圆的有关概念及性质运用
圆的基本概念与性质
圆的基本概念与性质圆是几何学中的一个基本概念,在我们的日常生活中也经常出现。
对于圆的概念和性质,我们需要进行深入的探究。
本文将从圆的定义、圆的性质以及圆相关的计算方法等方面进行阐述。
一、圆的定义圆是由一个平面上的所有到一个固定点的距离都相等的点组成的图形。
这个固定点称为圆心,用O表示;到圆心距离相等的点与圆心之间的距离称为半径,用r表示。
圆的边界称为圆周,圆周上的任意两点与圆心之间的距离都相等。
二、圆的性质1. 圆的直径与半径圆的直径是指通过圆心的一条线段,它的两个端点都在圆上。
直径的长度等于半径的两倍,即d=2r,其中d代表直径的长度。
2. 圆的周长圆的周长是圆周的长度,通常用C表示。
周长的计算公式为C=2πr,其中π是一个数学常数,取近似值3.14。
3. 圆的面积圆的面积是指圆所包围的区域的大小,通常用A表示。
面积的计算公式为A=πr²,即圆的面积等于半径的平方乘以π。
4. 圆的弧长圆的弧长是圆周上一部分的长度,通常用L表示。
弧长的计算公式为L=2πr,其中r是弧所对应的半径,即弧长等于弧所对应的圆心角的度数除以360度再乘以周长。
5. 圆的扇形面积圆的扇形是由一个圆心角和与其所对应的弧组成的图形,通常用S 表示。
扇形的面积计算公式为S=πr²θ/360°,其中θ是圆心角的度数,r 是半径。
6. 圆的切线与法线圆上的切线是与圆周只有一个交点的直线,切线的斜率等于半径的斜率。
圆上的法线是与切线垂直,并通过圆心的直线。
三、圆的应用圆在日常生活中具有广泛的应用。
以下是几个常见的应用场景:1. 圆形运动:物体在圆周上做匀速运动时,我们可以利用圆的性质来计算物体的位移、速度、加速度等。
2. 圆的建筑:许多建筑设计中都会使用圆形的建筑物,比如圆形剧场、圆形广场等,给人以艺术美感。
3. 圆的通信:在无线通信中,天线辐射出的信号范围就是一个圆形的区域,我们可以通过圆的性质来计算信号的传播距离与强度。
圆的概念和特点
圆的概念和特点圆是几何中一种经典的图形,具有独特的概念和特点。
在数学和物理学领域中,圆的性质和应用是非常广泛的。
本文将介绍圆的定义、特性以及其在生活中的应用。
一、圆的定义圆是一个平面上一组到圆心距离相等的点的集合。
在圆内部的点到圆心的距离都小于圆的半径,而在圆外的点到圆心的距离都大于圆的半径。
二、圆的特点1. 圆心和半径:圆心是圆内任意两点的中点,可以用O表示。
圆的半径是从圆心到圆上任意一点的距离,用r表示。
2. 圆的直径:直径是从圆上任意一点经过圆心,到另一边的线段。
直径的长度等于两倍的半径,即d=2r。
3. 圆的周长:圆的周长是指围绕圆一周的长度,用C表示。
周长与半径之间的关系可以通过公式C=2πr来计算,其中π为圆周率,近似取值为3.14。
4. 圆的面积:圆的面积是指圆内部的区域大小,用A表示。
圆的面积与半径之间的关系可以通过公式A=πr^2来计算。
5. 圆与弧:圆的弧是圆上两点之间的一段曲线,它的长度称为弧长。
弧长与圆的半径和圆心角之间有关系,可以通过公式L=θr来计算,其中L表示弧长,θ表示圆心角的度数。
6. 圆与扇形:扇形是由圆心、圆上两点以及圆弧所夹的区域组成。
扇形的面积与圆心角之间有关系,可以通过公式S=(θ/360)πr^2来计算,其中S表示扇形的面积。
三、圆的应用1. 圆在建筑设计中的应用:许多建筑物的设计中采用了圆形的结构,例如圆形建筑物、圆形拱门等。
圆的结构可以提供强大的支撑力和稳定性。
2. 圆在工程测量中的应用:在土木工程和建筑工程中,经常需要测量出圆形的尺寸和位置,以确保工程的准确性和稳定性。
3. 圆在物理学中的应用:在力学和电磁学中,圆形是一种常用的图形,例如运动物体的轨迹、电磁场的分布等都可以用圆的概念来描述和分析。
4. 圆在日常生活中的应用:在日常生活中,我们经常会遇到圆形的物体或图形,例如车轮、餐盘、钟表等。
对圆的认识和理解可以帮助我们更好地理解和应用这些物体。
圆的概念与性质
圆的概念与性质圆是几何学中最基本也是最重要的图形之一。
它具有独特的概念与性质,对于几何学研究和实际生活应用都具有重要的意义。
一、圆的概念圆可以通过平面上的一点(圆心)和与这个点距离相等的所有点构成,这个相等的距离称为圆的半径。
圆的边界称为圆周,圆周上的所有点到圆心的距离都相等。
二、圆的性质1. 圆心和半径:圆心是圆的核心位置,半径是从圆心到任意一个点的距离。
所有半径的长度都相等。
2. 直径:直径是通过圆心的一条线段,且两个端点都在圆上。
直径是圆的最长线段,其长度等于半径的两倍。
3. 弧长:弧长是圆上的一段弧对应的圆周长度。
弧长和圆的半径以及所对应的圆心角有关。
4. 弧度:弧度是弧长和半径之间的比值。
一个完整圆的弧长等于2π倍的半径。
角度和弧度之间的转换关系是180°=π弧度。
5. 扇形:扇形是由圆心、圆周上的两个点以及连接这两个点的弧段所构成的图形。
6. 弦:弦是连接圆周上的两个点的线段。
7. 切线:切线是与圆周只有一个交点的直线,切线与半径的夹角是直角。
8. 正切线:正切线是过圆上一点并且与该点的切线垂直相交的直线。
9. 圆的面积:圆的面积是指圆所包围的平面区域。
圆的面积公式是πr²,其中r为圆的半径。
