初二数学整式的乘法知识点总结
初二数学八上第十四章整式乘法与因式分解知识点总结复习和常考题型练习

第十四章 整式的乘除与分解因式一、知识框架:二、知识概念:1.基本运算:⑴同底数幂的乘法:m n m n a a a +⨯= ⑵幂的乘方:()nm mn aa = ⑶积的乘方:()nn n ab a b =2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式. ⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加. 3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+ 4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式. ⑶多项式÷单项式:用多项式每个项除以单项式后相加. ⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式. ⑵公式法:①平方差公式:()()22a b a b a b -=+- ②完全平方公式:()2222a ab b a b ±+=±③立方和:3322()()a b a b a ab b +=+-+ ④立方差:3322()()a b a b a ab b -=-++ ⑶十字相乘法:()()()2x p q x pq x p x q +++=++ ⑷拆项法 ⑸添项法常考例题精选1.(2015·襄阳中考)下列运算正确的是( ) =3 ·a2=a3C.(-a3)2=a5÷a2=a32.(2015·烟台中考)下列运算中正确的是( ) +2a=5a2 B.(-3a3)2=9a6÷a2=a3 D.(a+2)2=a2+43.(2015·遵义中考)计算(−12ab2)3的结果是( )3 23218184.(2015·沈阳中考)下面的计算一定正确的是( ) +b3=2b6 B.(-3pq)2=-9p2q2·3y5=15y8÷b3=b35.(2015·凉山州中考)下列各式正确的是( )=(−a)2=(−a)3=|−a2|=|a3|6.(2015·长春中考)计算:7a2·5a3= .7.(2015·广州中考)分解因式:x2+xy= .8.(2015·东营中考)分解因式2a2-8b2= .9.(2015·无锡中考)分解因式:2x2-4x= .10.(2015·连云港中考)分解因式:4-x2= .11.(2015·盐城中考)分解因式a2-9= .12.(2015·长沙中考)x2+2x+1= .13.(2015·临沂中考)分解因式4x-x3= .14.(2015·安徽中考)分解因式:x2y-y= .15.(2015·潍坊中考)分解因式:(a+2)(a-2)+3a= .16.(2015·遂宁中考)为庆祝“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照下面的规律,摆第(n)个图案,需用火柴棒的根数为.17.(2015·潍坊中考)当n等于1,2,3,…时,由白色小正方形和黑色小正方形组成的图形分别如图所示.则第n个图形中白色小正方形和黑色小正方形的个数总和等于.(用n表示,n是正整数)18.(2015·牡丹江中考)一件商品的进价为a元,将进价提高100%后标价,再按标价打七折销售,则这件商品销售后的利润为元.19.(2015·株洲中考)先化简,再求值:(x-1)(x+1)-x(x-3),其中x=3.1.(2015·徐州)下列运算正确的是( )A.3a2-2a2=1 B.(a2)3=a5C.a2·a4=a6D.(3a)2=6a22.下列计算错误的是( )A.(5-2)0=1 B.28x4y2÷7x3=4xy2C.(4xy2-6x2y+2xy)÷2xy=2y-3x D.(a-5)(a+3)=a2-2a-153.(2015·毕节)下列因式分解正确的是( )A.a4b-6a3b+9a2b=a2b(a2-6a+9) B.x2-x+14=(x-12)2C.x2-2x+4=(x-2)2D.4x2-y2=(4x+y)(4x-y)4.将(2x)n-81分解因式后得(4x2+9)(2x+3)(2x-3),则n等于( ) A.2 B.4 C.6 D.85.若m=2100,n=375,则m,n的大小关系是( )A.m>n B.m<n C.m=n D.无法确定6.已知a+b=3,ab=2,则a2+b2的值为( )A.3 B.4 C.5 D.67.计算:(a-b+3)(a+b-3)=( )A.a2+b2-9 B.a2-b2-6b-9C.a2-b2+6b-9 D.a2+b2-2ab+6a+6b+98.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .(a +b)2=a 2+2ab +b 2B .(a -b)2=a 2-2ab +b 2C .a 2-b 2=(a +b)(a -b)D .(a +2b)(a -b)=a 2+ab -2b 29.若x 2+mx -15=(x -3)(x +n),则m ,n 的值分别是( ) A .4,3 B .3,4 C .5,2 D .2,510.(2015·日照)观察下列各式及其展开式: (a +b)2=a 2+2ab +b 2(a +b)3=a 3+3a 2b +3ab 2+b 3(a +b)4=a 4+4a 3b +6a 2b 2+4ab 3+b 4(a +b)5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5 …请你猜想(a +b)10的展开式第三项的系数是( ) A .36 B .45 C .55 D .6611.计算:(x -y)(x 2+xy +y 2)= .12.(2015·孝感)分解因式:(a -b)2-4b 2= .13.若(2x +1)0=(3x -6)0,则x 的取值范围是 .14.已知a m =3,a n =2,则a 2m -3n = .15.若一个正方形的面积为a 2+a +14,则此正方形的周长为 .16.已知实数a ,b 满足a 2-b 2=10,则(a +b)3·(a -b)3的值是 .17.已知△ABC 的三边长为整数a ,b ,c ,且满足a 2+b 2-6a -4b +13=0,则c为.18.观察下列各式,探索发现规律:22-1=1×3;32-1=2×4;42-1=3×5;52-1=4×6;….按此规律,第n个等式为.19.计算:(1)(2015·重庆)y(2x-y)+(x+y)2; (2)(-2a2b3)÷(-6ab2)·(-4a2b).20.用乘方公式计算:(1)982; (2)899×901+1.21.分解因式:(1)18a3-2a;(2)ab(ab-6)+9;(3)m2-n2+2m-2n.22.先化简,再求值:(1)(2015·随州)(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-1 2;(2)[(x+2y)(x-2y)-(x+4y)2]÷4y,其中x=-5,y=2.23.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.24.学习了分解因式的知识后,老师提出了这样一个问题:设n为整数,则(n+7)2-(n-3)2的值一定能被20整除吗?若能,请说明理由;若不能,请举出一个反例.25.阅读材料并回答问题:课本中多项式与多项式相乘是利用平面几何图形中的面积来表示的,例如:(2a +b)(a +b)=2a 2+3ab +b 2就可以用如图①②所示的图形的面积来表示.(1)请写出如图③所示的图形的面积表示的代数恒等式;(2)试画出一个几何图形,使它的面积能表示为(a +b)(a +3b)=a 2+4ab +3b 2;(3)请仿照上述方法另写一个含有a ,b 的代数恒等式,并画出与之对应的几何图形.26. 定义2a b a b *=-,则(12)3**= .。
整式乘法法则知识点总结

