硅酸盐水泥的水化和硬化

合集下载

硅酸盐水泥的水化硬化概述

硅酸盐水泥的水化硬化概述

硅酸盐水泥的水化硬化概述硅酸盐水泥是一种常见的建筑材料,广泛用于混凝土制作和结构修复。

水泥的水化硬化是指水泥与水反应形成胶凝体,并使混凝土逐渐硬化和强度增加的过程。

水泥的水化硬化过程可以分为三个阶段:溶解阶段、胶凝阶段和结晶阶段。

在溶解阶段,水分与水泥中的化学物质发生作用,形成水化产物。

其中最主要的是硅酸钙水化产物及其水化过渡产物。

这个过程伴随着水泥的溶解和离子交换,同时释放热量。

在胶凝阶段,水化产物开始形成胶凝体,由于产物的粘结作用,使硅酸盐水泥与骨料颗粒和其他成分紧密结合。

这个阶段是水泥的强度急剧增加的阶段。

在结晶阶段,水化产物继续结晶生长,形成更稳定的晶体结构。

这个阶段通常需要较长的时间来完成,并且能使混凝土的性能逐渐稳定。

水泥水化硬化的过程受到多种因素的影响,包括水泥的成分、水化环境的温度和湿度、所用水分质量等。

适当的水泥成分和良好的水化环境有助于水泥的硬化过程。

水泥水化硬化是一个复杂的过程,需要一定的时间来完成。

因此,在施工中要合理控制混凝土的浇筑时间和养护时间,以确保水泥的充分水化硬化,从而提高混凝土的强度和耐久性。

总之,硅酸盐水泥的水化硬化是一个多阶段的过程,经过溶解、胶凝和结晶,最终形成硬化的胶凝体。

合理地控制水泥的成分和水化环境,能够有效地提高混凝土的性能。

水泥的水化硬化是一项复杂的化学物理过程,涉及多个组分和反应。

了解水泥的水化硬化过程对于我们了解硅酸盐水泥混凝土的性能和使用特性都非常重要。

水泥的基本成分是石灰和硅酸盐矿物,这些矿物在加入水后会发生化学反应,产生水化产物。

最主要的水化产物是硅酸钙几何多聚体C-S-H和钙水化硅石(C-S-H)以及钙羟基石灰(CH)。

这些水化产物的生成是水泥硬化的核心过程。

在溶解阶段,水与水泥中的化合物发生反应,其中最重要的是硅酸钙和水的反应。

在水中,硅酸盐矿物发生溶解和饱和的过程,释放出的离子与水中的离子发生化学作用。

这些离子的重组形成了水泥颗粒的表面电荷,并开启了水化反应。

硅酸盐水泥凝结硬化的四个阶段

硅酸盐水泥凝结硬化的四个阶段

硅酸盐水泥凝结硬化的四个阶段硅酸盐水泥,这个名字听起来有点高大上,但别担心,我们来聊聊它凝结硬化的过程。

其实,这就像是一个人从懵懂少年逐渐成长为成熟稳重的成年人的故事,曲折而又充满趣味。

今天就让我们轻松地揭开硅酸盐水泥的四个凝结硬化阶段,顺便打打比方,聊聊生活中的趣事。

1. 开始阶段:搅拌与浇筑1.1 准备工作首先呢,当你把水泥、砂子和水搅拌在一起的时候,就像是做菜,得把所有材料准备齐全。

这个阶段充满了期待和兴奋,大家伙儿围着混合物,真像在围着锅里煮的热汤。

水泥和水结合,形成了一个“泥浆”,这就好比小朋友们在游乐场的沙坑里玩耍,初见生机。

1.2 浇筑时刻接下来就是浇筑了。

想象一下,那种把浆料倒进模具的感觉,就像是把一个个梦想都倾注在一个漂亮的蛋糕模具里。

水泥在这里开始接受考验,期待着成型。

哎,这个阶段可是关键!不然的话,等到硬化后,蛋糕可能就变成了“黑暗料理”了。

2. 凝结阶段:初凝与终凝2.1 初凝随着时间的推移,水泥开始凝结。

这就像小朋友们开始玩得有点累,慢慢停下了。

不过,初凝的感觉有点像水面上的涟漪,不是马上就平静,而是慢慢地过渡。

这个时候,水泥的工作可没结束,依旧在努力“长大”。

大家可能会觉得“哎呀,这么快就凝固了?”其实,它在默默为之后的硬化做准备。

2.2 终凝接着进入终凝阶段,水泥这小家伙终于慢慢稳住了。

就像一位年轻人,经过一番折腾后终于找到了自己的方向,站稳了脚跟。

此时的水泥,已经不再是那团稀泥,而是有了形状和个性。

这时候,大家也许会感叹:“嘿,没想到水泥也能有这样的蜕变!”3. 硬化阶段:水化与强度提升3.1 水化过程水泥的硬化,最神奇的部分来了!它开始水化,像是喝了特效药,迅速充满了活力。