三、圆的应用1. 圆在建筑设计中的应用:圆形的建筑物,例如圆形剧场、圆形体育馆等,不仅美观而且具有良好的音响效果和观看体验。
2. 圆在交通规划中的应用:交通圆环的设计可以提高交通效率,减少交通事故的发生。
3. 圆在制造业中的应用:例如车轮、电机转子等,圆形的设计可以提高工作效率和产品的稳定性。
4. 圆在数学研究中的应用:圆的概念和性质是数学研究中的基础,广泛应用于数学的各个分支,如几何学、代数学等。
总结:圆是几何学中的基本图形,具有独特的概念和性质。
圆的应用广泛存在于我们的生活中,不仅美观而且具有很多实际价值。
对于几何学的学习和实际应用,深入理解圆的概念和性质是非常重要的。
圆的概念和性质
圆的概念和性质圆是我们数学中重要的几何概念之一,广泛应用于各个领域。
无论是日常生活中的测量、建筑设计,还是工程技术、科学研究中的模型和计算,都离不开圆的概念和性质。
本文将从圆的定义、常见性质以及应用等方面进行详细的探讨。
一、圆的定义圆可以定义为平面上一组到一个定点的距离都相等的点的集合。
这个定点称为圆心,到圆心的距离称为半径。
以圆心为中心、以半径为半径的线段称为圆的半径。
圆内的任意两点到圆心的距离都小于半径,而圆外的任意一点到圆心的距离都大于半径。
二、圆的性质1. 圆的直径圆的直径是通过圆心并且两端点都在圆上的线段。
直径是圆中最长的线段,并且它的长度等于半径的两倍。
2. 圆的周长圆的周长是圆上一周的长度,也称为圆周。
圆周的长度可以通过圆的直径或者半径与圆周率之间的关系来计算。
根据定义,圆周的长度等于直径乘以π(圆周率)。
3. 圆的面积圆的面积是圆内部的所有点与圆心之间的连线围成的区域。
圆的面积也是通过圆的半径与圆周率之间的关系来计算。
根据定义,圆的面积等于半径平方乘以π。
4. 圆的切点两个圆相切时,它们有一个共同的切点。
切点是两个圆相切时,位于两个圆的切线上的点。
5. 圆的切线圆的切线是与圆只有一个公共点的直线。
圆的切线与半径垂直,并且切线的斜率等于半径与圆心连线的斜率的相反数。
三、圆的应用1. 圆在日常生活中的应用圆在日常生活中有很多应用,比如钟表中的表盘、轮胎的设计、圆桌的使用等。
同时,圆的性质也可以用来解决一些实际问题,比如判断一个物体是否能通过一个洞的尺寸、计算环形花坛的面积等。
2. 圆在几何图形中的应用圆在几何图形中也有广泛的应用。
例如,圆可以用来构造其他几何图形,比如正多边形、扇形、圆锥等。
同时,圆也可以与其他几何图形相交,形成复杂的图形结构。
3. 圆在科学与工程中的应用圆的概念和性质在科学与工程领域中也有重要的作用。
例如,在物理学中,圆的运动轨迹和碰撞规律可以用来描述天体运动、粒子动力学等现象。
圆的基本概念与性质
圆的基本概念与性质圆是我们生活中常见的几何图形之一,它具有许多独特的特点和性质。
作为一位初中数学特级教师,我将为大家介绍圆的基本概念和一些重要的性质,并通过实例和分析来说明它们的应用。
一、圆的基本概念圆是由平面上到一个固定点的距离等于定长的点的集合。
这个固定点称为圆心,定长称为半径。
圆的符号通常用大写字母O表示圆心,小写字母r表示半径。
例如,我们可以用O(r)来表示半径为r的圆。
二、圆的性质1. 圆的周长和面积圆的周长是圆的边界上所有点到圆心的距离之和。
我们知道,圆的周长公式是C=2πr,其中π是一个无理数,约等于3.14。
这个公式告诉我们,圆的周长与半径成正比,半径越大,周长也越大。
圆的面积是圆内部所有点到圆心的距离之和。
圆的面积公式是A=πr²。
这个公式告诉我们,圆的面积与半径的平方成正比,半径越大,面积也越大。
2. 圆的切线和弦圆上的切线是与圆相切且只有一个交点的直线。
切线与半径垂直,切点在切线上的两条半径相等。
圆内的弦是连接圆上任意两点的线段。
弦的长度小于或等于圆的直径,且直径是圆的最长弦。
3. 圆的相交关系当两个圆的圆心距离小于两个圆的半径之和时,这两个圆相交。
当两个圆的圆心距离等于两个圆的半径之和时,这两个圆相切。
当两个圆的圆心距离大于两个圆的半径之和时,这两个圆相离。
三、圆的应用举例1. 圆的周长和面积的计算假设一个圆的半径为5cm,我们可以使用周长公式C=2πr来计算它的周长。
代入半径r=5,得到C=2π×5≈31.4cm。
同样,我们可以使用面积公式A=πr²来计算它的面积。
代入半径r=5,得到A=π×5²≈78.5cm²。
2. 圆的切线和弦的应用在建筑设计中,我们经常需要确定一个圆的切线或弦的位置。
例如,如果我们要在一个圆形花坛周围铺设一条环形步道,我们可以通过确定切线的位置来确定步道的宽度和形状。
另外,如果我们要在一个圆形游泳池内部建造一个桥梁,我们可以通过确定弦的位置来确定桥梁的长度和位置。
圆的定义及其性质
圆的定义及其性质圆是几何中重要的图形之一,被广泛应用于各个科学领域中。
本文将介绍圆的定义、圆的性质,以及圆相关的应用领域和实例。
一、圆的定义圆是一个平面内所有距离 equidistant(简称“等距”)于给定点的点的轨迹。
这个点被称作圆心,等距距离为圆的半径。
因此,圆的定义可表示为:圆是以圆心为中心,半径为 r 的所有点的集合。
二、圆的性质1.圆是所有直径相等的图形中,面积最大的。
2.在同一圆中,所有的弦都相等。
3.圆上每个点与圆心的距离相等。
4.一个圆的周长是2πr,其中 r 表示圆的半径。
