激光微纳制造新方法和尺度极限基础研究教程

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

项目名称:激光微纳制造新方法和尺度极限基础研

首席科学家:姜澜北京理工大学

起止年限:2011.11-2016.8

依托部门:信息产业部

一、研究内容

2.1 拟解决的关键科学问题

重点是超高强度(> 1012W/cm2)、超短脉冲(<10-11s)激光微纳加工的功能原理:激光与材料相互作用的物理和化学效应,质量迁移和性能演变机制与规律,作用时间和空间的演化过程。描述超快激光纳米加工过程中的量子效应、尺度效应。激光微纳制造的功能原理和尺度极限及其应用的共性基础科学问题包括:科学问题1. 激光能量的吸收、转换、传递与掌控机制

其核心是如何建立超快激光与物质相互作用的多尺度量子模型:

a) 研究束能吸收机理,包括电子加热、带间跃迁、光致电离(多光子电离、隧道电离)、碰撞电离等及其对加工过程的影响。

b) 研究材料的物理/化学变化,包括变化机制及质量迁移,固态相变、熔化、蒸发、气化、相爆炸、临界点相分离、库仑爆炸、静电烧蚀、凝固、化合、分解、置换、复分解等;材料高精度去除、生长、成形、改性等的物理、化学过程及机理;电子、晶格、团簇的定域能量、传递、物质输运过程与机理。涉及光子-电子-声子-等离子相互作用的基础科学问题。

科学问题2. 脉冲序列设计控制外层电子激发/电离过程

由于飞秒激光脉冲宽度比许多物理/化学特征时间(如电子和晶格的热平衡时间、甚至电子弛豫时间)更短,可以通过超快脉冲序列设计来控制/改变被加工材料电子吸收激光光子的过程(选择性激发/电离)。实现基于外层电子状态控制而改变瞬时局部特性和相变过程的高质量高精度高效率制造新方法。

科学问题3.基于共振吸收的选择性高效率制造新原理

基于分子转动、分子振动、电子激发、电子电离等多能带/能级耦合的协调共振激发,形成新的制造原理,同时结合脉冲序列调节技术并利用电子显微镜、扫描探针显微镜和光镊等实现单原子至微米跨尺度制造。通过共振吸收提高加工效率。利用OPA选择单束激光脉冲的光子能量使之与电子跃迁的某一能级差相对应,可实现共振吸收。这些尝试涉及制造、光学、物理、材料等多学科的前沿科学问题。

2.2主要研究内容

2.2.1激光制造的多维性特征及其与材料的相互作用机理

(1)激光吸收机理:光子-电子相互作用

引入量子力学理论,综合考虑自由电子加热、束缚电子激发、碰撞电离、光致电离(多光子电离、隧道电离)等多种激光吸收机理,研究不同吸收机理对被加工材料的电离过程以及瞬态热力学和光学特性的影响,探索超快激光束能吸收过程对微纳制造精度的影响。

(2)激光诱导相变机理:电子-离子相互作用

通过量子分子动力学和改进分子动力学模拟的方法,考虑熔化、相爆炸、临界点相分离、气化、库仑爆炸、静电烧蚀等多种相变机理,通过考察被加工材料熔化及碎裂的动态过程以及相应瞬态热力学特性的演化规律,揭示材料相变的微观机理和初始等离子体团形成的规律。

(3)超快激光微纳制造的多尺度量子模型

基于激光吸收和相变模型,建立超快激光与材料相互作用的多尺度量子模型;应用泵浦-探测实验系统平台,针对模型预测反射率等关键参数进行测量及调控。

(4)制造新方法的理论基础

基于理论与实验手段,研究超快激光脉冲序列设计调控电子状态的微观物理机制,揭示脉冲序列设计提高激光微纳制造加工精度等的微观机理,基于理论模型,研究不同特性的激光束多场能量耦合分布规律,及其与材料间的相互作用机制。

2.2.2. 基于脉冲序列设计和外层电子状态控制的激光制造

在制造新方法方面,通过超快激光脉冲序列设计控制/改变/调节电子激发/电离过程等瞬时局部电子状态,进而改变瞬时局部特性和相变过程的制造新方法。由于飞秒脉冲短于绝大多数化学和物理反应,比如电子和晶格的热平衡时间,甚至电子弛豫时间,通过设计超快激光脉冲序列来控制被加工材料电子吸收激光光子的过程(选择性激发/电离),以及材料瞬时局部特性,进而控制相变过程。主要研究内容包括:

(1)应用本项目提出的多尺度量子模型,揭示飞秒脉冲序列中脉冲参数对瞬时局部电子状态、瞬时局部材料特性、加工过程和加工结果的影响机理/规律,并优化飞秒脉冲序列中脉冲参数设计。

(2)利用脉冲整形器在时域中调制飞秒激光脉冲,使每个飞秒单脉冲变成时间间隔从飞秒到皮秒的多个次脉冲。通过调节超短次脉冲的幅度及延迟时间等控制瞬时局部电子激发/电离过程,进而控制相变过程,实现高质量、高精度、高效率微纳制造。

(3)应用泵浦-探测技术直接检测调制后的泵浦光与样品发生作用产生的瞬态光学性质变化,检测对外层瞬时局部电子状态调控的效果。

2.2.

3. 基于共振吸收的高效率高精度激光微纳跨尺度制造

(1)激光-材料的相互作用机制与共振吸收的机理研究

理论研究不同特性激光束的多场能量耦合分布规律,及其共同作用下的新机制、效应、规律,以及制造新原理。研究不同波长(近红外到近紫外)与各级能带的共振吸收机理与规律,选择激光波长与所对应的分子振动/电子激发/电离间形成共振吸收耦合机制。

(2)基于共振吸收的高精度激光制造方法研究

利用OPA选择激光脉冲的光子能量使之与电子跃迁的能级差相对应,实现共振吸收,提高加工效率。选择脉冲序列中的光子能量分别与电子跃迁路径中的能级差匹配,实现共振吸收。

(3)基于直写、近场与光镊的跨尺度激光制造方法研究

以激光直写技术为基础,结合脉冲序列设计和共振吸收,实现对跨尺度结构中微米级主体结构的加工;以激光结合近场探针、纳米粒子或微米级主体自身上的纳米部分,形成局部近场,实现纳米级结构的加工;采用激光光镊实现微米量级粒子的稳定捕获,捕获后利用激光照射微米粒子自身产生的可移动近场辅助实现纳米加工,或者粒子与微器件的集成。

2.2.4. 航空/新型能源关键结构/器件激光制造及性能控制

(1)燃气轮机、单晶叶片等重大关键部件激光极限制孔的基础研究燃气轮机透平叶片孔的质量问题非常关键,几何要素方面要考虑孔的圆度、角度、锥度、形状以及入口直径,金相方面要考虑重铸层和氧化层等结构组织。采用峰值功率极高的短脉冲激光对基体进行打孔,结合高速旋转光束整形、惰性气氛保护和高频超声创新技术吹辅助的惰性气体,可使重铸层极小化,消除裂纹。通过瞬态成像高速摄影技术观测激光加工小孔的动态演化。

相关文档
最新文档