这时候,水泥中的化学反应像火山爆发一样,剧烈而又精彩。

你可以想象一下,就像是你在健身房里锻炼,肌肉在不断生长,越练越强。

这个阶段,水泥不仅仅是变得硬邦邦的,更是开始逐步提升自己的“战斗力”。

3.2 强度提升最后,经过一段时间的“锤炼”,水泥的强度达到了巅峰。

硅酸盐水泥的水化和硬化

硅酸盐水泥的水化和硬化
C3 A 3CS H32 2C3 A 4H 3(C3 A CS H12 ) 若石膏极少,在所有钙矾石转变成单硫型水化硫铝酸钙后, 还有C3A,那就形成
C3 A CS H12 和C4AH13的固溶体。
石膏的存在延缓了C3A的水化
(四)铁相固溶体(C4AF)的水化 水化速率比C3A低。其水化产物与C3A很相似。相当于C3A 中一部分氧化铝被氧化铁所置换,生成水化铝酸钙和水化铁酸 钙的固溶体。
C-S-H(Ⅱ)
定义:水化硅酸钙凝胶体(C-S-H) 组成:不固定,随钙硅比和水硅比变化 结构:微晶,尺寸接近于胶体范畴; 形貌:纤维状,网络状,等大粒子,内部产物; CH:晶体,层状,六方板状,生长在孔洞之间。
C3S水化历程:
五个阶段: 起始期 15min PH=12 急剧 诱导期(静止期)——使硅酸盐水泥保持塑性的原因; 2-4h诱导期结束的时间,即初凝时间。 加速期(4-8h)C-S-H和Ca(OH)2 大量形成,达到终凝。 减速期(12-24h) 稳定期 受扩散控制
C-S-H凝胶的组成与它所处 的溶液中的CaO浓度有关, C-S-H在一定的碱度下才能存 在,如2- 2-3图所示:
下表是对上图的总结:
CaO浓度 g/l
0.06-0.11
0.11-1.12
>1.12
CaO摩尔浓度 mol/l 1-2
2-20
>20
C/S
<1
0.8-1.5
1.5-2
水化产物
水化硅酸钙和硅酸凝胶 C-S-H(Ⅰ)
钙矾石在常温和一般湿度条件下的脱水曲线
四、水泥的凝结、硬化过程
1882年,雷霞特利提出的结晶理论; 1892年,米哈艾利斯又提出了胶体理论; 拜依柯夫将上述两理论加以发展,把水泥的硬化为三个时期: 第一,溶解期;第二,胶化期;第三,结晶期 列宾捷尔提出凝聚-结晶三维网状结构理论; 鲍格提出是巨大表面能的作用引起互相粘结; 洛赫尔提出的三阶段论:

简述硅酸盐水泥的主要水化产物和硬化水泥石的结构。

简述硅酸盐水泥的主要水化产物和硬化水泥石的结构。

硅酸盐水泥的主要水化产物是:水化硅酸钙和水化铁酸钙凝胶,氢氧化钙,水化铝酸钙和水化硫铝酸钙晶体。

硬化水泥石的结构是由水泥水化产物(主要是水化硅酸钙凝胶)、未水化水泥颗粒、毛细孔(毛细孔水)等组成的不均质的结构体。

硅酸盐水泥的主要化学成分:氧化钙CaO,二氧化硅SiO2,三氧化二铁Fe2O3,三氧化二铝Al2O3.硅酸盐水泥的主要矿物:硅酸三钙(3CaO·SiO2,简式C3S),硅酸二钙(2CaO·SiO2,简式C2S),铝酸三钙(3CaO·Al2O3,简式C3A),铁铝酸四钙(4CaO·Al2O3·Fe2O3,简式C4AF).水泥的凝结和硬化:1)、3CaO·SiO2+H2O→CaO·SiO2·YH2O(凝胶)+Ca(OH)2;2)、2CaO·SiO2+H2O→CaO·SiO2·YH2O(凝胶)+Ca(OH)2;3)、3CaO·Al2O3+6H2O→3CaO·Al2O3·6H2O(水化铝酸钙,不稳定);3CaO·Al2O3+3CaSO4·2 H2O+26H2O→3CaO·Al2O3·3CaSO4·32H2O(钙矾石,三硫型水化铝酸钙);3CaO·Al2O3·3CaSO4·32H2O+2〔3CaO·Al2O3〕+4 H2O→3〔3CaO·Al2O3·CaSO4·12H2O〕(单硫型水化铝酸钙);4)、4CaO·Al2O3·Fe2O3+7H2O→3CaO·Al2O3·6H2O+CaO·Fe2O3·H2O.水泥速凝是指水泥的一种不正常的早期固化或过早变硬现象.高温使得石膏中结晶水脱水,变成浆状体,从而失去调节凝结时间的能力.假凝现象与很多因素有关,一般认为主要是由于水泥粉磨时磨内温度较高,使二水石膏脱水成半水石膏的缘故.当水泥拌水后,半水石膏迅速与水反应为二水石膏,形成针状结晶网状结构,从而引起浆体固化.另外,某些含碱较高的水泥,硫酸钾与二水石膏生成钾石膏迅速长大,也会造成假凝.假凝与快凝不同,前者放热量甚微,且经剧烈搅拌后浆体可恢复塑性,并达到正常凝结,对强度无不利影响.。

硅酸盐水泥的基本组成水化和硬化机理

硅酸盐水泥的基本组成水化和硬化机理

硅酸盐水泥的基本组成水化和硬化机理
硅酸盐水泥(Portland cement)是建筑中常用的一种水泥类型,它由若干种矿物质混合制成。

硅酸盐水泥的基本组成包括硅酸盐、铝酸盐、铁酸盐、钙酸盐等矿物质。

硅酸盐水泥的主要性质是其水化反应及硬化机理,其中水化反应是硬化的基础。

硅酸盐水泥的水化反应
硅酸盐水泥的水化反应分为两个阶段,分别是初始水化反应和二次水化反应。

初始水化反应: 初始水化反应是硅酸盐水泥与水开始反应产生物质的重要阶段。

该反应主要是由硅酸盐矿物质和水中的氢氧根离子(OH-)形成硅酸钙凝胶(C-S-H),同时还生成小量结晶状的钙矾土(Ca(OH)2)。

硬化反应: 当硅酸钙凝胶形成后,硬化反应就开始了。

硬化反应是指钙矾土与硅酸钙凝胶再次反应,产生附着在硅酸钙凝胶上的二次水化产物(例:钙硅酸盐、铝酸钙、铁酸钙等),从而导致硬化的过程。

硅酸盐水泥水化反应和硬化机理导致水泥成品逐渐硬化并得到强度的增加。

硅酸盐水泥的硬化机理包括两个阶段。

初始硬化阶段: 在初始硬化阶段中,主要发生的是水泥粉末与水反应生成硅酸钙溶胶,这个阶段是水泥松散质地逐渐变硬的转折点,经历了3-5小时左右时材料开始渐渐变硬,表现出初始硬度。

二次硬化阶段: 在这个阶段中,水泥产物进一步硬化,矿物质之间的结合变得更加紧密。

此时,水泥得到的韧性、强度等性能逐渐增强。

因此,硅酸盐水泥的水化和硬化反应是建筑中非常关键的部分。

这些反应可以向我们展示水泥是如何在混凝土中发挥作用的。

了解这些机制可以帮助建筑师、设计师、土木工程师、建筑工人或其他与建筑相关的人员掌握常用的建筑材料的工作机制并做出相应的设计和施工。

硅酸盐水泥主要水化产物

硅酸盐水泥主要水化产物

硅酸盐水泥主要水化产物水泥是一种广泛应用于建筑、工程和建材行业的材料,其中最常见的水泥类型之一是硅酸盐水泥。

硅酸盐水泥的主要水化产物是水化硅酸钙凝胶和水化硅酸钙胶石。

水化硅酸钙凝胶是硅酸盐水泥水化过程中最主要的产物之一。

当硅酸盐水泥与水反应时,发生水化反应,生成硬化的水化硅酸钙凝胶。

这种凝胶是硬化水泥石中的骨架材料,能够提供强度和稳定性。

水化硅酸钙凝胶具有胶状结构,能够填充水泥石中的空隙,并通过硬化过程中的晶体生长来增加水泥石的强度。

水化硅酸钙凝胶的形成是一个复杂的化学反应过程。

在水化反应中,硅酸盐水泥中的三种主要成分——硅酸钙(CaO·SiO2)、硅酸镁(CaO·MgO·2SiO2)和硅酸二钙(CaO·2SiO2)与水反应,形成水化硅酸钙凝胶。