5.较大的圆可被拆分为多个较小的圆组成,而小的圆则可以组合成较大的圆形。
6.圆内的所有角都是直角。
三、圆的应用1. 圆在建筑和工程中常用于计算圆形地基的尺寸和形状。
2. 圆形面积的计算可以在数学和物理中应用,例如,利用圆的面积计算管道的计算和城市建设中的土地分配。
3. 光学中有一个基本的圆形焦点概念,其中光源和接收器之间的距离被称为焦距。
4. 圆的范围也超出数学和物理学。
它常常在艺术中应用,被用于建立圆盘和圆弧的对称性,也是一些流行的图案和装置的构成元素。
四、圆的实例1. 直升机旋转的脸部估计(利用圆轨迹)。
2. 车辆编队目标跟踪(利用圆弧拟合)。
3. 地图中的航线和航空母舰轮廓。
4. 金属轮毂的制造和调整需要用到圆的概念。
结语:圆在我们日常生活中扮演着不可忽视的角色,并且在各种科学领域中广泛应用。
从上文介绍的内容中我们可以了解到圆的定义、性质和应用,以及了解到如何在实际应用中利用和应用圆形。
随着技术的不断创新和发展,圆的概念和应用也将变得更加重要和广泛。
圆的基本概念与性质
圆的基本概念与性质圆是几何中的一种基本图形,具有独特的性质和特点。
本文将介绍圆的基本概念和性质,探讨其在数学和日常生活中的应用。
一、圆的基本概念圆是由一个平面内距离中心固定点相等的所有点构成的集合。
其中,固定点称为圆心,距离圆心的长度称为半径。
圆由圆心和半径唯一确定。
二、圆的性质1. 圆的直径圆的直径是连接圆上任意两点,并通过圆心的线段。
直径的长度等于圆半径的2倍。
2. 圆的周长圆的周长是指圆上任意两点之间的距离,也可以理解为圆的边界长度。
周长的计算公式为C=2πr,其中C表示周长,r表示半径。
3. 圆的面积圆的面积是指圆内部所有点组成的区域。
面积的计算公式为A=πr^2,其中A表示面积,r表示半径。
4. 弧圆上两点之间的部分称为圆弧。
弧对应的圆心角等于弧所夹的圆心角。
5. 弦圆上连接两点的线段称为弦。
如果弦通过圆心,则称为直径。
否则,称为弦。
6. 切线与圆相切且仅有一个切点的直线称为圆的切线。
切线与半径垂直。
7. 弦切角圆的内部一点与两条相交弦之间的角称为弦切角。
同弧切角相等。
三、圆的应用圆的概念和性质在数学中有广泛应用,也在日常生活中有所体现。
以下为几个常见的应用场景:1. 几何图形圆是许多其他几何图形的基础,例如圆柱体、圆锥体和圆环等。
了解圆的概念和性质,有助于我们更好地理解和应用这些几何图形。
2. 建筑设计在建筑设计中,圆形结构常常被运用。
圆形的建筑物可以提供良好的结构稳定性和美观性。
例如,圆形拱门和圆顶常常用于教堂和宫殿等建筑中。
3. 工程测量圆的性质在工程测量中有重要的应用。
通过测量圆的半径或直径,可以计算出工程中需要的其他参数,如周长、面积和体积。
4. 自然现象许多自然现象中都存在圆形,例如太阳、月亮、风旋涡等。
理解圆的概念和性质,有助于我们更好地解释和研究这些自然现象。
结语圆是几何学中的基本概念之一,具有独特的性质和广泛的应用。
通过了解圆的基本概念和性质,我们能够更好地理解几何学知识,并将其应用于实际生活中。
圆的有关性质与定理
圆的有关性质与定理圆是几何学中非常重要的一个形状,它具有许多独特的性质和定理。
本文将探讨圆的有关性质和定理,以及它们在解决几何问题中的应用。
1. 圆的基本性质圆由一组等距离于中心点的点组成,这个等距离被称为半径(r)。
其中,将圆分成两个部分的线段,称为圆的直径(d),直径是半径的两倍。
从圆的中心点到圆上任意一点的线段称为弦(chord),而连接圆心和圆上一点的线段被称为半径。
此外,圆的周长(c)与直径之间有一个重要的关系,即周长等于直径乘以π(pi)。
2. 切线与切点与圆相切的直线称为切线(tangent)。
切线与半径的交点称为切点。
在圆上,切线与半径垂直,这是一个重要的性质。
对于给定的圆和一点P在圆外,只有一条通过点P且与圆相切的直线存在。
3. 弧长与扇形面积圆的弧是圆上两点之间的弧段。
圆心角是由圆心和弧上两点确定的角。
弧长是圆弧的长度,它与圆周上的圆心角成正比。
扇形是由圆心、圆周上的两点和弧组成的区域。
扇形的面积与圆心角的大小成正比。
4. 弧度与角度弧度是衡量角度大小的单位,它是表示圆心角的一种常用方式。
一个完整的圆是360度,对应的弧度是2π。
在解决几何问题时,很多情况下使用弧度会更方便。
5. 垂径定理垂径定理是一种关于圆的性质。
它指出,如果一条直径与圆上的弦垂直相交,那么它将弦二等分。
6. 弦切角定理弦切角定理也是一个与圆有关的重要定理。
它指出,如果一条弦和切线相交,那么切线与这条弦所对的弧所对应的圆心角相等。
7. 正切线定理在圆上,如果一条切线和一条半径相交,那么相交点处的切线段长的平方等于切点到圆心的距离乘以切点到切线的距离。
8. 切割线定理切割线定理是关于两个圆的性质。
当两个圆相交时,两个圆心之间的直线被称为切割线。
根据切割线定理,两个相交圆的切割线可以划分成相等的线段。
以上是一些关于圆的重要性质和定理,它们在解决几何问题和建立几何证明时经常被使用。
掌握这些性质和定理,能够帮助我们深入理解圆的特性,并且能够应用它们解决与圆相关的几何问题。
圆的基本概念与性质
圆的基本概念与性质圆是几何学中的一种基本图形,具有独特的性质和各种重要的应用。
本文将对圆的基本概念和性质进行介绍,以及相关的推论和应用。
