幅度调制器实验
高频电路实验六(幅度调制器)

实验六 低电平幅度调制器一、实验目的1、掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法与过程,并研究已调波与两输入信号的关系。
2、掌握测量调幅度的方法。
3、通过实验中波形的变换,学会分析实验现象。
二、预习要求1.预习幅度调制器有关知识。
2.认真阅读实验指示书,了解实验原理及内容,分析实验电路中用1496乘法器调制的工作原理,并分析计算各引出脚的直流电压。
3.分析全载波调幅及抑制载波调幅信号特点,并画出其频谱图。
三、实验仪器双踪示波器,数字万用表,高频电路实验装置四、实验原理1、用乘法器实现幅度调制的原理幅度调制就是使载波的振幅受调制信号的控制而作周期性的变化,调幅波的频率与载波信号的频率相同,而振幅与调制信号的振幅成线性关系。
幅度调制器分高电平调幅和低电平调幅两种,高电平调幅是在丙类放大器中实现的,低电平调幅一般通过乘法器来实现。
模拟乘法器能够实现两个模拟信号u 1(t )与u 2(t )的乘积运算。
若载频信号、调制信号分别为t U ωcos Cm 和)(t u Ω,则要得到双边带调幅波,需使t U t u ωcos )(Cm 1=,)()(2t u t u Ω=;要得到普通调幅波,需使t U t u ωcos )(Cm 1=,0)()(02>+=ΩU t u t u 。
普通调幅波的调幅度m a 与其最大峰-峰值U o,p-p,max 和最小峰-峰值U o,p-p,min 的关系为o,p-p,max o,p-p,mina o,p-p,max o,p-p,min U U m U U -=+。
2、集成模拟乘法器MC1496简介MC1496是一种典型的集成双差分对模拟乘法器,其内部电路及各引脚功能如图3-1所示。
在2脚与3脚间外接1k Ω电阻,可以增大1脚与4脚间所加信号的动态范围,使V5与V6的集电极电流之差与1脚与4脚间的电压成正比,因此调制信号应加在1脚与4脚之间。
载波信号应加在8脚与10脚之间,用以改变三极管V1~V4集电极电流的分配比例,或使V1~V4工作在开关状态(这时模拟乘法器相当于一个二极管乘法电路)。
幅度调制及解调实验心得

幅度调制及解调实验心得一、实验目的幅度调制及解调实验是电子学中的基础实验之一,旨在通过实践操作与理论结合的方式,加深对幅度调制及解调原理的理解,掌握幅度调制与解调电路的设计和调试方法。
二、实验原理1. 幅度调制原理幅度调制是指用模拟信号(也称为基带信号)去控制高频信号(也称为载波信号)的振幅变化,从而将模拟信号转化为高频信号。
具体而言,假设模拟信号为m(t),高频载波信号为c(t),则幅度调制后得到的带载波信号s(t)可表示为:$$s(t)=(A_c+m(t))\cos(2\pi f_c t)$$其中,$A_c$为载波振幅,$f_c$为载波频率。
可以看出,当模拟信号m(t)变化时,带载波信号s(t)的振幅也会随之变化。
2. 幅度解调原理幅度解调是指将已经被幅度调制过的带载波信号还原成原始模拟信号。
常见的幅度解调电路有包络检测器和同步检测器两种。
包络检测器的原理是利用二极管的非线性特性,将带载波信号的正半周期和负半周期分别整流,然后通过一个低通滤波器得到原始模拟信号的包络。
具体而言,假设带载波信号为s(t),则包络检测器输出的电压e(t)可表示为:$$e(t)=R_c\cdot C\cdot \frac{d}{dt}|s(t)|$$其中,$R_c$为电路中的电阻,$C$为电容。
同步检测器的原理是利用一个参考信号(也称为本振信号)与已经被幅度调制过的带载波信号相乘得到一个混频信号,然后通过低通滤波器得到原始模拟信号。
具体而言,假设参考信号为$f_r(t)$,带载波信号为$s(t)$,则同步检测器输出的电压e(t)可表示为:$$e(t)=K_d\cdot m(t)$$其中,$K_d$为检波灵敏度。