这些成分中的硅酸钙是最主要的反应物,也是最主要的水化产物。

水化硅酸钙凝胶的形成过程可以分为几个阶段。

首先,在水化反应开始时,硅酸钙会与水中的钙离子结合,形成一种称为水合硅酸钙的化合物。

随着水化反应的进行,水合硅酸钙逐渐转变为水化硅酸钙凝胶。

这个过程是一个逐渐形成凝胶结构的过程,其中的水合硅酸钙分子会逐渐凝聚形成凝胶纤维,最终形成凝胶胶石。

水化硅酸钙凝胶的形成对于水泥石的强度和稳定性具有重要作用。

凝胶的形成可以填充水泥石中的空隙,使得水泥石更加致密,并且通过晶体生长的方式增加水泥石的强度。

此外,水化硅酸钙凝胶还能够与其他水化产物相互作用,形成复杂的胶石结构,提供水泥石的抗压强度和抗张强度。

除了水化硅酸钙凝胶,水化硅酸钙胶石也是硅酸盐水泥水化的主要产物之一。

水化硅酸钙胶石是一种凝胶状物质,由水化硅酸钙凝胶和水合硅酸钙等成分组成。

水化硅酸钙胶石具有胶状结构,能够填充水泥石中的空隙,增加水泥石的密实性和强度。

水化硅酸钙胶石的形成过程与水化硅酸钙凝胶类似,也是通过硅酸钙和水的反应形成。

在水化反应中,硅酸钙会与水中的钙离子结合,形成一种水合硅酸钙,随后逐渐转变为水化硅酸钙胶石。

硅酸盐水泥的水化和硬化

硅酸盐水泥的水化和硬化

C3A+3CaSO4·2H2O+26H2O=C3A·3CaSO4·32H2O 当C3A尚未完全水化,而石膏已经耗尽时: C3A·3CaSO4·32H2O +2C3A+4H2O= 3(C3A·CaSO4·12H2O) 当石膏掺量极少,所有的钙矾石都转化为单硫型水化硫铝酸 单硫型水化硫铝酸 钙后,可能有C3A剩余,会发生下述反应: C3A·CaSO4·12H2O +3C3A+Ca(OH)2+12H2O= 2[3CaO·Al2O3(CaSO4、Ca(OH)2)·12H2O]

当石膏耗尽时,为 AFm C4 AF + H 2O → 水化铝酸钙+ 水化铁酸钙
23
24
25
26
1、钙矾石形成期 C3A率先水化。在石膏存在的条件下,迅速形成钙 矾石,这是导致第一放热峰的主要因素。 2、C3S水化期 C3S开始迅速水化,大量放热,形成第二个放热峰 。有时会有第三放热峰或在第二放热峰上出现一个“峰 肩”,一般认为是由于钙矾石转化成单硫型水化硫铝( 铁)酸钙而引起的。同时,C2S和铁相亦以不同程度参与 了这两个阶段的反应,生成相应的水化产物。 3、结构形成和发展期 放热速率很低并趋于稳定,随着各种水化产物的 增多,填入原先由水所占据的空间,再逐渐连接并相互 交织,发展成硬化的浆体结构。
14
C3S凝结时间正常,水化较快,粒径40一50um的颗 粒28d可水化70%左右。放热较多,早期强度高 且后期强度增进率较大.28d强度可达一年强度 的70%一80%,其28d强度和一年强度在四种矿 物中均最高。
15
硅酸二钙的水化
• 在常温下,C2S水化式: 2CaO·SiO2+nH2O=xCaO·SiO2·yH2O+(2-x)Ca(OH)2 简写为: C2S+nH=C-S-H+(2-x)CH