一、圆的定义与基本概念圆是平面上一组点,这些点到确定的一点(圆心)的距离相等,这个固定的距离称为半径。
在几何学中,常用字母O表示圆心,r表示半径。
圆用圆周符号"⌒"表示。
二、圆的性质1. 圆的直径与半径关系圆的直径是圆上任意两点的距离,是半径的两倍。
即:直径d =2r。
2. 圆的周长与半径关系圆的周长是圆周上的长度,记作L。
根据圆的性质,周长与半径之间有以下关系:L = 2πr,其中π取近似值3.14。
3. 圆的面积与半径关系圆的面积是圆内部的区域,记作S。
圆的面积与半径之间存在以下关系:S = πr²。
4. 圆的切线与半径的垂直关系切线是与圆周相切的直线,当切线与半径相交时,相交点处的角是直角。
5. 圆的弧长与圆心角的关系弧长是圆周的一部分长度,圆心角是对应的弧所对的圆心角。
弧长与圆心角之间的关系为:弧长= rθ,其中θ表示弧度。
三、圆的推论和应用1. 圆内接正多边形的性质内接正多边形的每条边都刚好与圆的圆周相切,圆心角等于多边形内角,有利于解决多边形相关问题。
2. 圆锥的截面当平面与一个圆锥相交时,截面形状可以是圆、椭圆、抛物线或双曲线。
这些形状都与圆相关,具有重要的几何性质。
3. 圆的应用于几何问题在实际生活和工程中,圆的应用十分广泛。
例如,建筑中的圆形拱门和圆顶,汽车的轮胎和转向半径计算,钟表的指针运动轨迹等。
4. 圆的应用于数学问题圆也是许多数学问题的基础,如三角函数的单位圆定义、圆的投影和旋转、圆的表示与方程等。
总结:圆是几何学中重要的基本图形,具有独特的性质和广泛的应用。
掌握圆的基本概念,了解圆的性质与推论,有助于解决与圆相关的几何和数学问题。
通过对圆的深入学习和应用,我们能更好地理解和利用几何学的知识。
圆的基本概念
圆的基本概念圆是几何学中的一种基本形状,它具有许多独特的特性和重要的应用。
本文将介绍圆的基本概念、性质和应用,以及与圆相关的一些重要定理和公式。
一、圆的定义圆是由平面上距离中心固定距离的所有点构成的图形。
其中,距离中心最远的点称为圆的边界,也称为圆周;距离中心的长度称为圆的半径,用字母r表示;直径是通过圆心并且两端点都在圆周上的线段,直径的长度是半径长度的两倍。
二、圆的性质1. 圆上的任意两点与圆心的距离相等。
2. 圆的直径是圆周长的两倍。
3. 圆的面积公式为S = π * r²,其中π是一个常数,约等于3.14。
4. 圆的周长公式为C = 2 * π * r。
5. 在圆内任取一点A,与圆心连线,得到线段OA。
以OA为半径,做圆心在圆上作弦AB,与OA所关的扇形和三角形OAB的面积之和等于全圆的面积。
三、圆的重要定理1. 切线定理:如果一条直线与圆相切于点T,那么切线的斜率等于与圆心连线的斜率。
2. 弧长定理:弧所对的圆心角的大小等于弧长与半径的比值。
3. 弦长定理:弦所对的两个圆心角的大小相等。
四、圆的应用1. 圆在几何图形的构建中具有重要作用,可以通过给定的半径和圆心画出一个确定的圆。
2. 圆的应用广泛,例如建筑设计中的圆形窗户和圆形拱门,以及机械工程中的圆锥和齿轮系统。
3. 圆的性质在计算机图形学和计算机编程中被广泛应用,例如设计和绘制圆形图标、圆形按钮等。
总结:圆作为几何学中的基本形状,具有着丰富的性质和重要的应用价值。
通过对圆的定义、性质和定理的理解,我们可以更好地认识和应用圆形图形。
在实际生活和工作中,我们经常会遇到和使用圆,因此深入理解圆的基本概念对我们的学习和工作具有重要意义。
通过不断学习和探索,我们可以更好地利用圆的特性,将其应用于各个领域,促进我们的创新和发展。
第二十六讲 圆的相关概念及应用
【解】(1)连接 OA,OC,过 O 作 OH⊥AC 于点 H,如图 1,
∵∠ABC=120°,∴∠AMC=180°-∠ABC=60°.
∴∠AOC=2∠AMC=120°.∴∠AOH=12∠AOC=60°.
∵AH=12AC=
3,∴OA=
AH sin60
=2.
故⊙O 的半径为 2.
.
课堂精讲
(2)证明:在 BM 上截取 BE=BC,连接 CE,如图 2, ∵∠MBC=60°,BE=BC,∴△EBC 是等边三角形. ∴CE=CB=BE,∠BCE=60°.∴∠BCD+∠DCE=60°. ∵∠ACM=60°,∴∠ECM+∠DCE=60°.∴∠ECM=∠BCD. ∵∠ABC=120°,BM 平分∠ABC,∴∠ABM=∠CBM=60°. ∴∠CAM=∠CBM=60°,∠ACM=∠ABM=60°. ∴△ACM 是等边三角形. ∴AC=CM.∴△ACB≌△MCE(SAS).∴AB=ME. ∵ME+EB=BM,∴AB+BC=BM.
知识回顾
2.与圆有关的概念
弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等. 连接圆上任意两点的线段叫__弦__;经过圆心的弦叫_直__径____,是圆
内最长的弦;圆上任意两点间的部分叫__圆__弧___,简称弧,圆的 任意一条直径的两个端点把圆分成两条弧,每条弧都叫作 __半__圆___,大于半圆的弧叫作__优__弧___,小于半圆的弧叫作 __劣__弧___,能够完全重合的弧叫作__等__弧___;能够重合的两个圆叫 作_等__圆____;圆心相同的圆叫作___同__心__圆__.