整式乘法法则知识点总结一、整式乘法法则的定义整式乘法法则是指在代数中,两个整式相乘得到的结果仍为整式。
简单来说,整式乘法就是指对两个整式进行乘法运算,得到的结果仍然是整式。
整式乘法的结果可以表示为一个新的整式,它由被乘数和乘数的各项的乘积相加得到。
整式乘法法则的定义包括以下几点:1. 整式乘法的定义:两个整式相乘得到的结果仍为整式。
2. 整式的乘法形式:当两个整式相乘时,可以将它们的各项进行对应的乘法运算,然后将乘积相加得到结果。
3. 乘法的交换律:在整式的乘法中,乘法的交换律成立,即乘数的顺序可以交换,结果不变。
整式乘法法则的定义是整式乘法的基础,理解了这个定义,我们就能够正确地进行整式的乘法。
接下来,我们将介绍整式乘法法则的性质,以及整式乘法的具体运算规则。
二、整式乘法法则的性质整式乘法法则有许多重要的性质,这些性质包括了整式乘法的基本规律和运算法则。
了解整式乘法法则的性质,可以帮助我们更好地理解整式乘法的运算规则。
下面是整式乘法法则的性质:1. 分配律:整式乘法满足分配律,即加法和乘法的结合性。
对于任意的整式a、b、c,有a*(b+c) = a*b + a*c。
2. 乘法的交换律:整式乘法满足交换律,即乘数的顺序可以交换,结果不变。
对于任意的整式a、b,有a*b = b*a。
3. 乘法的结合律:整式乘法满足结合律,即乘法的顺序可以变换,结果不变。
对于任意的整式a、b、c,有(a*b)*c = a*(b*c)。
4. 零乘法则:任何整式与0相乘,结果都为0。
即0*a = 0。
5. 单位元素法则:任何整式与1相乘,结果都为它本身。
即1*a = a。
整式乘法法则的性质是整式乘法的基本规律,它们对于整式乘法的具体运算具有重要的指导作用。
了解了整式乘法法则的性质,我们就能够更好地运用整式乘法进行代数运算。
接下来,我们将介绍整式乘法的具体运算规则,以及整式乘法法则在具体应用中的运用。
三、整式乘法法则的运算规则整式乘法法则的具体运算规则是在整式乘法的基础上,根据乘法法则的性质进行整式的具体运算。
八年级数学上册“第十四章整式的乘法与因式分解”必背知识点

八年级数学上册“第十四章整式的乘法与因式分解”必背知识点一、整式的乘法1. 单项式乘单项式:法则:把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2. 单项式乘多项式:法则:用单项式去乘多项式的每一项,再把所得的积相加。
3. 多项式乘多项式:法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
二、乘法公式1. 平方差公式:公式:$(a+b)(a-b) = a^2 b^2$应用:两个数的和与这两个数的差的积,等于这两个数的平方差。
2. 完全平方公式:公式:$(a+b)^2 = a^2 + 2ab + b^2$$(a-b)^2 = a^2 2ab + b^2$应用:两个数的和 (或差)的平方,等于这两个数的平方和,加上(或减去)这两个数积的2倍。
三、因式分解1. 因式分解的定义:把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,也叫作分解因式。
2. 提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。
3. 公式法:利用平方差公式和完全平方公式进行因式分解。
注意:分解因式必须分解到每一个因式都不能再分解为止。
四、十字相乘法十字相乘法主要用于二次项系数为1的二次多项式的因式分解。
方法:通过观察和尝试,将常数项分解为两个因数的乘积,并使得这两个因数与一次项系数的组合满足整式的乘法规则。
五、注意事项在进行整式乘法时,要注意系数的计算、字母的指数运算以及符号的处理。
在进行因式分解时,要注意分解的彻底性,即每一个因式都不能再进一步分解。
熟练掌握乘法公式和因式分解的方法,对于提高解题效率和准确率至关重要。
掌握这些知识点,将有助于学生更好地理解和应用整式的乘法与因式分解,提高代数运算能力和解题能力。
初中数学知识归纳整式的乘法公式

初中数学知识归纳整式的乘法公式在初中数学中,我们学习了很多关于整式的知识,其中包括整式的乘法公式。
整式的乘法公式是指两个整式相乘时所遵循的一些规则和方法。
本文将对初中数学中整式的乘法公式进行归纳总结。
一、单项式和单项式相乘当两个单项式相乘时,我们需要将它们的系数相乘,指数相加。
例如,当我们计算2x和3x的乘积时,可以用如下的方法:2x * 3x = 2 * 3 * x * x = 6x^2在这个例子中,乘积6x^2的系数为2和3的乘积,即6;指数为x 的指数1加x的指数1,即2。
二、单项式和多项式相乘当单项式和多项式相乘时,我们需要将单项式的每一项与多项式的每一项相乘,然后将结果进行合并。
例如,当计算2x与3x^2 + 4x的乘积时,可以按照如下的步骤来进行:2x * (3x^2 + 4x) = 2x * 3x^2 + 2x * 4x = 6x^3 + 8x^2在这个例子中,首先将2x与3x^2相乘得到6x^3,然后将2x与4x 相乘得到8x^2,最后将结果合并得到6x^3 + 8x^2。
三、多项式和多项式相乘当两个多项式相乘时,我们需要将第一个多项式的每一项与第二个多项式的每一项相乘,然后将结果进行合并。
例如,当计算(2x + 3) * (3x - 4)时,可以按照如下的步骤来进行:(2x + 3) * (3x - 4) = 2x * 3x + 2x * (-4) + 3 * 3x + 3 * (-4) = 6x^2 - 8x + 9x - 12在这个例子中,首先将2x与3x相乘得到6x^2,然后将2x与-4相乘得到-8x,接着将3与3x相乘得到9x,最后将3与-4相乘得到-12,将结果合并得到6x^2 - 8x + 9x - 12。
总结:整式的乘法公式可以归纳为以下几个规则:1. 单项式和单项式相乘时,系数相乘,指数相加。
2. 单项式和多项式相乘时,将单项式的每一项与多项式的每一项相乘,然后将结果进行合并。
八年级数学整式的乘法与因式分解常考必考知识点总结