硅酸盐水泥的水化与硬化

硅酸盐水泥的水化与硬化

硅酸盐水泥的水化与硬化硅酸盐水泥是一种常用的水泥材料,具有较好的水化和硬化性能,广泛应用于建筑和工程领域。

本文将对硅酸盐水泥的水化和硬化进行详细的介绍,包括水泥的成分、水化反应过程、硬化机理以及影响水化和硬化的因素等内容。

硅酸盐水泥是以矿渣、石灰石和黏土为原料,经过磨碎、燃烧和砂浆等工艺加工而成。

一般情况下,硅酸盐水泥的主要成分包括三种物质:硅酸盐矿物、石灰和无定形物质。

硅酸盐矿物是硅酸盐水泥的主要成分,其含有的SiO2和CaO可以发生水化反应,形成具有胶凝性的凝胶体。

石灰则是硅酸盐水泥中的辅助胶凝材料,其主要作用是加速水化反应的进行。

无定形物质是水泥中的杂质,一般情况下不参与水化和硬化过程。

水化反应是硅酸盐水泥的重要特性之一。

当硅酸盐水泥与水接触后,水分子与硅酸盐矿物中的CaO和SiO2发生反应,导致硅酸盐矿物发生水化并形成胶体物质。

水化反应的过程可以分为两个阶段:低水化率的溶解和高水化率的凝胶化。

在溶解阶段,水分子侵入硅酸盐矿物的晶体结构中,使其结构发生破坏并释放出Ca2+和OH-离子。

随着时间的推移,硅酸盐矿物的溶解率逐渐降低,凝胶化过程逐渐主导。

硬化是硅酸盐水泥水化反应的结果,也是水泥材料使用的关键性质。

在硬化过程中,水泥和水反应生成的胶凝体逐渐结晶并与无定形物质相结合,形成稳定的硬质凝胶,从而增强了水泥材料的强度和硬度。

硬化的机理主要涉及胶凝凝胶的形成、晶体生长和无定形物质的变化等过程。

胶凝凝胶的形成使水泥材料具有粘结性,晶体生长则使水泥材料具有硬度和强度。

无定形物质的变化则会影响水泥材料的性能,如开裂、收缩和腐蚀等。

水化和硬化过程受到各种因素的影响,包括水泥成分、水化温度、水化时间、水泥颗粒大小和水泥与水的质量比等因素。

水泥成分的不同会影响水化反应的速率和产物的特性。

水化温度越高,水化反应的速率越快,而水化时间越长,水泥材料的强度和硬度越高。

水泥颗粒的大小和分布会影响水泥的填充效果和反应程度,从而影响水化和硬化的速率和特性。

硅酸盐水泥的水化和硬化

硅酸盐水泥的水化和硬化
硅酸盐水泥的水化和硬化
第一节硅酸盐水泥熟料的形成 一、硅酸盐水泥熟料的形成 水泥熟料矿物为什么能与水发生反应?主要原因是: 1、硅 酸 盐 水 泥 熟 料 矿 物 结 构 的 不 稳 定 性 ,可 以 通 过 与 水 反 应 , 形 成 水 化 产 物 而 达 到 稳 定 性 。造 成 熟 料 矿 物 结 构 不 稳 定 的 原 因 是 : ( 1) 熟 料 烧 成 后 的 快 速 冷 却 , 使 其 保 留 了 介 稳 状 态 的 高 温 型 晶体结构; ( 2) 工 业 熟 料 中 的 矿 物 不 是 纯 的 C 3 S, C 2 S 等 , 而 是 Alite 和 Belite 等 有 限 固 溶 体 ; ( 3) 微 量 元 素 的 掺 杂 使 晶 格 排 列 的 规 律 性 受 到 某 种 程 度 的 影 响。 2、 熟 料 矿 物 中 钙 离 子 的 氧 离 子 配 位 不 规 则 , 晶 体 结 构 有 “ 空 洞 ”,因 而 易 于 起 水 化 反 应 。例 如 ,C 3 S 的 结 构 中 钙 离 子 的 配 位 数 为 6,但 配 位 不 规 则 ,有 5 个 氧 离 子 集 中 在 一 侧 而 另 一 侧 只 有 1 个 氧离子,在氧离子少的一侧形成“空洞”,使水容易进入与它反 应 。β -C 2 S 中 钙 离 子 的 配 位 数 有 一 半 是 6,一 半 是 8,其 中 每 个 氧 离子与钙离子的距离不等,配位不规则,因而也不稳定,可以水 化 , 但 速 度 较 慢 。 C 3 A 的 晶 体 结 构 中 , 铝 的 配 位 数 为 4 与 6, 而 钙 离 子 的 配 位 数 为 6 与 9, 配位数为 9 的钙离子周围的氧离子排列极 不 规 则 , 距 离 不 等 , 结 构 有 巨 大 的 “ 空 洞 ” , 故 水 化 很 快 。 C 4 AF 中 钙 的 配 位 数 为 10 与 6, 结 构 也 有 “ 空 洞 ” , 故 也 易 水 化 。 有 些