3.推论 推论1:同弧或等弧所对的圆周角__相__等____. 推论2:半圆(或直径)所对的圆周角是__直__角____.90°的圆周角所对的弦
圆的基本概念与性质知识点总结
圆的基本概念与性质知识点总结圆是几何学中的一个基本概念,广泛应用于数学、物理、工程等领域。
它具有许多独特的性质和特点,本文将为你总结圆的基本概念以及其相关的性质知识点。
1. 圆的定义圆是平面上一组距离相等的点的集合。
其中,距离相等的点叫做圆心;与圆心距离相等的线段叫做半径;连接圆上任意两点的线段叫做弦;通过圆心并且连接圆上某一点的线段叫做半径。
2. 圆的性质2.1 圆的半径性质- 圆上任意两点间的弦相等,并且等于半径的长度。
- 半径垂直于弦,并且平分弦。
- 圆上相等弧所对的弦相等。
- 以圆心为端点的弧叫做半圆,圆心角为180°。
2.2 圆的直径性质- 直径是圆上任意两点间的最长弦,等于半径的两倍。
- 直径的中点即为圆心。
- 圆上的半径与直径垂直,并且被直径平分。
2.3 圆的面积性质- 圆的面积公式为:A = πr²(其中,A表示面积,r表示半径)。
- 圆的面积只与半径有关,与圆心角和弦长无关。
2.4 圆的弧长性质- 弧长公式为:L = 2πr(其中,L表示弧长,r表示半径)。
- 弧长与圆心角成正比,即弧长等于圆心角度数与周长的比值。
3. 圆的相关定理3.1 切线定理- 切线是与圆相切的直线,切点在圆上。
- 切线与半径垂直。
3.2 弧度制与度制的转换- 弧度制是以半径等于1的圆的圆心角作为单位,记作rad。
- 度制是以圆心角为单位,记作°。
- 弧度制与度制的转换关系为:1° = π/180 rad。
4. 圆的应用领域- 在几何学中,圆被广泛运用于计算圆的面积、周长和弧长等。
- 在物理学中,圆被用于描述物体的运动轨迹和行星的绕轨道运动等。
- 在工程学中,圆被应用于建筑设计、机械制造和电路设计等。
综上所述,圆作为几何学中的基本概念,具有独特的性质和特点。
了解圆的基本概念和性质对于深入理解几何学、物理学和工程学等领域的知识有着重要的意义。
同时,圆的应用广泛,为我们解决问题和进行实践提供了重要的工具。
《圆》数学知识点归纳总结
《圆》数学知识点归纳总结《圆》数学知识点归纳总结在我们平凡的学生生涯里,是不是经常追着老师要知识点?知识点就是学习的重点。
为了帮助大家掌握重要知识点,下面是小编为大家整理的《圆》数学知识点归纳总结,仅供参考,大家一起来看看吧。
《圆》数学知识点归纳总结篇1一、认识圆1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O表示。
它到圆上任意一点的距离都相等.3、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。
用字母表示为:d=2r或r=8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
(经过圆心的任意一条直线或直径所在的直线)9、长方形、正方形和圆都是对称图形,都有对称轴。
这些图形都是轴对称图形。
10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形只有3条对称轴的图形是:等边三角形只有4条对称轴的图形是:正方形;有无数条对称轴的图形是:圆、圆环。
二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。
用字母C表示。
2、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。
发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。
3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π(pai)表示。
(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。
圆的概念与性质
圆的概念与性质圆是几何学中一种基本的二维图形,被广泛应用于数学、物理和工程领域。
本文将从圆的定义、性质以及应用等方面进行探讨。
一、圆的定义圆是由平面上离给定点距离相等的所有点组成的集合。
给定平面上的一个点为圆心,以该点为中心,以一个确定的长度为半径做直线,与平面上的点交于一或两点,这一或两点离圆心的距离为半径长,称其为圆。
二、圆的基本性质1. 圆心和半径在圆中,圆心是一个关键概念。
圆心可用于确定圆的位置,并将圆分割为内部和外部两部分。
圆心对称性是圆的独特性质之一,即圆上的任意两点与圆心的距离相等。
2. 弧和弧长圆上的弧是由圆周上的两点所确定的一部分,它可以是一段弧或者是圆上的整个弧。
弧长是指弧所对应的圆周的长度。
可以通过已知的圆的半径和弧度来计算弧长。
3. 圆的直径和周长圆的直径是通过圆心的直线,其两个端点都在圆上。
直径的长度是圆周长度的两倍,即d=2r,其中d为直径,r为半径。
圆的周长是指圆周的长度,通常用C表示,其计算公式为C=2πr。
4. 圆的面积圆的面积是指圆内部的平面区域的大小,通常用A表示。
圆的面积的计算公式为A=πr^2,其中r为半径。
三、圆的应用圆具有许多实际应用,以下列举几个常见的应用场景:1. 圆的几何应用在建筑、设计和工程领域,圆常常用于绘制弧线、圆形或圆弧结构,如建筑的圆顶、桥梁的拱形等。
圆形的地基也可以增强结构的稳定性。
2. 圆的运动学应用在物理学和工程中,圆用于描述旋转和循环运动。
例如,轮胎的旋转和车轮在行驶过程中的循环运动均可以使用圆来解释和计算。
3. 圆的几乎的普遍性圆是自然界中最常见的形状之一。
在生物学和天文学中,圆形的结构和形态被广泛观察。
例如,太阳、行星、水滴和许多生物体的细胞结构都具有圆形特征。
4. 圆的数学应用圆具有丰富的数学应用,与圆相关的数学概念如三角函数、圆周率等,都在数学研究和实际问题中发挥着重要的作用。
例如,三角函数中的正弦函数和余弦函数可以通过圆的投影和观察来定义和计算。
圆的概念与性质
圆的概念与性质圆是几何学中常见的一个基本图形,有着丰富的性质和应用。
本文将为您介绍圆的概念、性质以及在实际生活中的应用。
一、圆的概念圆是由平面中与一个确定点距离相等的所有点组成的集合。
该确定点称为圆心,与圆心距离相等的距离称为半径。
以圆心为原点,以半径长度为半轴的线段构成的曲线称为圆的周长,用C表示。
圆的周长与直径的比值称为圆周率,用π表示,其值约为3.14159。
二、圆的性质1. 圆的内外点关系:圆内的任意点到圆心的距离小于半径,而圆外的任意点到圆心的距离大于半径。