一、整式的乘法1.几个常用公式:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²(a+b)(a-b)=a²-b²(a+b)³ = a³ + 3a²b + 3ab² + b³(a-b)³ = a³ - 3a²b + 3ab² - b³2.整式的乘法法则:(a+b)(c+d) = ac + ad + bc + bd加减混合运算:(a+b)(c-d) = ac - ad + bc - bd3.多项式的乘法:(a₁+a₂+...+aₙ)(b₁+b₂+...+bₙ)=a₁b₁+a₁b₂+...+a₁bₙ+a₂b₁+a₂b₂+...+a₂bₙ+...+aₙb₁+aₙb₂+...+aₙb ₙ4.整式的乘法性质:交换律:a·b=b·a结合律:(a·b)·c=a·(b·c)分配律:a·(b+c)=a·b+a·c5.整式的乘法应用:展开、计算、化简等二、因式分解1.因式分解的基本概念:将一个整式分解为两个或多个因式的乘积的过程。
2.因式分解的方法:a.公因式提取法:找出整个整式和各项中的公因式,并提取出来。
b.公式法:利用已知的一些公式对整式进行因式分解。
c.分组法:将整式中各项按一定的规则分组,然后在每组内部进行因式分解。
d.辗转相除法:若整式中存在因式公共因式,可以多次使用辗转相除法进行因式分解。
3.一些常见的因式分解公式:a.二次差平方公式:a²-b²=(a+b)(a-b)b. 平方差公式:a² + 2ab + b² = (a+b)²c. 平方和公式:a² - 2ab + b² = (a-b)²d. 三次和差公式:a³+b³ = (a+b)(a²-ab+b²)、a³-b³ = (a-b)(a²+ab+b²)e. 四次和差公式:a⁴+b⁴ = (a²+b²)(a²-ab+b²)、a⁴-b⁴ = (a+b)(a-b)(a²+b²)4.因式分解的应用:简化计算、寻找整式的根、列立方程等。
【全】初中数学整式的乘法与因式分解知识点总结

整式的乘法与因式分解第一节:整式的乘法1.同底数幂的乘法一般地,对于任意底数a与任意正整数m,有(m、n都是正整数)。
即同底数幂相乘,底数不变,指数相加。
该乘法法则是幂的运算中最基本的法则。
在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为(其中m、n、p均为正整数);⑤公式还可以逆用:(m、n均为正整数)。
2.幂的乘方一般地,对任意底数a与任意正整数m、n,有(m、n都是正整数)。
即幂的乘方,底数不变,指数相乘。
该法则是幂的乘法法则为基础推导出来的,但两者不能混淆。
另有:(m、n都是正整数)。
当底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3。
底数有时形式不同,但可以化成相同。
要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=a n+b n(a、b均不为零)。
3.积的乘方法则一般地,对于任意底数a、b与任意正整数n,有(n为正整数)。
即积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘。
幂的乘方与积乘方法则均可逆向运用。
4.整式的乘法1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法则在运用时要注意以下几点:①积的系数等于各因式系数积,先确定符号,再计算绝对值。
这时容易出现的错误的是,将系数相乘与指数相加混淆;②相同字母相乘,运用同底数的乘法法则;③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;④单项式乘法法则对于三个以上的单项式相乘同样适用;⑤单项式乘以单项式,结果仍是一个单项式。
整式的乘法知识点归纳总结

整式的乘法知识点归纳总结一、单项式乘以单项式。
1. 法则。
- 单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
- 例如:2a^2b×3ab^2=(2×3)×(a^2× a)×(b× b^2)=6a^2 + 1b^1+2=6a^3b^3。
2. 系数相乘。
- 计算时先确定积的系数,系数为各单项式系数的乘积。
如-3x^2y×5xy^2,系数-3与5相乘得-15。
3. 同底数幂相乘。
- 根据同底数幂的乘法法则a^m× a^n=a^m + n。
在单项式乘法中,对于相同底数的幂要分别相乘。
如4x^3×2x^2=(4×2)×(x^3× x^2)=8x^3+2=8x^5。
4. 单独字母的处理。
- 只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
例如3x^2y×4z = 12x^2yz。
二、单项式乘以多项式。
1. 法则。
- 单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
- 例如:a(b + c)=ab+ac,若2x(x^2 - 3x + 1)=2x× x^2-2x×3x + 2x×1=2x^3-6x^2 + 2x。
2. 注意事项。
- 不漏乘:在计算时要确保单项式与多项式的每一项都相乘。
- 符号问题:注意单项式和多项式各项的符号,按照有理数乘法的符号法则确定积的符号。
三、多项式乘以多项式。
1. 法则。
- 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
- 例如(a + b)(c + d)=a(c + d)+b(c + d)=ac+ad+bc+bd。
- 若(x + 2)(x - 3)=x× x-x×3+2× x - 2×3=x^2-3x+2x - 6=x^2 - x - 6。
初中数学整式的乘除与分解因式知识点

初中数学整式的乘除与分解因式知识点
整式的乘法与除法是初中数学中的重点内容之一。
下面是一些相关的知识点:
1. 整式的乘法:整式的乘法要注意项的乘法和系数的乘法。
将每一项的系数分别相乘,并将指数分别相加,得到乘积的系数和指数。
例如:(3x+2)(4x-1)
首先扩展,得到12x^2 + 5x - 2。
2. 整式的除法:整式的除法是通过“乘除消数”的方法来完成的。
将除数乘以一个适
当的式子,使得结果与被除式的某个部分相等或尽量接近。
然后将乘积减去被除式,
重复之前的步骤,直到无法再减少为止。
例如:(2x^2 + 5x + 3) ÷ (x + 1)
首先将被除式分解为(x + 1)(2x + 3),然后进行乘法,得到2x^2 + 5x + 3。
然后将乘积减去被除式,得到0。
所以结果为2x + 3。
3. 因式的分解:整式的因式分解是将一个整式写成几个因式的乘积的形式。
例如:6x^2 + 11x + 3的因式分解为(2x + 1)(3x + 3)。
这些知识点在初中数学中是比较基础的内容,掌握了整式的乘除与分解因式的方法,
将有助于解决更复杂的数学问题。
整式的乘法和因式分解知识点汇总

