析】(1)如图1,∵DE AC ∥,∴DEF EFC =∠∠图1∵DEF A =∠∠,∴A EFC =∠∠. ∴EF AB ∥.∴四边形ADEF 为平行四边形. (2)菱形(3)结论:四边形AEGF 为矩形.理由:如图2,由(1)知,四边形ADEF 为平行四边形.图2∴AF DE ∥,AD EF =, ∵EG ED =,∴AF EG ∥, ∴四边形AEGF 是平行四边形, ∵AD AG =,∴AG EF = ∴四边形AEGF 是矩形.【考点】平行线的性质、特殊四边形的判定. 25.【答案】(1)23(2)当203x ≤<时,如图1,过点Q 作QH AB ⊥于H .由题意得QH ,2AP x =.2 2PQMNAP QH S===.∴2y =.当01x ≤<时,如图2,设QM 与AD 交于点G ∴1() 2PQGA y S QG AP QH ==+梯形1(22) 32x x x =-+2+∴2y图1图2图3当12x ≤≤时,如图3∴1() 2PQGA y S QG PN GN ==+梯形1(22) 31)2x x x ⎡⎤=-+--⎣⎦2x -+∴2y -+19 / 23(3)25或47(如图4,如图5)图4图5【解析】(1)23(2)当203x ≤<时,如图1,过点Q 作QH AB ⊥于H .由题意得QH ,2AP x =.2 2PQMNAP QH S===.∴2y =.当01x ≤<时,如图2,设QM 与AD 交于点G ∴1() 2PQGA y S QG AP QH ==+梯形1(22) 32x x x =-+2+∴22y x =图1图2图3当12x ≤≤时,如图3∴1() 2PQGA y S QG PN GN ==+梯形1(22) 31)2x x x ⎡⎤=-+--⎣⎦2x -+∴2y -+ (3)25或47(如图4,如图5)图4图5【考点】矩形的性质、函数的应用、图形的面积. 26.【答案】(1)(1,4)- 3(2)OE 的长与a 值无关21 / 23理由:如图1,∵223y ax ax a =+-,图1∴(0,3)C a -,(1,4)D a ,∴直线CD 的解析式为3y ax a =-,当0y =时,3x =,∴3OE =,∴OE 的长与a 值无关.(3)当45β︒=时,在Rt OCE △中,OC OE =,∵3OE =,3OC a =-∴33a -=,∴1a =-.当60β︒=时,在Rt OCE △中,OC ,∵3OE =,3OC a =-∴3a -=∴a =∴当4560β︒︒≤≤,a的取值范围为1a ≤≥-.(4)1(1)n m m =--<.(如图2)22图1【解析】(1)(1,4)-3(2)OE 的长与a 值无关理由:如图1,∵223y ax ax a =+-,图1∴(0,3)C a -,(1,4)D a ,∴直线CD 的解析式为3y ax a =-,当0y =时,3x =,∴3OE =,23 / 23∴OE 的长与a 值无关.(3)当45β︒=时,在Rt OCE △中,OC OE =,∵3OE =,3OC a =-∴33a -=,∴1a =-.当60β︒=时,在Rt OCE △中,OC ,∵3OE =,3OC a =-∴3a -=∴a =∴当4560β︒︒≤≤,a的取值范围为1a ≤≥-.(4)1(1)n m m =--<.(如图2)图1【考点】在二次函数的图象与性质行分三角函数的运用、等腰直角三角形的性质、数形结合思想.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019年新人教版初中数学中考精品试卷
(1)含答案解析
(时间:120分钟 满分120分)
题号 一
二
三
四
五
六
总分
得分
班级__________ 姓名___________ 学号___________
注意事项:本试卷分选择题和非选择题,满分120分,考试时间120分钟。
一、选择题(每小题4分,共40分)
1、︱-32︱的值是( )
A 、-3
B 、3
C 、9
D 、-9 【答案】C
2、下列二次根式是最简二次根式的是( )
A 、
2
1
B 、8
C 、7
D 、以上都不是 评卷人 得分
【答案】C
3、如图,∠1=∠2,则下列结论一定成立的是()
A 、AB∥CD
B 、AD∥B
C C 、C ∠B=∠D
D 、∠3=∠4
【答案】B
4、把a3-ab2分解因式的正确结果是()
A (a+ab)(a-ab)
B a (a2-b2)
C a(a+b)(a-b)
D a(a-b)2
【答案】C
5、据新华社报道,2004年,在中央一号文件的引领下,中国农业走出了多年的徘徊,粮食生产有望突破4550亿公斤的预期目标,扭转了连续4年减产的局面,这个粮食生产总量用科学记数法可表示为(保留两个有效数字)()
(A)4.5×103亿公斤(B)4.6×103亿公斤
(C)45×102亿公斤(D)46×102亿公斤
【答案】B
6、水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图,是一个正方体的平面展开图,若图中的“快”表示正方体的前面,“乐”表示右面,“们”表示下面.则“祝”、“同”、“学”分别表示正方体的()
(A )后面、上面、左面 (B )后面、左面、上面 (C )上面、左面、右面 (D )左面、上面、右面 【答案】A
7、在△ABC 中,△C =90°,如果AB =2,BC =1,那么sin A 的值是( ).