2. 圆的直径与半径:直径是连接圆上两个点且经过圆心的线段,它的长度是半径的两倍。
3. 圆的切线与半径:切线是与圆仅有一个交点的直线,该交点与圆心连线垂直。
切线与半径的关系是垂直关系。
4. 圆的弦与半径:弦是圆上任意两点之间的线段,弦的中点与圆心连线垂直。
弦和半径的关系是垂直关系。
5. 圆的弧与扇形:圆的弧是两个端点在圆上的弧线,可以用弧长来表示。
扇形是由圆心、圆上的两个点以及所对应的圆心角组成的区域。
6. 圆的面积:圆的面积可以用半径或者直径来计算,其公式为πr²或者π(d/2)²,其中r为半径,d为直径。
三、圆的应用圆在生活中有着广泛的应用,以下列举几个常见的例子:1. 圆的运动轨迹:许多自然界中的运动都以圆形轨迹进行,比如行星绕太阳的轨道以及地球自转产生的地球日等。
2. 圆形建筑物:圆形的建筑物在设计上具有良好的稳定性和视觉效果,比如宫殿中的圆形大厅、圆形会议室等。
3. 轮胎和车轮:轮胎和车轮的形状往往为圆形,这是为了减少摩擦力,提高行驶的平稳性。
4. 交通信号灯:交通信号灯上的圆形灯表示停止,该形状的选择是因为圆形视觉上相对于其他形状更容易辨认和传达信息。
综上所述,圆作为几何学中的一个基本图形,具有独特的概念和性质。
了解圆的性质和应用能够帮助我们更好地理解几何学知识并应用于实际生活中。
无论是在设计、建筑还是科学研究领域,对圆的理解和运用都起着重要的作用。
圆的概念与性质
圆的概念与性质圆是初等几何学中的基本图形之一,它具有独特的几何性质和重要的应用价值。
本文将介绍圆的概念和性质,并探讨它在现实生活中的应用。
一、圆的概念圆是由平面上的一点到另一点距离不变的点集合。
其中,确定圆的两个点是圆心和圆上的任意一点,圆心到圆上任意一点的距离称为圆的半径。
用数学符号表示,圆可以写为O(A,r),其中O表示圆心,A 表示圆上的一点,r表示圆的半径。
二、圆的性质1. 圆周与圆心之间的关系:圆周上的点与圆心的距离都相等,即圆周上的任意两点到圆心的距离相等。
2. 圆的直径和半径:圆的直径是通过圆心,并且两端点同时在圆周上的线段,直径的长度是半径的两倍。
即d = 2r。
3. 圆的周长和面积:圆的周长是指圆周的长度,记为C,可以通过公式C = 2πr计算得到。
其中,π是一个常数,约等于3.14159,它代表圆周率。
圆的面积是指圆内部的所有点的集合,记为S,可以通过公式S = πr²计算得到。
4. 弧、弦和扇形:圆周上的弧是由两个点确定的圆上的一段弧线,弧的长度与圆的周长成比例。
圆上两点间的线段称为弦,弦的长度小于或等于直径。
圆周上通过圆心的两条弦将圆分成了两个部分,每个部分叫做扇形。
扇形的面积由圆心角的大小决定。
5. 切线和切点:圆周上的一条直线称为圆的切线,切线与半径的夹角为90度,也就是说切线垂直于半径。
切点是切线与圆的交点,一个圆可能有多个切点。
三、圆的应用圆作为一种基本的几何形状,在现实生活中有许多应用,以下介绍几个常见的例子:1. 圆形建筑和雕塑:圆形的建筑和雕塑在城市的景观中非常常见,如圆形剧场、罗马竞技场等。
圆形的外形能够给人以稳定和和谐的感觉。
2. 车轮和飞盘:车轮和飞盘都是圆形的,这是因为圆形对于旋转和滚动更加稳定和效果好。
车轮的直径也决定了车辆的速度和行驶稳定性。
3. 钟表和指南针:许多钟表面和指南针刻度都是圆形的,便于阅读时间和方向。
钟表的指针也是围绕圆盘转动。
圆的认识与性质
圆的认识与性质圆是我们日常生活中常见的几何形状之一,具有独特的认识与性质。
本文将从圆的定义、性质和相关应用等方面进行讨论,以加深对圆的认识。
一、圆的定义圆可以定义为平面上与一个确定中心点距离相等的所有点的集合。
在数学中,圆由一个中心和一个半径确定。
中心是平面上的一点,半径是从中心到圆上任意一点的距离。
二、圆的性质1. 圆的直径、半径和圆周- 圆的直径是通过圆心的一条线段,它的两个端点位于圆上。
直径的长度是半径的两倍。
- 圆的半径是从圆心到圆上的一点的距离。
对于同一个圆来说,所有的半径长度都相等。
- 圆的圆周是连接所有圆上点的一条线段。
圆周的长度是圆的直径的π倍,其中π为一个无理数,约等于3.14159。
2. 圆的面积圆的面积是指圆内部所有点所覆盖的平面部分的大小。
圆的面积公式为:πr^2,其中r为圆的半径。
这个公式告诉我们,在给定半径的情况下,圆的面积是确定的。
3. 圆的切线和弦- 圆的切线是和圆相切的直线,切线与半径的夹角为90度。
切线的特点是只与圆的一个点相切。
- 圆的弦是连接圆上任意两点的线段,弦的长度可以小于或等于直径,但不会超过直径的长度。
4. 圆的相交圆与圆之间可以相交,相交的情况有三种:外切、内切和相交。
外切是指两个圆相切,且没有任何交叉的情况;内切是指一个圆完全位于另一个圆内部,且两者相切;相交是指两个圆有交叉的部分。
三、圆的应用圆在生活中有很多应用,以下列举几个常见的例子:1. 几何问题圆在几何问题中有广泛的应用,例如测量圆的半径和直径、计算圆的面积和周长等。
通过对圆的认识与性质的运用,可以解决很多与圆相关的问题。
2. 工程建设圆的形状在工程建设中也有重要的应用。
例如,桥梁、建筑物和机械零件的设计中,常常需要使用圆的形状来满足特定需求。
3. 圆的运动圆的运动在物理学中有很多应用。
例如,天体运动可以近似为圆的运动,通过对圆的性质的研究,可以探索天体的运动规律。
4. 艺术与设计圆形在艺术与设计中也有广泛的应用。
圆的知识点讲解六年级
圆的知识点讲解六年级圆的知识点讲解圆是几何图形中常见的一种形状。
在六年级数学课程中,学生需要掌握圆的定义、性质以及常见的应用。
下面将对圆的知识点进行讲解。
一、圆的定义圆是由一个固定点到平面上所有距离都相等的点的集合。
这个固定点被称为圆心,圆心到圆上任意一点的距离称为半径。
圆的边界称为圆周,圆周上的每个点到圆心的距离都等于半径的长度。
在几何图形中,我们用“⭕”来表示圆,例如:⭕O,其中O表示圆心。
二、圆的性质1. 圆的半径相等性质:在同一个圆中,任意两条半径的长度是相等的。
2. 圆的直径和半径的关系:圆的直径是通过圆心并且两端都在圆上的一条线段,直径的长度是半径长度的2倍。
即直径d = 2r,其中d表示直径,r表示半径。
3. 圆的周长:圆的周长是圆周的长度,记作C,计算公式为C = 2πr,其中π是一个常数,约等于3.14。
4. 圆的面积:圆的面积是圆的内部所覆盖的平面区域的大小,记作A,计算公式为A = πr²。
三、圆的应用1. 圆的测量:在现实生活中,我们经常需要测量物体的半径、直径或周长。
通过对圆的测量,可以计算出物体的面积或体积,进而进行相关的应用问题求解。