整式的乘法和因式分解知识点汇总整式乘除与因式分解一、知识点1.幂的运算性质:同底数幂相乘,底数不变,指数相加。
即,am·an=am+n(m、n为正整数)。
例如:(-2a)2(-3a2)3 = 4a2·-27a6 = -108a8.2.幂的乘方性质:幂的乘方,底数不变,指数相乘。
即,a(mn)=(am)n(m、n为正整数)。
例如:(-a5)5 = (-1)5·a25 = a25.3.积的乘方性质:积的乘方等于各因式乘方的积。
即,(ab)n = an·bn(n为正整数)。
例如:(-a2b)3 = (-1)3·a6·b3 = -a6b3.4.幂的除法性质:同底数幂相除,底数不变,指数相减。
即,a/m ÷ a/n = a(m-n)(a≠0,m、n都是正整数,且m>n)。
例如:(1) x8÷x2 = x6;(2) a4÷a = a3;(3) (ab)5÷(ab)2 = a3b3.5.零指数幂的概念:a0 = 1(a≠0)。
任何一个不等于零的数的零指数幂都等于1.例如:若(2a-3b)0=1成立,则a,b满足任何条件。
6.负指数幂的概念:a-p = 1/ap(a≠0,p是正整数)。
任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数。
例如:(m/n)-2 = n2/m2.7.单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
例如:(1) 3a2b·2abc·abc2 = 6a4b2c3;(2) (-m3n)3·(-2m2n)4 = -8m14n7.8.单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加。
例如:(1) 2ab(5ab+3ab) = 16a2b2;(2) (ab2-2ab)·ab = a2b3-ab2.9.多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加。
整式的乘法与因式分解所有知识点总结

整式的乘法与因式分解所有知识点总结一、整式的乘法1.乘法法则:(1)两个整系数多项式相乘,按照分配律逐项相乘再相加即可。
(2)对于整式的乘幂,将底数相乘,指数相加。
(3)进行乘法时,可以将同类项合并。
2.乘法的性质:(1)乘法交换律:a*b=b*a(2)乘法结合律:(a*b)*c=a*(b*c)(3)乘法的分配律:a*(b+c)=a*b+a*c3.乘法公式:(1) 平方公式:(a + b)^2 = a^2 + 2ab + b^2(2)平方差公式:(a+b)(a-b)=a^2-b^2(3) 三项平方和公式:a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + ac + bc)4.乘法的运用:(1)计算多项式的立方和高次幂。
(2)将多项式与常数相乘。
(3)将多项式乘以一个多项式。
二、因式分解1.因式分解的定义:因式分解是指将一个多项式表示为几个乘积的形式,其中每个乘积称为因式。
2.因式分解的方法:(1)公因式提取法:将多项式的所有项提取出一个最高公因式,然后将剩余部分因式分解。
(2)公式法:利用数学公式,如平方公式、立方公式等进行因式分解。
(3)分组分解法:将多项式分成若干组,每组提取公因式后进行因式分解。
3.公式法的常见因式分解:(1)平方差公式:a^2-b^2=(a+b)(a-b)(2) 完全平方公式:a^2 + 2ab + b^2 = (a + b)^2(3) 差平方公式:a^2 - 2ab + b^2 = (a - b)^2(4) 立方和公式:a^3 + b^3 = (a + b)(a^2 - ab + b^2)(5) 三项平方和公式:a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + ac + bc)4.分组分解法的常见因式分解:(1)将多项式分成两组,每组提取公因式后进行因式分解。
(2)将多项式分成三组,每组提取公因式后进行因式分解。
初中数学整式的乘除与因式分解知识点归纳

初中数学整式的乘除与因式分解知识点归纳一、整式的乘法:1.普通整式相乘:将每一项的系数相乘,同时将每一项的指数相加。
2.平方整式相乘:先将每一项平方,再将每一项相乘得到结果。
3.完全平方的平方差公式:(a-b)(a+b)=a²-b²。
4. 公式展开:通过公式展开可求两个或多个整式的乘积,例如(a+b)²=a²+2ab+b²。
二、整式的除法:1.整式相除的概念:整式A除以整式B,若存在整式C,使得B×C=A,那么C称为A除以B的商式。
2.用辗转相除法进行整式的除法计算。
三、因式分解:1.抽象公因式法:将多项式中的每一项提取出公因式,然后将剩下的部分合并。
2.公式法:运用一些常用的公式,如平方差公式、完全平方公式等进行因式分解。
3.分组法:将多项式中的项进行分组,使每一组都有一个公因式,然后进行合并。
4. 二次三项式的因式分解:对于二次三项式a²+2ab+b²或a²-2ab+b²,可以因式分解为(a±b)²。
5.因式定理和余式定理:若(x-a)是多项式P(x)的因式,则P(a)=0。
根据这一定理可以找到多项式的因式。
四、常见整式的因式分解:1.平方差公式:a²-b²=(a+b)(a-b)。
2. 完全平方公式:a²+2ab+b²=(a+b)²,a²-2ab+b²=(a-b)²。
3. 符号"相反"公式:a²-2ab+b²=(b-a)²。
4. 三项平方公式:a³+b³=(a+b)(a²-ab+b²),a³-b³=(a-b)(a²+ab+b²)。
5. 公因式公式:a²+ab=a(a+b)。
整式的乘法(6大知识点15类题型)(知识梳理与题型分类讲解)(人教版)(学生版25学年八年级数学上册