(A)2
1
(B) 55
(C)
3
3 (D) 23
【答案】A
8、如图2,A 、B 是△O 上的两点,AC 是⊙O 的切线,△B =70°,则△BAC 等于( )。
(A) 70° (B) 35° (C) 30° (D) 20° 【答案】D
9、如果0.06005是由四舍五入法得到的近似数,则它有( )个有效数字.
A 、6
B 、5
C 、4
D 、3
【答案】C
10、下列运算,错误的是( ).
A 、632)(a a =
B 、222)(y x y x +=+
C 、1)15(0=-
D 、61200 = 6.12×10 4
们
学 同 祝
快 乐
O
A B
C
图2
【答案】B
二.填空题:(每小题5分,共25分)
1.-7的绝对值是 ,2
1
-的倒数是 . 【答案】7 2-
2.分解因式:a a a 4423+-= . 【答案】2)2(-a a
3.计算:(sin30°)·(tan60°)-1=______. 【答案】
6
3
4.第一宇宙速度约为7919.5959493米/秒,将它保留两个有效数字后的近似数是______.
【答案】7.9×103米/秒
5.已知点P (a ,a -2)在第四象限,则a 的取值范围是______. 【答案】0<a <2
三、解答题(共55分)
1.如图,D 是△ABC 的边AC 上一点,CD =2AD ,AE ⊥BC 交BC 于点E .若BD =8,sin ∠CBD
=4
3,求AE 的长.
【答案】
过点D 作DH ⊥BC ,垂足为H ,在Rt △BDH 中,DH =BD ·sinCBD =8×4
3=6.
∵ DH ⊥BC ,AE ⊥BC , ∴ DH ∥AE ,△CDH ∽△CAE , ∴
3
2
32===AD AD CA CD AE DH
∴ AE =2
3DH =2
3×6=9
2.某校初二年级四个班的同学外出植树一天,已知每小时5个女生种3棵树,3个男生种5棵树,各班人数如图所示,则植树最多的是初二几班.
评卷人 得分
【答案】 由图可知
一班 二班 三班 四班
女生数(人) 22 18 13 15 男生数(人)
18
20
22
21
因为每班男、女生种树的速度相同,所以每班人数减去相同的女生数和男生数,
比较结果不变,每个班减去13个女生和18个男生,一班余下女生9人,可植树
5
3×9=55
2(棵).二班余下女生5人和男生2人,可植树5
3×5+3
5×2=63
1(棵).三
班余下男生4人,可植树3
5×4=63
2(棵).四班余下女生2人和男生3人,可植树
5
3×2+3
5×3=65
1(棵).所以种树最多的班级是三班.
3. 一次函数y =kx +b 表示的直线经过点A(1,-1)、B(2,-3),请你判断点P(0,1)是否在直线AB 上,并说明你的理由。
【答案】 由题意得⎩
⎨⎧-=+-=+,32,
1b k b k
解得:⎩⎨
⎧=-=1
2b k 得直线AB 的解析式为y =-2x +1,
将点P (0,1)代入后满足解析式说明点P (0,1)在直线AB 上.
4. ①化简求值:已知x =2221
x x x x
---的值 .
【答案】
解:∵x =
∴原式=2(1)(1)
(1)x x x x x +---=21x x x +-=112x x -==-
②解方程组: 20
328x y x y -=⎧⎨+=⎩
【答案】
20(1)328(2)x y x y -=⋅⋅⋅⋅⋅⋅⎧⎨
+=⋅⋅⋅⋅⋅⎩
解:由(1)得,2x y =(3), 把(3)代入(2)式得,3228y y ⋅+= 解得,1y =
把1y =代入(3)得2x =
∴原方程组的解是 2
1x y =⎧⎨=⎩
5.如图,已知⊙O 的半径为8 cm ,点A 是半径OB 延长线上的一点,射线AC 切⊙O 于点C ,弧BC 的长为π9
20
cm ,求线段AB 的长(精确到0.01 cm).
【答案】 ∵l =
9
201808π
π=
⨯n ,∴n=50,∴∠BOC=500,∵AC 切0于C , ∴OC ⊥AC ,∴OA=
50cos OC
≈12.45,∴AB=OA-OB=4.45(m).
6.某校准备在甲、乙两家公司为毕业班学生制作一批纪念册.甲公司提出:每册收材料费5元,另收设计费1500元;乙公司提出:每册收材料费8元,不收设计费.
(1)请写出制作纪念册的册数x 与甲公司的收费1y (元)的函数关系式; (2)请写出制作纪念册的册数x 与乙公司的收费2y (元)的函数关系式;
(3)如果学校派你去甲、乙两家公司订做纪念册,你会选择哪家公司? 【答案】
(1)解:由题意得:150051+=x y . (2)解:由题意得:x y 82=.
(3)解:∵ 当21y y =时,x x 815005=+,500=x . 当21y y >时,x x 815005>+,500<x . 当21y y <时,x x 815005<+,500>x .
∴当订做纪念册的册数为500时,选择甲、乙两家公司均可.当订做纪念册的册数少于500时,选择乙公司.
当订做纪念册的册数多于500时,选择甲公司.。