两个独立样本的非参数检验方法有哪四种

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两个独立样本的非参数检验方法有哪四种

两独立样本的非参数检验是在对总体分布不很了解的情况下,通过分析样本数据,推断样本来自的两个独立总体分布是否存在显著差异。一般用来对两个独立样本的均数、中位数、离散趋势、偏度等进行差异比较检验。

一、Mann-Whitney U检验

主要通过对平均秩的研究来实现推断。

将数据按照升序进行排序,每一个具体数据都会有一个在整个数据中的名次或排序序号,这个名次就是该数据的秩。

相同观察值(即相同秩,ties),取平均秩。

两独立样本的Mann-Whitney U检验的零假设

H0:两个样本来自的独立总体均值没有显著差异。

将两组样本(X1 X2 …… Xm)(Y1 Y2 …… Yn)混合升序排序,每个数据将得到一个对应的秩。

计算两组样本数据的秩和Wx ,Wy 。

N=m+n Wx+Wy= N(N+1)/2

如果H0成立,即两组分布位置相同,Wx应接近理论秩和 m(N+1)/2; Wy 应接近理论秩和n(N+1)/2)。

如果相差较大,超出了预定的界值,则可认为H0不成立。

二、两个独立样本的K-S检验

K-S检验不仅能够检验单个总体的分布是否与某一理论分布差异显著,还能够检验两个总体的分布是否存在显著差异,其零假设是两组独立样本来自的两个总体的分布无显著差异。

两个独立样本K-S检验的基本思想与前面讨论的单样本K-S检验的基本思路大体一致。这里是以变量值的秩作为分析对象,而非变量值本身。其基本思路如下:

①首先,将这两组样本混合并按升序排序。

②然后分别计算两组样本秩的累计频数和累计频率。

最后,计算累计频率之差,得到秩的差值序列并得到D统计量(同单样本K-S检验,但无需修正)。

三、游程检验(Wald-Wolfwitz Runs)

零假设是H0:为样本来自的两独立总体分布没有显著差异。

样本的游程检验中,计算游程的方法与观察值的秩有关。首先,将两组样本混合并按照升序排列。在数据排序时,两组样本的每个观察值对应的样本组标志值序列也随之重新排列,然后对标志值序列求游程。

如果计算出的游程数相对比较小,则说明样本来自的两总体的分布形态存在较大差距;如果得到的游程数相对比较大,则说明样本来自的两总体的分布形态不存在显著差距。

SPSS将自动计算游程数得到Z统计量,并依据正态分布表给出对应的相伴概率值。如果相伴概率小于或等于用户的显著性水平,则应拒绝零假设H0,认为两个样本来自的总体分布有显著差异;如果相伴概率值大于显著性水平,则不能拒绝零假设H0,认为两个样本来自的总体分布无显著差异。

四、极端反应检验

从另一个角度检验两独立样本所来自的两个总体分布是否存在显著差异。其零假设是来两独立样本来自的两个总体分布无显著差异。

极端反应检验的基本思想是将一组样本作为控制样本,另一组样本作为实验样本。以控制样本作为对照,检验实验样本相对于控制样本是否出现极端反应。如果试验样本没有出现极端反应,则认为两总体分布无显著差异,反之,则总体分布存在显著差异。

相关文档
最新文档