专题14.3整式的乘法(6大知识点15类题型)(知识梳理与题型分类讲解)第一部分【知识点归纳与题型目录】【知识点1】同底数幂的除法法则同底数幂相除,底数不变,指数相减,即mnm na a a -÷=(a ≠0,m n 、都是正整数,并且m n >)【要点提示】(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式.(3)当三个或三个以上同底数幂相除时,也具有这一性质.(4)底数可以是一个数,也可以是单项式或多项式.【知识点2】单项式的乘法法则单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它们的指数作为积的一个因式.【要点提示】(1)单项式的乘法法则的实质是乘法的交换律和同底数幂的乘法法则的综合应用.(2)单项式的乘法方法步骤:积的系数等于各系数的积,是把各单项式的系数交换到一起进行有理数的乘法计算,先确定符号,再计算绝对值;相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算;只在一个单项式里含有的字母,要连同它的指数写在积里作为积的一个因式.(3)运算的结果仍为单项式,也是由系数、字母、字母的指数这三部分组成.(4)三个或三个以上的单项式相乘同样适用以上法则.【知识点3】单项式与多项式相乘的运算法则单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即()m a b c ma mb mc ++=++.【要点提示】(1)单项式与多项式相乘的计算方法,实质利用乘法分配律将其转化为多个单项式乘单项式的问题.(2)单项式与多项式的乘积仍是一个多项式,项数与原多项式的项数相同.(3)计算过程中要注意符号问题,多项式中的每一项包括它前面的符号,还要注意单项式的符号.(4)对混合运算,应注意运算顺序,最后有同类项时,必须合并,从而得到最简的结果.【知识点4】多项式与多项式相乘的运算法则多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.【要点提示】多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.多项式与多项式相乘的最后结果需化简,有同类项的要合并.特殊的二项式相乘:()()()2x a x b x a b x ab ++=+++.知识点与题型目录【知识点一】同底数幂的除法【题型1】同底数幂的除法运算及逆运算.........................................3;【知识点二】单项式相乘【题型2】单项式相乘.........................................................3;【题型3】利用单项式相乘求字母或代数式的值...................................3;【知识点三】单项式乘以多项式【题型4】单项式乘以多项式的运算与求值.......................................4;【题型5】单项式乘以多项式的应用.............................................4;【题型6】利用单项式乘以多项式求字母的值.....................................4;【知识点四】多项式相乘【题型7】计算多项式乘以多项式...............................................5;【题型8】计算多项式乘以多项式化简求值.......................................5;【题型9】(x+p)(x+q)型多项式相乘..........................................5;【题型10】整式乘法中的不含某个字母问题......................................5;【题型11】多项式相乘中的几何问题............................................6;【知识点五】多项式除以单项式【题型12】多项式除以单项式..................................................6;【知识点六】多项式除以单项式【题型13】整式乘法混合运算..................................................7;【直通中考与拓展延伸】【题型14】直通中考..........................................................7;【题型15】拓展延伸..........................................................8.第二部分【题型展示与方法点拨】【题型1】同底数的除法运算及逆运算【例1】(23-24八年级上·天津滨海新·期末)计算:()()23432253339xy x x y xy x y ⎡⎤-÷⎢⎥⎦⋅-⋅⎣.【变式1】(22-23七年级下·广东深圳·阶段练习)若4m a =,8n a =,则32m n a -的值为()A .12B .1C .2D .4【变式2】(23-24七年级下·全国·单元测试)已知2320x y --=,则()()231010x y ÷=.【题型2】单项式相乘【例2】(22-23八年级上·福建厦门·期中)计算:(1)()2243623a a a a ⋅+-;(2)()()23225x x y -⋅-【变式1】(23-24七年级下·全国·单元测试)计算()222133x y xy ⎛⎫-⋅- ⎪⎝⎭的结果为()A .45x y -B .4513x y C .3213x y -D .4513x y -【变式2】(23-24七年级下·全国·单元测试)计算:()()3222324623418ab a b a b a b -⋅+⋅=.【题型3】利用单项式相乘求字母或代数式的值【例3】(22-23七年级下·广东梅州·期中)先化简,后求值:2332223141644x y x y x y xy ⎛⎫⎛⎫⋅-+-⋅ ⎪ ⎪⎝⎭⎝⎭,其中0.4x =,2.5y =-.【变式1】(2024·陕西榆林·三模)已知单项式24xy 与313x y -的积为3n mx y ,则m ,n 的值为()A .43m =-,4n =B .12=-m ,2n =-C .43m =-,3n =D .12=-m ,3n =【变式2】(23-24七年级下·全国·假期作业)若()()1221253m n n n a b a b a b ++-⋅=,则m n +的值为.【题型4】单项式乘以多项式的运算与求值【例4】(23-24八年级上·吉林·阶段练习)先化简,再求值:()()223243234a a a a a -+-+,其中1a =-.【变式1】(2024·陕西咸阳·模拟预测)计算132xy x y ⎛⎫-⋅- ⎪⎝⎭的结果是()A .223x y xy +B .22332x y xy --C .22332x y xy -+D .22132x y xy -+【变式2】(23-24七年级下·江苏南京·阶段练习)若220240a a +-=,代数式()()220241a a -+的值是.【题型5】单项式乘以多项式的应用【例5】(23-24七年级下·广东佛山·阶段练习)小红的爸爸将一块长为322455a b ⎛⎫+⎪⎝⎭分米、宽55a 分米的长方形铁皮的四个角都剪去一个边长为412a 分米的小正方形,然后沿虚线折成一个无盖的盒子.(1)用含a ,b 的整式表示盒子的外表面积;(2)若1a =,0.2b =,现往盒子的外表面上喷漆,每平方分米喷漆价格为15元,求喷漆共需要多少元?【变式1】(23-24七年级下·山东菏泽·期中)某同学在计算一个多项式乘24x 时,因抄错运算符号,算成了加上24x ,得到的结果是2321x x +-,那么正确的计算结果是()A .432484x x x -+-B .432484x x x +-C .43244x x x -+-D .432484x x x --【变式2】(22-23八年级上·福建泉州·阶段练习)已知:2210x x --=,则352020x x -+=.【题型6】利用单项式乘以多项式求字母的值【例6】(21-22七年级下·河南驻马店·阶段练习)已知x (x ﹣m )+n (x +m )=2x +5x ﹣6对任意数都成立,求m (n ﹣1)+n (m +1)的值.【变式1】(23-24七年级下·河南周口·阶段练习)若()24x ax x x +=+,则a 的值为()A .2B .3C .4D .8【变式2】(23-24七年级下·山东济南·阶段练习)要使()32412x x ax x -+++中不含有x 的四次项,则a =.【题型7】计算多项式乘以多项式【例7】(24-25八年级上·全国·单元测试)计算:(1)()()()222323x x x x +---+;(2)22(1)(1)x x x x ++-+;(3)2(1)(2)(2)x x x x +-++【变式1】(22-23七年级下·甘肃张掖·期中)下列计算正确的是()A .()()324242ab ab a b ⋅-=B .()()22356m m m m +-=--C .()()245920y y y y +-=+-D .()()21454x x x x ++=++【变式2】(22-23七年级下·山东菏泽·期中)如果()()()()32912x x x x ---+-=,那么x 的值是.【题型8】计算多项式乘以多项式化简求值【例8】(24-25八年级上·河南南阳·阶段练习)先化简,再求值:()()()222112a a a a a a +--+-,其中3a =-.【变式1】(23-24七年级下·安徽合肥·期中)我们规定a b ad bc cd=-,例如121423234=⨯-⨯=-,已知2523m n nm n m n+=-+-,则代数式2261m n --的值是()A .4B .5C .8D .9【变式2】(2024·湖南长沙·模拟预测)已知235a ab +=,则2()(2)2a b a b b ++-的值为.【题型9】(x+p)(x+q)型多项式相乘【例9】(22-23七年级下·辽宁沈阳·期中)先化简,再求值:()()()()()23333442x x x x x +-++---,其中2x =.【变式1】(23-24七年级下·辽宁锦州·阶段练习)若()()2315x x n x mx ++=+-,则mn 的值为()A .5-B .5C .10D .10-【变式2】(22-23七年级下·江苏盐城·阶段练习)若()()228x m x x nx +-=+-,则2m n +=.【题型10】整式乘法中的不含某个字母问题【例10】(22-23七年级下·四川达州·期中)已知代数式()22mx x +与()232x nx ++积是一个关于x 的三次多项式,且化简后含2x 项的系数为1,求m 和n 的值.【变式1】(23-24七年级下·全国·期中)已知多项式x a -与221x x +-的乘积中2x 的项系数与x 的项系数之和为4,则常数a 的值为()A .1-B .1C .2-D .2【变式2】(24-25八年级上·吉林长春·阶段练习)若()()23x m x x n +-+的积中不含2x x 、项,则m =,n =.【题型11】多项式相乘中的几何问题【例11】(22-23八年级上·四川绵阳·期末)学校需要设计一处长方形文化景观,分为中央雕塑区和四周绿化区.中央雕塑区的长边为(33m -)米,短边为2m 米,绿化区外边沿的长边为(42m -)米,短边为(31m -)米.试比较雕塑区和绿化区的面积大小.(m 为正数)【变式1】(23-24七年级上·湖南长沙·期末)下面四个整式中,不能..表示图中阴影部分面积的是()A .(4)(3)3x x x ++-B .24(3)x x ++C .24x x+D .(4)12x x ++【变式2】(23-24七年级下·全国·单元测试)有若干张如图所示的正方形A 类、B 类卡片和长方形C 类卡片.如果要拼成一个长为()2a b +,宽为()32a b +的大长方形,那么需要C 类卡片张.【题型12】多项式除以单项式【例12】(22-23七年级下·宁夏银川·期末)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,2211322xy x y xy xy ⨯=-+(1)求所捂的多项式;(2)若2132x y ==,,求所捂多项式的值.【变式1】(2024·湖北武汉·模拟预测)若22233241216m x y x y x y ⨯=-,则m =()A .43x y-B .43x y-+C .43x y+D .43x y--【变式2】(22-23七年级下·浙江温州·期末)若223615xy A x y xy =- ,则A 代表的整式是.【题型13】整式乘法混合运算【例13】(23-24七年级下·贵州毕节·期末)先化简,再求值:(1)()()()()22224x y x y x y x x y -+-+--,其中1x =-,2y =.(2)已知2210x x +-=,求代数式()()()()21433x x x x x ++++-+的值.【变式1】(21-22六年级下·全国·单元测试)等式()()324322xyz x y z y ⎡⎤÷-⋅=⎣⎦中的括号内应填入()A .6538x y z B .228x y zC .222x y zD .222x y z±【变式2】(2024·福建厦门·二模)已知11x x-=-,则()()22131x x x +-+的值为.第三部分【中考链接与拓展延伸】【题型14】直通中考【例1】(2024·山东青岛·中考真题)下列计算正确的是()A .223a a a +=B .523a a a ÷=C .235()a a a -⋅=-D .()23622a a =【例2】(2023·黑龙江大庆·中考真题)1261年,我国宋朝数学家杨辉在其著作《详解九章算法》中提到了如图所示的数表,人们将这个数表称为“杨辉三角”.观察“杨辉三角”与右侧的等式图,根据图中各式的规律,7()a b +展开的多项式中各项系数之和为.【题型15】拓展延伸【例1】(23-24八年级上·四川眉山·期中)观察下列各式:2(1)(1)1x x x -+=-;23(1)(1)1x x x x -++=-;324(1)(1)1x x x x x -+++=-;…根据规律计算:202220212020201943222222222-+-+⋯⋯+-+-的值是()A .2023223-B .202321-C .20232-【例2】(2024七年级上·全国·专题练习)按如图所示的程序进行计算,如果第一次输入x 的值是3-,则第2024次计算后输出的结果为.。
整式的乘法和因式分解知识点汇总