2. 圆的建模:在几何学中,圆的形状具有很多特点,广泛应用于建模和设计中。
例如,在建筑、艺术等领域中,通过圆的形状可以创造出与众不同的设计效果。
3. 圆的运动学:圆的运动学常常出现在物理学和工程学中。
例如,当一个物体做匀速圆周运动时,可以通过圆的半径、圆周速度等参数来描述物体的运动状态。
四、小结圆是由一个固定点到平面上所有距离都相等的点的集合,具有多种性质和应用。
通过学习圆的定义、性质和应用,可以帮助学生更好地理解和应用圆形。
在解决实际问题时,我们可以运用圆的相关知识进行建模和计算,提高问题解决的能力。
通过以上对圆的知识点的讲解,相信同学们对圆的概念和相关性质有了更深入的理解。
在学习数学过程中,要勤动脑筋,多进行实际应用,提高解决问题的能力。
圆的概念与性质
圆的概念与性质圆是几何学中的重要概念之一,具有独特的性质和广泛的应用。
本文将从圆的定义、性质以及相关应用三个方面,对圆进行深入探讨。
一、圆的定义圆是由平面上的一点到另一点距离恒定的所有点的集合。
其中,距离恒定的两个点称为圆的中心和半径。
以此为基础,我们可以得出圆的一些重要定义和性质。
二、圆的性质1. 半径与直径的关系:直径是连接圆上两个点,并通过圆心的线段。
圆的直径是半径的两倍,即直径等于2倍半径。
2. 弧与弦的关系:弧是圆上的一段曲线,而弦是连接圆上两个点的线段。
对于相同的弧,弦越长,对应的圆心角就越大。
3. 弧度制:弧度制是一种用弧长来度量角度的单位制。
一圆周的弧度为2π,通常用符号“rad”表示。
4. 圆的面积:圆的面积由半径决定,可以通过公式A = πr²计算得到。
其中,π是一个常数,约等于3.14159。
5. 圆的周长:圆的周长也称为圆周,可以通过公式C = 2πr计算得到。
三、圆的应用圆作为几何学中的基础概念,广泛应用于各个领域,包括数学、物理、工程等。
1. 数学应用:圆被广泛运用于解决几何问题,比如测量与计算圆的面积和周长,利用弧与弦的关系求解圆心角,以及在三角函数中的应用。
2. 物理应用:在物理学中,圆常用于描述物体的运动轨迹,如行星、卫星绕星球的轨道就是圆形或近似圆的。
此外,光的传播也符合圆的特性,如光的折射和反射。
3. 工程应用:圆形结构在工程设计中经常出现,比如建筑设计中的圆形柱、圆形桥梁等。
此外,在制造业中,如汽车制造和工业加工中,也需要利用圆的特性来完成各类工艺和设计。
总结:圆作为一个基本的几何概念,具有独特的定义和性质。
了解圆的概念和性质,有助于我们进一步理解几何学的其他相关知识,并将其应用于实际问题的解决。
无论是数学领域的计算,物理领域的运动描述,还是工程领域的设计应用,圆都扮演着重要的角色,为我们解决问题提供了有力的工具。
同时,深入理解圆的概念与性质,有助于我们更好地掌握几何学的基础知识,为未来的学习与应用打下坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、圆的有关概念(1)圆的定义定义1在一个平面内,一条直线绕着它固定的一个端点旋转一周,另一个端点所形成的图形叫做圆。
定义2圆是到定点的距离的定长的所有点组成的图形。
(2)弦:连接圆上任意两点的叫做弦。
(3)直径:直径是经过圆心的,是圆内最的弦。
(4)弧:圆上任意两点间的部分叫做弧,弧有之分,能够完全重合的弧叫做。
(5)等圆:能够重合的两个圆叫做等圆。
(6)同心圆:圆心相同的圆叫做同心圆。
2、圆的对称性(1)圆的对称性1)圆是轴对称图形,其对称轴是任意一条经过的直线。
2)圆是中心对称图形,其对称中心是。
(2)垂径定理1)定理:垂直于弦的直径弦,并且平分弦所对的两条。
2)推论:平分弦(不是直径)的直径弦,并且弦所对的两条弧。
3)圆心角、弧、弦之间的关系在同圆或等圆中,如果两个圆心角、两条弧或两条弦中有一组量,那么它们所对应的其余各组量也分别相等。
3、圆周角(1)圆周角的定义:顶点在圆上,并且都和圆相交的角叫做圆周角。
(2)圆周角定理1)定理:一条弧所对的圆周角等于它所对的圆心角的。
2)推论①同弧或等弧所对的圆周角。
②半圆(或直径)所对的圆周角是,90°的圆周角所对的弦是。
③圆内接四边形的对角。
规律总结:(1)在解决与弦有关的问题时,作垂直于弦的直径可以构造直角三角形,从而将问题转化为解直角三角形的问题;(2)在同圆或等圆中,如果两个圆心角、两个圆周角、两条中有一组量相等,那么它们所对应的其余各组量也分别相等。
【答案】1、相等,线段,弦,长,优弧、半圆、劣弧,等弧;2、圆心,圆心,平分,弧,垂直于,平分,相等;3、两边,一半,相等,直角,直径,互补。
【教法】采用讲述法,着重进行定理及推论的推导论证,将与之前所学知识相互联系。
【学法】勾画记录,对于不理解的定理,详细写出证明过程,与以前所学的相联系,分析运用了哪些知识。
例题精讲例1、如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°【解析】利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.例2、如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.其中正确结论的序号是()A.①③B.①②③④C.②③④D.①③④解:∵点A是劣弧的中点,OA过圆心,∴OA⊥BC,故①正确;∵∠D=30°,∴∠ABC=∠D=30°,∴∠AOB=60°,∵点A是点A是劣弧的中点,∴BC=2CE,∵OA=OB,∴OB=OB=AB=6cm,∴BE=AB•cos30°=6×=3cm,∴BC=2BE=6cm,故B正确;∵∠AOB=60°,∴sin∠AOB=sin60°=,故③正确;∵∠AOB=60°,∴AB=OB,∵点A是劣弧的中点,∴AB=BO=OC=CA,∴四边形ABOC是菱形,故④正确.故选B.例3、如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为.【解析】作OC⊥AB于C,连结OA,根据垂径定理得到AC=BC=AB=3,然后在Rt△AOC中利用勾股定理计算OC即可.解:作OC⊥AB于C,连结OA,如图,∵OC⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=5,∴OC===3,即圆心O到AB的距离为3.例4、已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.【解答】(Ⅰ)利用圆周角定理可以判定△CAB和△DCB是直角三角形,利用勾股定理可以求得AC的长度;利用圆心角、弧、弦的关系推知△DCB也是等腰三角形,所以利用勾股定理同样得到BD=CD=5;(Ⅱ)如图②,连接OB,OD.