水泥工艺硅酸盐水泥的水化和硬化

水泥工艺硅酸盐水泥的水化和硬化
水泥工艺硅酸盐水泥的 水化和硬化
2020/11/22
水泥工艺硅酸盐水泥的水化和硬化
硅酸盐水泥的水化和硬化
水泥加水以后为什么可以凝结硬化?
水泥工艺硅酸盐水泥的水化和硬化
水泥工艺硅酸盐水泥的水化和硬化
水泥工艺硅酸盐水泥的水化和硬化
水泥工艺硅酸盐水泥的水化和硬化
水泥工艺硅酸盐水泥的水化和硬化
水化产物 填充空隙 并将水泥 颗粒连接 在一起
水泥工艺硅酸盐水泥的水化和硬化
1 熟料单矿物的水化
三、铝酸三钙 (一) 无石膏 1.常温下水化
C4AH13和C2AH8在常温下处于介稳状态,且随温度升高而转化 加速。C3A本身水化热高,因而极易按上式转化。
2.在温度较高(35℃以上)的情况下,可直接生成C3AH6晶体。 这些产物均为片状。
水泥工艺硅酸盐水泥的水化和硬化
早期水化产物,大部分在颗粒原始周界以外由水所填充的 空间----这部分C-S-H称外部产物。
后期的生长则在颗粒原始周界以内的区域形成----内部产 物。
随着内部产物的形成和发展,C3S的水化即由减速期向稳定 期转变。
水泥工艺硅酸盐水泥的水化和硬化
1 熟料单矿物的水化
7.C3S的后期水化 泰勒认为:水化过程中存在一个界面区,并逐渐向颗粒内 部推进,H2O离解成的H+在内部产物中从一个氧原子(或水分子) 转移到另一个氧原子,一直到达C3S界面并与之作用;而界面区 内部分Ca2+和Si4+则通过内部产物向外迁移,转入CH和外部C-SH。因此,界面内是得到H+,失去Ca2+和Si4+,原子重新排组, 从而使C3S转化成内部C-S-H。如此,随着界面区向内推进,水 化继续进行。由于空间限制及离子浓度变化,内部C-S-H在形貌 和成分等方面与外部C-S-H会有所不同,通常是较为密实。

硅酸盐水泥的水化、凝结与硬化

硅酸盐水泥的水化、凝结与硬化
坚硬的水泥石的过程。 ➢水泥的凝结与硬化过程由以下四个过程组成。
凝结硬化过程
初始反应期 潜伏期 凝结期 硬化期
初始的溶解和水化,约持续5-10分钟。
流动性可塑性好凝胶体膜层围绕水泥颗 粒成长,1h
凝胶膜破裂、长大并连接、水泥颗粒进 一步水化,6h。多孔的空间网络—凝聚 结构,失去可塑性
凝胶体填充毛细管,6h-若干年硬化石状 体密实空间网
3CaO·Al2O3·6H2O+ H2O+CaSO4·2H2O 3CaO·Al2O3·3CaSO4·31H2O
钙矾石
水泥熟料单矿物水化时特征
矿物种类
硅酸三钙
硅酸二钙
铝酸三钙
缩写 含量(%) 水化速度
C3S 37-60
快Leabharlann C2S 15-37慢
C3A 7-15 最快
水化热


最多
反应速度: 强放度 热量:
3CaO·SiO2+H2O CaO·2SiO2·3H2O+Ca(OH)2
硅酸二钙水化生成水化硅酸钙凝胶和氢氧化钙晶 体。
该水化反应的速度慢,对后期龄期混凝土强度的 发展起关键作用。水化热释放缓慢。
产物中氢氧化钙的含量减少时,可以生成更多的 水化产物。
2CaO·SiO2+H2O 3CaO·2SiO2·3H2O+Ca(OH)2
铝酸三钙水化生成水化铝酸钙晶体。 该水化反应速度极快,并且释放出大量的热量。 如果不控制铝酸三钙的反应速度,将产生闪凝现象,水泥将 无法正常使用。 通常通过在水泥中掺有适量石膏,可以避免上述问题的发生。
3CaO·Al2O3+H2O
3CaO·Al2O3·6H2O
铁铝酸四钙水化生成水化铝酸钙晶体和水化铁酸钙凝胶