整式的乘法和因式分解知识点汇总整式乘除与因式分解在研究代数的过程中,整式乘除与因式分解是非常重要的知识点。
下面将对这些知识点进行详细讲解。
一.幂的运算性质幂的运算性质是代数中最基本的知识之一。
其中,同底数幂相乘,底数不变,指数相加;幂的乘方,底数不变,指数相乘。
例如,对于表达式(-2a)2(-3a2)3,可以先计算幂的乘方,然后再将同底数幂相乘。
二.乘方的运算乘方的运算也是代数中的基本知识。
根据乘方的运算法则,积的乘方等于各因式乘方的积。
例如,对于表达式(-a5)5,可以将其分解为a的5次方的积,然后再进行乘方运算。
三.同底数幂的除法同底数幂的除法也是代数中的基本知识之一。
根据同底数幂的除法法则,同底数幂相除,底数不变,指数相减。
例如,对于表达式x÷x,可以将其化简为x的0次方,即1.四.零指数幂和负指数幂在代数中,零指数幂和负指数幂也是非常重要的概念。
任何一个不等于零的数的零指数幂都等于1;任何一个不等于零的数的负指数幂,等于这个数的指数幂的倒数。
例如,对于表达式(2a3b)1,可以通过代数式的运算,求出a和b的取值范围。
五.单项式和多项式的乘法单项式和多项式的乘法也是代数中的基本知识之一。
对于单项式相乘,需要将系数和同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
对于单项式与多项式相乘,需要用单项式和多项式的每一项分别相乘,再把所得的积相加。
对于多项式与多项式相乘,需要先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加。
通过对整式乘除与因式分解的研究,可以更好地理解代数的基本概念和运算法则,为后续的研究打下坚实的基础。
1.计算 (3×10^8)×(-4×10^4) = -1.2×10^132.计算 2x·(-2xy)·(-3) = 12x^2y3.若n为正整数,且x^(2n)=3,则(3x^(3n))^2的值为 274.如果 (anb·abm)^3 = a^9b^15,那么 mn 的值是 55.-[-a^2(2a^3-a)] = 2a^5 - a^36.(-4x^2+6x-8)·(-1/2x) = 2x^3-3x^2+4x7.2n(-1+3mn^2) = -6mn^2+2n8.若 k(2k-5)+2k(1-k) = 32,则 k = 49.(-3x^2)+(2x-3y)(2x-5y)-3y(4x-5y) = -10x^2+31xy-15y^210.在 (ax^2+bx-3)(x^2-x+8) 的结果中不含 x^3 和 x 项,则a = 1/2,b = -311.一个长方体的长为 (a+4)cm,宽为 (a-3)cm,高为(a+5)cm,则它的表面积为 2a^2+22a+32,体积为 (a+4)(a-3)(a+5) = a^3+6a^2-7a-60.若将长方形的长和都扩大了2cm,则面积增大了 8cm^2.12.一个长方形的长是 10cm,宽比长少6cm,则它的面积是 40cm^2.当长和都扩大了2cm时,面积增大了 44cm^2.13.单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式。
八年级数学上人教版《整式的乘法》课堂笔记