三、实验步骤1. 实验材料准备:示波器、函数发生器、二极管、电容、变阻器等。
2. 搭建幅度调制电路:将函数发生器输出接入变阻器中,并将变阻器输出接入二极管的正极,将二极管的负极接地。
将载波信号从函数发生器输出,并通过一个电容与变阻器输出相乘,得到幅度调制后的带载波信号。
光调制演示实验报告(3篇)

第1篇一、实验目的1. 理解光调制的原理和过程。
2. 学习使用光调制器进行信号调制。
3. 分析调制信号的频率、幅度和相位变化。
4. 掌握光调制在通信系统中的应用。
二、实验原理光调制是利用光波来携带信息的一种技术,它通过改变光波的某一参数(如幅度、频率、相位等)来实现信息的传输。
本实验中,我们主要研究幅度调制(AM)和频率调制(FM)两种调制方式。
1. 幅度调制(AM):在AM调制中,信息信号(如声音、图像等)与载波信号相乘,产生一个调制信号。
调制信号的幅度随信息信号的变化而变化,而频率和相位保持不变。
2. 频率调制(FM):在FM调制中,信息信号与载波信号的频率相乘,产生一个调制信号。
调制信号的频率随信息信号的变化而变化,而幅度和相位保持不变。
三、实验仪器与设备1. 光源:激光器或LED光源2. 调制器:光调制器(如光强度调制器、相位调制器等)3. 信号发生器:用于产生信息信号4. 光探测器:用于检测调制后的光信号5. 数据采集与分析系统:用于分析调制信号的频率、幅度和相位变化四、实验步骤1. 搭建实验系统:将光源、调制器、信号发生器、光探测器和数据采集与分析系统连接成一个完整的实验系统。
2. 进行幅度调制实验:a. 设置信号发生器产生一个低频正弦波信号作为信息信号。
b. 将信息信号输入到光调制器,调节调制器参数,使信息信号与载波信号进行AM调制。
c. 将调制后的光信号输入到光探测器,采集调制信号的频率、幅度和相位变化。
3. 进行频率调制实验:a. 设置信号发生器产生一个低频正弦波信号作为信息信号。
b. 将信息信号输入到光调制器,调节调制器参数,使信息信号与载波信号进行FM调制。
c. 将调制后的光信号输入到光探测器,采集调制信号的频率、幅度和相位变化。
4. 分析实验数据:使用数据采集与分析系统对实验数据进行处理和分析,得到调制信号的频率、幅度和相位变化曲线。
五、实验结果与分析1. 幅度调制实验结果:实验结果显示,调制信号的幅度随信息信号的变化而变化,而频率和相位保持不变。
幅度调制与解调电路实验报告

一、实验标题:幅度调制与解调电路实验二、实验目的1、加深理解调幅调制与检波的原理2、掌握用集成模拟乘法器构成调幅与检波电路的方法3、掌握集成模拟乘法器的使用方法4、了解二极管包络检波的主要指标、检波效率及波形失真三、实验仪器与设备5、高频电子线路试验箱(TKGP);6、双踪示波器;7、频率计;8、交流毫伏表。
四、实验原理实验原理图图一:电路原理图MC1496 是双平衡四象限模拟乘法器。
引脚8 与10 接输入电压UX,1 与4 接另一输入电压Uy,输出电压U0 从引脚6 与12 输出。
引脚2 与3 外接电阻RE,对差分放大器VT5、VT6 产生串联电流负反馈,以扩展输入电压Uy的线性动态范围。
引脚14 为负电源端(双电源供电时)或接地端(单电源供电使),引脚5 外接电阻R5。
用来调节偏置电流I5 及镜像电流I0 的值。
五、 实验内容及步骤1、 乘法器失调调零2、 观察调幅波形调幅波形一-60-40-20020406001234567tU /m v图二:K502 1-2短接波形图调幅波形二-40-30-20-1001020304001234567tU /m v图三:K502 2-3短接波形图3、 观测解调输出解调波形-500-400-300-200-100010020030040050000.511.522.533.544.55tU /m v图四:解调输出波形图六、实验分析用低频调制电压去控制高频载波信号的幅度的过程称为幅度调制(或调幅)。