08-硅酸盐水泥的水化和硬化汇总

08-硅酸盐水泥的水化和硬化汇总
19
大就部难分以学进说入都 溶认 液为 ,, 从在 而使C3反S颗应粒延上缓形。成在了过表饱面和层条后件,下硅所酸形根成离的子 产物,往往靠近颗粒表面析出,同时又呈无定形,难以精确检 测。因此有关表面层的组成和结构,各方面的结论不尽相同。 在诱导期间,表面层虽有增厚,但表面层的去除又是使快速反 应重新开始的重要条件。而水化产物晶核的形成和生长,却是 与诱导期结束的时间相一致的。
转化 最终产物,等 轴晶系,稳定
C3A的水化产物以晶体状态存在
23
3、C矿的水化
水化过程:与C3A极为相似,但速度要慢。 影响因素:水灰比;温度;Al/Fe比。 水化产物:
C4(A·F)H13 、C3(A·F)H6
C4(A·F)H13与C4AH19、C4AH13、C2AH8 很相似,只是其中有 部分Al3+被Fe3+代替,因而它与C-A-H有着极为相似的特性。 不稳定,易转变为C3(A·F)H6并析出Ca(OH)2 ,Ca(OH)2的 存在会延缓其转化。 C4(A·F)H13与CaSO4的反应速度远低于C3AH6,因此,C4AF 抗硫酸盐性能好 水化铁酸钙为胶体状态,会在铁酸盐周围形成一层保护膜, 降低水化速度。
第八章
硅酸盐水泥的水化和硬化
1
水泥加水以后为什么可以凝结硬化?
2
3
4
5
6
水化产物 填充空隙 并将水泥 颗粒连接 在一起
7
已水化的水 泥浆里留下 的孔隙
未水化水 泥颗粒
8
水泥+水(流体)-可塑性浆体(塑性体)-固体
水泥


熟石 合 料膏 材


水化 凝结 硬化
9
水泥熟料矿物为什么能与水发生反应?主要原因

第七章 硅酸盐水泥的水化与硬化

第七章 硅酸盐水泥的水化与硬化

§7.2 硅酸盐水泥的水化
一.水化反应体系的特点
• 水泥的水化基本上是在Ca(OH)2 和石膏的饱和溶液 或过饱和溶液中进行的,并且还会有K+、Na+等离子。
• 熟料首先在此种溶液中解体,分散,悬浮在液相中, 各单体矿物进行水化,水化产物彼此间又化合,之 后水化产物凝结、硬化,发挥强度,因此 ,水化过 程实际上就是熟料解体——水化——水化产物凝 聚——水泥石。开始是解体、水化占主导作用,以 后是凝聚占主导作用。
2.C3A在液相CaO浓度达饱和时
C3A + CH + 12H → C4AH13
瞬凝原因:水泥颗粒表面形成大量C4AH13 (六方片状晶体) ,其数量迅速增多,足以 阻碍粒子的相对运动。
3.在石膏存在条件下的水化
·石膏(充足)、CaO同时存在时 C3A+CH+12H→C4AH13 C4AH13+3CSH2+14H → C3A·3CS·H32 + CH
反应:随时间的增长而下降
原因: 在C3S表面包裹产物—阻碍水化。
• Ⅴ:稳定期
反应:很慢—基本稳定(直到水化结束) 产物扩散困难。
原因:产物层厚:水很少—
Ⅰ-诱导前期; Ⅱ-诱导前期;Ⅲ -加速期; Ⅳ -减速期;Ⅴ -稳定期
◆诱导期的本质
• 保护膜理论 • 晶核形成延缓理论
• 晶格缺陷的类别和数量是决定诱导期长短 的主要因素
· 水泥石的组成:
固相
结晶程度较差的凝胶 C-S-H:70%
结晶程度较好的Ca(OH)2: 20% 结晶程度较好的AFm、 AFt: 7%
及水化铝酸钙等晶体 未水化残留熟料和其它微量组份:3%
孔隙
毛细孔:未被外部水化产物填充 凝胶孔:凝胶微孔 水:100%孔内全为水

简述硅酸盐水泥的凝结硬化过程与特点

简述硅酸盐水泥的凝结硬化过程与特点

硅酸盐水泥是一种常用的建筑材料,它在建筑领域具有重要的应用价值。

它的凝结硬化过程与特点对于理解其在建筑中的作用具有重要意义。

本文将对硅酸盐水泥的凝结硬化过程与特点进行简要的阐述,以便读者对其有一个清晰的认识。

一、硅酸盐水泥的凝结硬化过程1. 凝结过程硅酸盐水泥在加水后会发生水化反应,形成胶凝体,然后在适当的条件下开始凝结。

水化反应的化学方程式为:4CaO·SiO2 + 2CaO·SiO2·2H2O + 3CaSO4 + 32H →3CaO·2SiO2·4H2O + 3CaSO4·2H2O此过程是一个放热反应,可以产生大量的热量。