《整式的乘法》课堂笔记一、知识点梳理1.单项式与单项式相乘:把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
2.单项式与多项式相乘:把单项式写在多项式的前面,和多项式的每一项相乘,再把所得的积相加。
3.多项式与多项式相乘:先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
4.平方差公式:两数和乘两数差,等于两数平方差。
积二倍角公式:一角二边和乘积,凑成二倍角不变。
5.完全平方公式:首平方又末平方,二倍首末在中央;和的平方加再加,先减后加差平方。
二、方法总结1.运用分配律进行计算,简化运算过程。
2.观察运算结果中各项的系数和指数,运用交换律和结合律进行变形,使运算更加简便。
3.掌握一些常见的运算技巧,如“头平方,尾平方,头尾相乘再平方”,“头大尾小两边排,尾平方来头平方,两数和(差)放中间”等,这些技巧能够简化运算过程,提高运算速度和准确度。
三、注意事项1.运算过程中要注意符号问题,尤其是当幂的底数为负数时,需要运用分配律进行变形,以得到正确的结果。
2.要注意运算的顺序,先进行乘方运算,再进行乘除运算,最后进行加减运算。
同时要遵循先括号内后括号外的原则。
3.对于一些特殊的运算结果,如0的任何次幂都等于0等,要注意直接引用结论以提高计算速度。
4.要注意养成验算的习惯,以检查计算结果是否正确。
验算可以采用重新计算一遍或者检查运算过程中的错误等方式进行。
5.要注意培养自己的观察能力和运算能力。
在面对复杂的运算问题时,要学会观察问题特征,寻找简便的解决方法。
同时要加强练习,熟悉各种运算技巧和解题思路。
整式的乘法知识点总结—

八年级14.1整式的乘法知识点总结【知识点一】整式的混合运算例题一、计算:()()()2443][-a a a a -+-∙∙例题二、计算:3222132213⎪⎭⎫ ⎝⎛-∙⎪⎭⎫ ⎝⎛-+xy y y x例题三、计算:()()()()y x y x y x y x 4333223+--++【知识点二】利用幂的运算法则解决问题例题一、已知510=a ,610=b ,求b a 3210+的值。
例题二、解方程:486331222=-++x x例题三、已知0352=-+y x ,求y x 324∙的值。
【知识点三】整式除法的运用例题一、已知()p n y mx y x y x 72323212--=⎪⎭⎫ ⎝⎛-÷,求n,m,p 的值。
例题二、已知一个多项式与单项式457-y x 的积为()2234775272821y x y y x y x +-,求这个多项式【知识点四】整式化简求值例题一、先化简,再求值:()()()x x x x x x x x -+-----321589622,其中61-=x例题二、先化简,再求值:()()()⎪⎭⎫ ⎝⎛--++--+-y x x y x x y x y x 2563222,其中2,1=-=y x .【知识点五】开放探求题例题一、若多项式()()4322+-++xxnmxx展开后不含有3x项和2x项,试求m,n的值。
例题二、甲乙二人共同计算一道整式乘法:()()bxax++32,由于甲抄错了第一个多项式中a的符号,得到的结果为101162-+xx;由于乙漏抄了第二个多项式中x的系数,得到的结果为10922+-xx。
(1)你能知道式子中b a,的值各是多少吗?(2)请你计算出这道整式乘法的正确结果。
例题三、若x是整数,求证121223+-+--x x xxx是整数。
【知识点六】整式乘除法在实际问题中的应用例题一、某中学扩建教学楼,测量地基时,量得地基长为2a m,宽为(2a-24)m,试用a表示地基的面积,并计算当a=25时地基的面积例题二、大庆市环保局欲将一个长为2×103dm,宽为4×102dm,高为8×10dm的长方体废水池中的满池废水注入正方体贮水池净化,(1)请你考虑一下,这些废水能否刚好装满一个正方体贮水池________.(请填“能”或“不能”)(2)若能,则该正方体贮水池的棱长_________dm;(3)若不能,你能说出理由吗?(不要求作答)例题三、太阳可以近似的看作是球体,如果用V 、R 分别代表球的体积和半径,那么34 V π3R ,太阳的半径约为6×105千米,它的体积大约是多少立方千米?(π取3)。
整式知识点总结归纳初二

整式知识点总结归纳初二整式是代数中一种重要的表达形式,对于初二的学生来说,掌握整式的知识点是非常关键的。
本文将对初二整式的相关知识进行总结归纳,帮助同学们系统地学习整式。
一、整式的定义整式是由常数、变量及它们的乘积相加减得到的代数式。
整式包括单项式和多项式两种形式。
单项式是只有一个项的整式,多项式是有两个或两个以上项相加减得到的整式。
二、整式的运算1. 整式的加法:将同类项相加,即将相同的字母部分(指数可以不同)相加,系数保持不变。
例如:2x + 3x = 5x2xy + 3xy = 5xy2. 整式的减法:将同类项相减,同加法一样,字母部分相同,系数相减。
例如:2x - 3x = -x2xy - 3xy = -xy3. 整式的乘法:将每个项的系数相乘,字母部分相乘,指数相加。
例如:2x * 3x = 6x^22xy * 3xy = 6x^2y^24. 整式的除法:将被除式与除式分别化简,然后进行除法运算。
例如:(6x^2y^2) / (2xy) = 3xy三、整式的因式分解因式分解是将一个整式表示成若干个因式相乘的形式。
常用的因式分解方法有:1. 提取公因式:将整式中的公因式提取出来。
例如:2x^2 + 6x = 2x(x + 3)2. 公式法:利用一些常见的公式进行因式分解。
例如:x^2 - 4 = (x + 2)(x - 2)3. 分组法:将整式中的项进行合理的分组,然后进行因式分解。
例如:ab + ac + bd + cd = a(b + c) + d(b + c) = (a + d)(b + c)四、整式的乘法公式在整式的乘法中,常常用到以下的乘法公式:1. 二次平方差公式:(a + b)(a - b) = a^2 - b^2例如:(3x + 2)(3x - 2) = 9x^2 - 42. 完全平方公式:(a + b)^2 = a^2 + 2ab + b^2例如:(2x + 3)^2 = 4x^2 + 12x + 93. 两个一次整式乘积的和:(a + b)(c + d) = ac + ad + bc + bd例如:(2x + 3)(4x + 5) = 8x^2 + 22x + 15五、整式的应用整式在数学中的应用非常广泛,特别是在代数运算、方程求解和函数图像绘制等方面。
整式的乘法与因式分解知识点