既然高频载波的幅度随低频调制波而变,所以已调波同样随时间而变。
即有式中m是调幅波的调制系数(调幅度)。
同时当m<1时,实现了不失真的调制,而当m>1时,调制后的波形包络线,将与调制波不同,即产生了失真,或称超调。
七、实验体会通过本次实验,我了解了集成模拟乘法器的基本工作原理、分类、特性等,在了解信号的调制和解调知识的。
温故而知新,本次试验使我熟悉了对实验仪器是使用,并且初步学会了集成模拟乘法器设计幅度调制的方法。
实验四和五(调幅及检波)

实验四振幅调制器一、实验目的:1.了解集成模拟乘法器的使用方法,掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法。
2.研究已调波与调制信号及载波信号的关系。
3.掌握调幅系数测量与计算的方法。
4.通过实验对比全载波调幅和抑止载波双边带调幅的波形。
5.通过实验中波形的变换,学会分析实验现象。
二、预习要求1.预习幅度调制器有关知识。
2.认真阅读实验指导书,了解实验原理及内容,分析实验电路中用1496乘法器调制的工作原理,并分析计算各引出脚的直流电压。
3.分析全载波调幅及抑制载波调幅信号特点,并画出其频谱图。
三、实验原理1、幅度调制的基本原理在无线电通信中,其基本任务是远距离传送各种信息,如语音、图象和数据等,而在这些信息传送过程中都必须用到调制与解调。
调制是将要传送的信息装载到某一高频振荡(载频)信号上去的过程。
通常称高频振荡为载波信号。
代表信息的低频信号称为调制信号,调制即是用调制信号去控制高频载波的参数,使载波信号的某一个或几个参数(振幅、频率或相位)按照调制信号的规律变化。
按照所控制载波参数(幅度、频率、相位)区分,调制可分为幅度调制、频率调制和相位调制。
幅度调制(调幅)就是载波的振幅(包络)受调制信号的控制,随调制信号的变换而变化的一种调制。
在幅度调制中,又根据所取出已调信号的频谱分量不同,分为普通调幅(标准调幅,AM)、抑制载波的双边带调幅(DSB)、抑制载波的单边带调幅(SSB)等。
它们的主要区别是产生的方法和频谱结构。
在学习时要注意比较各自特点及其应用。
2、单片集成双平衡模拟相乘器MC1496集成模拟乘法器是完成两个模拟量相乘的电子器件。
在高频电子线路中,振幅调制、同步检波、混频等过程,均可看成两个信号相乘或包含相乘的过程。
采用集成模拟乘法器实现上述功能比采用分立器件简单,且性能优越。
因此,在无线电通信、广播电视等方面应用较多。
集成模拟乘法器的常见产品有:BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等等。
实验4 振幅调制器

高频电子线路实验报告(实验4 振幅调制器)班级:姓名:学号:实验四振幅调制器一、实验目的:1.掌握用集成模拟乘法器实现全载波调幅和抑止载波双边带调幅的方法。
2.研究已调波与调制信号及载波信号的关系。
3.掌握调幅系数测量与计算的方法。
4.通过实验对比全载波调幅和抑止载波双边带调幅的波形。
二、实验内容:1.观察模拟乘法器MC1496正常工作时的输出波形图。
2.实现全载波调幅,改变调幅度,观察波形变化并画出波形图。
3.实现抑止载波的双边带调幅波。
三、基本原理幅度调制就是载波的振幅(包络)受调制信号的控制作周期性的变化。
变化的周期与调制信号周期相同。
即振幅变化与调制信号的振幅成正比。
通常称高频信号为载波信号。
本实验中载波是由晶体振荡产生的10MHZ高频信号。
1KHZ的低频信号为调制信号。
振幅调制器即为产生调幅信号的装置。
在本实验中采用集成模拟乘法器MC1496来完成调幅作用,图4-1为MC1496芯片内部电路图,它是一个四象限模拟乘法器的基本电路,电路采用了两组差动对,由V1-V4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V5与V6,因此恒流源的控制电压可正可负,以此实现了四象限工作。