由圆周角定理、角平分线的性质以及等边三角形的判定推知△OBD是等边三角形,则BD=OB=OD=5.解答:解:(Ⅰ)如图①,∵BC是⊙O的直径,∴∠CAB=∠BDC=90°.∵在直角△CAB中,BC=10,AB=6,∴由勾股定理得到:AC===8.∵AD平分∠CAB,∴=,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴易求BD=CD=5;(Ⅱ)如图②,连接OB,OD.∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等边三角形,∴BD=OB=OD.∵⊙O的直径为10,则OB=5,∴BD=5.例5、如图,AB是⊙O的直径,C,P是上两点,AB=13,AC=5.(1)如图(1),若点P是的中点,求PA的长;(2)如图(2),若点P是的中点,求PA的长.【解析】(1)根据圆周角的定理,∠APB=90°,p是弧AB的中点,所以三角形APB是等腰三角形,利用勾股定理即可求得.(2)根据垂径定理得出OP垂直平分BC,得出OP∥AC,从而得出△ACB∽△0NP,根据对应边成比例求得ON、AN的长,利用勾股定理求得NP的长,进而求得PA.解:(1)如图(1)所示,连接PB,∵AB是⊙O的直径且P是的中点,∴∠PAB=∠PBA=45°,∠APB=90°,又∵在等腰三角形△ABC中有AB=13,∴PA===.(2)如图(2)所示:连接BC.OP相交于M点,作PN⊥AB于点N,∵P点为弧BC的中点,∴OP⊥BC,∠OMB=90°,又因为AB为直径∴∠ACB=90°,∴∠ACB=∠OMB,∴OP∥AC,∴∠CAB=∠POB,又因为∠ACB=∠ONP=90°,∴△ACB∽△0NP∴ = ,又∵AB=13 AC=5 OP=,代入得ON=,∴AN=OA+ON=9∴在RT△OPN中,有NP2=0P2﹣ON2=36在RT△ANP中有PA===3∴PA=3.【教法】讲练结合,可先让学生说说自己的想法,再指出其中不足的地方,当没有思路时,适当地给出一些提示。
【学法】尝试着先分析其考查的知识内容,再寻找圆中的边角关系,利用辅助线,运用垂径定理、圆周角定理及其推论来解答1、如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是()A.B.C.D.【解析】连接OC,先根据勾股定理判断出△ACE的形状,再由垂径定理得出CE=DE,故=,由锐角三角函数的定义求出∠A的度数,故可得出∠BOC的度数,求出OC的长,再根据弧长公式即可得出结论.解:连接OC,∵△ACE中,AC=2,AE=,CE=1,∴AE2+CE2=AC2,∴△ACE是直角三角形,即AE⊥CD,∵sinA==,∴∠A=30°,∴∠COE=60°,∴=sin∠COE,即=,解得OC=,∵AE⊥CD,∴=,∴===.故选B.2、如图,点A、B、C都在圆O上,如果∠AOB+∠ACB=84°,那么∠ACB的大小是.【解答】根据圆周角定理即可推出∠AOB=2∠ACB,再代入∠AOB+∠ACB=84°通过计算即可得出结果.解:∵∠AOB=2∠ACB,∠AOB+∠ACB=84°∴3∠ACB=84°∴∠ACB=28°.故答案为:28°.3、如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为cm.【解答】先根据圆周角定理得到∠BOD=2∠BCD=45°,再根据垂径定理得到BE=AB=,且△BOE为等腰直角三角形,然后根据等腰直角三角形的性质求解.解答:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为2.4、如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.【解答】由OE⊥AB得到∠OEF=90°,再根据圆周角定理由OC为小圆的直径得到∠OFC=90°,则可证明Rt△OEF∽Rt△OFC,然后利用相似比可计算出⊙O的半径OC=9;接着在Rt△OCF中,根据勾股定理可计算出C=3,由于OF⊥CD,根据垂径定理得CF=DF,所以CD=2CF=6.解:∵OE⊥AB,∴∠OEF=90°,∵OC为小圆的直径,∴∠OFC=90°,而∠EOF=∠FOC,∴Rt△OEF∽Rt△OFC,∴OE:OF=OF:OC,即4:6=6:OC,∴⊙O的半径OC=9;在Rt△OCF中,OF=6,OC=9,∴CF==3,∵OF⊥CD,∴CF=DF,∴CD=2CF=6.【教法】让学生先进行练习,再与学生针对不懂的地方进行讨论,出现问题的原因,正确书写解答步骤。
【学法】主动思考,结合这次课学习的概念、定理及推论,控制好解题方向及解答时间,利用错题本,记录当时做错的地方。
课后作业1、如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6B.5C.4D.3【答案】过O作OC⊥AB于C,根据垂径定理求出AC,根据勾股定理求出OC即可.解:过O作OC⊥AB于C,∵OC过O,∴AC=BC=AB=12,在Rt△AOC中,由勾股定理得:OC==5.故选:B.2、如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos ∠ACD=,BC=4,则AC的长为()A.1B.C.3D.【答案】由以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.易得∠ACD=∠B,又由cos∠ACD=,BC=4,即可求得答案.解:∵AB为直径,∴∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠BCD+∠B=90°,∴∠B=∠ACD,∵cos∠ACD=,∴cos∠B=,∴tan∠B=,∵BC=4,∴tan∠B===,∴AC=.故选D.3、如图,在⊙O中,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50°C.60°D.80°【答案】解:∵OA=OB,∴∠B=∠BAO=25°,∵AC∥OB,∴∠BAC=∠B=25°,∴∠BOC=2∠BAC=50°.故选B.4、如图,AB、CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN 于点F,P为EF上的任意一点,则PA+PC的最小值为.【答案】A、B两点关于MN对称,因而PA+PC=PB+PC,即当B、C、P在一条直线上时,PA+PC的最小,即BC 的值就是PA+PC的最小值。