整式的乘法与因式分解知识点整式的乘法和因式分解是初中数学中的重要知识点,也是后续学习代数、方程和不等式的基础。
本文将详细介绍整式的乘法和因式分解的定义、性质和方法。
一、整式的乘法整式是由常数和单项式相加(减)得到的代数式,其中单项式是指只包含一个变量的项。
整式的乘法是指将两个或多个整式相乘的运算。
1.单项式的乘法:单项式的乘法遵循以下运算法则:-同底数幂相乘,底数不变,指数相加。
例如,a^m*a^n=a^(m+n)。
-不同底数幂相乘,指数相乘。
例如,a^m*b^n=a^m*b^n。
- 系数相乘。
例如,k * t = kt。
2.多项式的乘法:多项式的乘法通过将每一项都与另一个多项式的每一项相乘,并将结果相加得到。
例如,(a+b+c)(x+y+z) = ax+ay+az+bx+by+bz+cx+cy+cz。
这个过程通常称为“分配律”。
二、整式的因式分解整式的因式分解是指将一个整式表示成几个单项式的乘积的运算。
因式分解的基本思路是找到整式的公因式,然后使用“提公因式法”将整式表示为公因式与其余部分的乘积。
1.提公因式法:假设整式ax+bx有一个公因式x,则可以将其改写为x(a+b)。
这个过程是因式分解中最基本的方法。
根据此原理,我们可以使用提公因式法因式分解更复杂的整式。
2.完全平方公式的因式分解:完全平方公式是指一个二次三项式(即一元二次多项式)的平方可以被因式分解成两个平方的和或差。
例如,a^2+2ab+b^2可以因式分解为(a+b)^2,而a^2-2ab+b^2可以因式分解为(a-b)^23.完全立方公式的因式分解:完全立方公式是指一个三次三项式(即一元三次多项式)的立方可以被因式分解成两个立方的和或差。
例如,a^3+3a^2b+3ab^2+b^3可以因式分解为(a+b)^3,而a^3-3a^2b+3ab^2-b^3可以因式分解为(a-b)^34.分组分解法:分组分解法是指根据整式中各项之间的关系将整式进行分组,以便使用提公因式法进行因式分解。
整式的乘法与因式分解知识点总结

整式的乘法与因式分解知识点总结整式是由整数、变量和运算符号相结合,通过加、减、乘、除等运算符号连接而成的代数式。
整式的乘法是指对两个或多个整式进行相乘的操作。
一、整式的乘法1.乘法运算的简便性:相同指数的变量相乘,可以将指数相加。
例如,a^2*a^3=a^(2+3)=a^52.简单常数的乘法:整数与整式相乘,只需将整数与整式中的每一项依次相乘。
3.分配律的运用:对于多项式的乘法,可以采用分配律以简化计算过程。
例如:(x+2)(x+3)=x*x+x*3+2*x+2*3=x^2+3x+2x+6=x^2+5x+64.合并同类项:在整式的乘法中,应合并同类项,即将指数相同的项进行合并。
例如,2x*3x=6x^25.乘法的交换律:整式在乘法中满足交换律。
例如,a*b=b*a。
二、因式分解因式分解是将一个整式拆分成多个因式的乘积的过程。
因式分解的目的是将复杂的整式转化为简单的乘法形式,方便计算与研究。
1.提公因式法:通过提取公因式的方法进行因式分解。
提公因式法的步骤如下:(1)将各项中的公因式提取出来;(2)原式中的每一项除以公因式,得到一个新的因式分解。
例如:6x^2+12x=6x(x+2)2.公式法:根据一些特定的公式进行因式分解。
例如:a^2-b^2=(a-b)(a+b)x^2 + 2xy + y^2 = (x+y)(x+y) = (x+y)^23.分组分解法:根据整式中存在的属于同一类别的项的相似性,将其进行分组并提取公因式。
例如:ab + ac + bd + bc = a(b+c) + b(d+c) = (b+c)(a+d)4.公因式分解法:在整式中找出各项的公因式,并将其提取出来,得到一个新的因式分解。
例如:2a^2b^2 + 4ab^3 = 2ab^2(a + 2b)5.平方差公式:根据平方差公式进行因式分解。
例如:a^2-b^2=(a-b)(a+b)6.根据特定条件进行因式分解:对于特定形式的整式,可以根据一些特定的条件进行因式分解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学整式的乘法知识点总结
关于初二数学整式的乘法知识点总结
整式的乘法:
①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式
初中数学知识点总结:平面直角坐标系
下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成
对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成
在同一个平面上互相垂直且有公共原点的.两条数轴构成平面直角坐标系,简称为直角坐标系。
通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
初中数学知识点:点的坐标的性质
下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。
点的坐标的性质
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。
反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
初中数学知识点:因式分解的一般步骤
因式分解的一般步骤
如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,
通常采用分组分解法,最后运用十字相乘法分解因式。
因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。
注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式
分解,应该是指在有理数范围内因式分解,因此分解因式的结果,
必须是几个整式的积的形式。
相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。
初中数学知识点:因式分解
下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。
因式分解
因式分解定义:把一个多项式化成几个整式的积的形式的变形
叫把这个多项式因式分解。
因式分解要素:①结果必须是整式②结果必须是积的形式③结
果是等式④
因式分解与整式乘法的关系:m(a+b+c)
公因式:一个多项式每项都含有的公共的因式,叫做这个多项
式各项的公因式。
公因式确定方法:①系数是整数时取各项最大公约数。
②相同
字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是
这个多项式各项的公因式。
提取公因式步骤:
①确定公因式。
②确定商式③公因式与商式写成积的形式。
分解因式注意;
①不准丢字母
②不准丢常数项注意查项数
③双重括号化成单括号
④结果按数单字母单项式多项式顺序排列
⑤相同因式写成幂的形式
⑥首项负号放括号外
⑦括号内同类项合并。
通过上面对因式分解内容知识的讲解学习,相信同学们已经能很好的掌握了吧,希望上面的内容给同学们的学习很好的帮助。