D、V7、V8为差动放大器V5与V6的恒流源。
进行调幅时,载波信号加在V1-V4的输入端,即引脚的⑧、⑩之间;调制信号加在差动放大器V5、V6的输入端,即引脚的①、④之间,②、③脚外接1KΩ电位器,以扩大调制信号动态范围,已调制信号取自双差动放大器的两集电极(即引出脚⑹、⑿之间)输出。
图4-1 MC1496内部电路图用MC1496集成电路构成的调幅器电路图如图4-2所示,图中VR8用来调节引出脚①、④之间的平衡,VR7用来调节⑤脚的偏置。
器件采用双电源供电方式(+12V,-9V),电阻R29、R30、R31、R32、R52为器件提供静态偏置电压,保证器件内部的各个晶体管工作在放大状态。
图4-2 MC1496构成的振幅调制电路四、硬件说明:1.本实验要用到“振荡器与频率调制”、“低频调制信号”、“振幅调制”三个实验模块,它们都在试验箱的左上角,分别找到这三个实验模块的位置。
调制解调实验报告

调制解调实验报告一、实验目的本次调制解调实验的主要目的是深入理解调制解调的基本原理和技术,通过实际操作和观察实验现象,掌握常见调制解调方式的性能特点,并能够对实验结果进行分析和总结。
二、实验原理1、调制的概念调制是将原始信号(基带信号)的某些特征按照一定的规则变换到另一个信号(已调信号)的过程。
其目的是为了使信号能够在特定的信道中有效传输,例如增加信号的抗干扰能力、实现频谱搬移等。
2、常见的调制方式(1)幅度调制(AM):使载波的幅度随基带信号的变化而变化。
(2)频率调制(FM):使载波的频率随基带信号的变化而变化。
(3)相位调制(PM):使载波的相位随基带信号的变化而变化。
3、解调的概念解调是调制的逆过程,从已调信号中恢复出原始基带信号。
三、实验设备与器材1、信号发生器用于产生不同频率和幅度的基带信号。
2、调制器模块实现对基带信号的调制功能。
3、解调器模块用于对已调信号进行解调,恢复出原始基带信号。
4、示波器用于观察输入输出信号的波形。
5、频谱分析仪用于分析信号的频谱特性。
四、实验步骤1、连接实验设备按照实验电路图,将信号发生器、调制器、解调器、示波器和频谱分析仪等设备正确连接。
2、产生基带信号使用信号发生器产生一定频率和幅度的正弦波作为基带信号。
3、幅度调制实验(1)设置调制器的参数,如载波频率、调制深度等。
(2)观察示波器上已调信号的幅度变化,并与基带信号进行对比。
(3)使用频谱分析仪观察已调信号的频谱分布。
4、频率调制实验(1)调整调制器的参数,实现频率调制。
(2)在示波器上观察已调信号的频率变化。
(3)通过频谱分析仪分析频率调制信号的频谱。
5、相位调制实验(1)设置调制器进行相位调制。
(2)观察已调信号的相位变化情况。
(3)用频谱分析仪查看相位调制信号的频谱特征。
6、解调实验(1)将已调信号输入解调器。
(2)调整解调器的参数,使解调输出尽可能接近原始基带信号。
(3)在示波器上比较解调输出信号与原始基带信号。
实验 信号的幅度调制

实验信号的幅度调制一概述模拟通信现在虽然已不多用,但它仍然是通信系统的基础。
由于从消息变换而来的原始信号具有频率较低的频谱分量,这种信号在许多信道中不适宜直接进行传输。
因此,在通信系统的发送端通常需要有调制过程,而在接收端则需要有反调制过程——解调过程。
调制在通信系统中具有十分重要的作用,所谓调制,就是按调制信号(基带信号)的变化规律去改变载波的某些参数的过程,下面我们讨论一下模拟调制调制方式的基础——幅度调制。
二原理及框图幅度调制是正弦型载波的幅度随调制信号作线性变化的过程。
设正弦型载波为s(t)=Aco s(w t+a)式中w──载波角频率;A──载波的幅度;a──载波的初始相位。
那么,幅度调制信号(已调信号)一般可表示为S(t)=Am(t)cos(Wt+a)式中m(t)为基带调制信号。
下面是幅度调制的原理框图:m(t) Sm(t)由以上表示式可见,幅度已调信号,在波形上它的幅度随基带信号变化而呈正比例地变化;在品扑结构上,它的频谱完全是基带信号频谱结构在频域内的简单搬移(精确到常数因子)。
由于这种搬移是线性的,因此,幅度调制又称为线性调制。
因而,从频域的角度来讲,要恢复原来的信号,只须加适当的滤波器即可,对已调信号进行频谱的反向搬移。
由以上可知,所谓调幅信号,就是用信号的幅度来装载信息,以达到远距离通信的目的。
三步骤1 根据幅度调制与解调原理,用Systemview软件建立一个仿真电路,如下图所示:图表1 仿真电路2 元件参数配置Token 0,2 余弦信号([0],频率0.5Hz;[2],频率10Hz)Token 1,5 相乘器Token 3,4,7 信号接收器Token 6 低通滤波器(截止频率7Hz,极点数3) 3 运行时间设置运行时间=4S; 采样频率=50.25hz4运行系统在系统内运行该系统后,转到分析窗观察Token3,4,7三个点的波形.5频谱图在分析窗绘出该系统调制后的频谱图.幅度调制运行结果1已调信号波形2已调信号频谱3 解调后的调制信号4-1.Svu是一个参考示例的电路原理图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验六幅度调制器实验
一、实验目的:
1. 掌握集成模拟乘法器的基本工作原理;
2. 掌握集成模拟乘法器构成的振幅调制电路的工作原理及特点;
3. 学习调制系数m及调制特性(m~ UΩm )的测量方法,了解m<1 和m=1及 m>1时调
幅波的波形特点。
二、预习要求:
1. 预习幅度调制器的有关知识;
2. 认真阅读实验指导书,分析实验电路中用1496乘法器调制的工作原理,并分析计算
各引脚的直流电压;
3. 了解调制系数m的意义及测量方法;
4. 分析全载波调幅信号的特点;
5. 了解实验电路中各元件作用。
三、实验电路说明:
本实验电路如图6-1所示。
图6-1
图中MC1496芯片引脚1和引脚4接两个51Ω和两个75Ω电阻及51K电位器用来调节输入馈通电压,调偏W,有意引入一个直流补偿电压,由于调制电压uΩ与直流补偿电压相串联,相当于给调制信号uΩ叠加了某一直流电压后与载波电压uc相乘,从而完成普通调幅。
如需要产生抑制载波双边带调幅波,则应仔细调节W,使MC1496输入端电路平衡。
另外,调节W也可改变调制系数m。
1496芯片引脚2和引脚3之间接有负反馈电阻R3,用来扩展u Ω的输入动态范围。
载波电压uc由引脚8输入。
MC1496芯片输出端(引脚6)接有一个由并联L1、C5回路构成的带通滤波器,原因是
考虑到当uc幅度较大时,乘法器内部双差分对管将处于开关工作状态,其输出信号中含有
3ωc±Ω、5ωc±Ω、……等无用组合频率分量,为抑制无用分量和选出ωc±Ω分量,故不能用纯阻负载,只能使用选频网络。
四、实验仪器:
1. 双踪示波器
2. 万用表
3. 实验箱及幅度调制、解调模块
4、高频信号发生器
五、实验内容及步骤:
1.接通电源;
2.调节高频信号源使其产生fc=10MHz幅度为200mV左右的正弦信号作为载波接到幅度调制电路输入端TP1,从函数波发生器输出频率为fΩ=1KHz左右幅度为600mV左右的正弦调制信号到幅度调制电路输入端TP2,示波器接幅度调制电路输出端TP3;
3.反复调整uΩ的幅度和W及C5使之出现合适的调幅波,观察其波形并测量调制系数m;
4.调整uΩ的幅度和W及C5,同时观察并记录m< 1、m=1及m>1时的调幅波形;
5 在保证fc、fΩ和Ucm一定的情况下测量m—UΩm曲线。
六、实验报告要求:
1. 整理各实验步骤所得的数据和波形,绘制出m—U Ωm调制特性曲线;
2. 分析各实验步骤所得的结果。