硅酸盐水泥的初凝时间一般在30~120分钟,凝结时间为几十小时至几天。

在这个过程中,水泥逐渐凝固成坚硬的体积稳定的水化硅酸盐凝胶体系。

2. 硬化过程硅酸盐水泥的硬化过程是水化反应的延续。

在一定的条件下,水泥的强度随着时间的推移而不断增加。

硅酸盐水泥的硬化特点是初期强度低、中后期强度高,长期强度稳定的特点。

二、硅酸盐水泥的特点1. 抗渗透性能硅酸盐水泥在水化硬化后,形成的凝胶体系具有良好的致密性,抗渗透性能较好。

在一定程度上能够抵御外部水分的侵蚀,保护混凝土结构的耐久性。

2. 抗压抗折性能硅酸盐水泥在水化硬化后,其强度随时间增长而不断提高,最终形成坚固的凝结体系,具有较高的抗压抗折性能。

在混凝土结构中能够承受一定的荷载。

3. 与混凝土的黏结性能硅酸盐水泥在水化硬化过程中,会与骨料及混凝土基材发生化学反应,形成良好的结合力,因此与混凝土的黏结性能较好。

能够有效地将混凝土的各部分紧密连接起来。

4. 抗碱骨料反应性能硅酸盐水泥在水化硬化后,其凝胶体系具有较低的碱骨料反应性,可以有效防止混凝土中的碱骨料反应,提高混凝土的耐久性。

硅酸盐水泥的凝结硬化过程是一个复杂而又精细的化学过程,它决定了水泥的性能和应用。

而硅酸盐水泥的特点使其在建筑领域具有广泛的应用前景,为建筑结构的强度与耐久性提供了有力的保证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图3 a
图3 c
图3(a)即为水化12 h 的水泥浆体在SEM 下的形貌. 圈出的位置即为水化产物CSH 凝胶, 呈现不规则絮状, 絮状的尺寸大致为200~500 nm. 从整体来看, 水泥浆体水化12 h后, CSH 凝胶生成量并不大, 产物层较薄, 但各处分布均匀. 在SEM 中使用EDX 对CSH 凝胶进行元 素分析, 结果如图3(c)所示, 大量的元素为Ca 和Si, 从元素构成可以确认产物为CSH 凝胶. 分析结果中还有少量的Al, S, Mg, K 等元素, 这是由于水化早期CSH 凝胶生成量较少, 而 SEM 下EDX 的作用范围约为1μm3, 在这个分辨率下不可避免地有未水化水泥颗粒的干扰, 因此SEM附带的EDX 并不能给出准确的CSH 凝胶的元素分析结果, 只能是一个大概的数值。
硅酸盐水泥的水化和硬化
水泥用适量的水拌合后,形成能与砂石集料结合的可塑性 浆体,随后逐渐失去塑性而凝结硬化为具有一定强度的石状体。 同时,还伴随着水化放热、体积变化和强度增长等现象,这说 明水泥拌水后产生了一系列复杂的物理、化学和物理化学的变
化。
一、 水泥水化过程
二、 水化初期产物形貌
三、 水化模型 四、晶种对硬化水泥的影响
混合材比例、研磨方式以及水泥细度对水泥早期水化热的影响的可行工
具。通过ANFIS 分析可获得一些关于普通水泥和混合水泥早期水化热的
预测结果。且与试验结果相比,ANFIS 获得的结果准确性很好。 ③R. Krstulovic 和P. Dabic 在水化动力学基础上进一步研究了水泥的
水化过程,提出了水泥基材料的多组分和多尺度水化反应的动力学模型,
水化产物 填充空隙 并将水泥 颗粒连接 在一起
已水化的水 泥浆里留下 的孔隙 未水化水 泥颗粒
二、水化初期产物形貌
我们都知道水泥早期水化产物Ca(OH)2、水化硅酸钙凝胶(CSH)、钙矾石(AFt)、 单硫型水化硫铝酸钙(AFm)。下面们我们对它的微观形貌、结晶形态、元素构 成进行简要的探讨。
结晶成核与晶体生长(NG)起主导作用;随着水化时间延长,水化产物越 来越多,离子迁移变得困难,水化反应转由相边界反应(I)或扩散(D)控
制。
四、晶种对硬化水泥浆体的影响
水泥拌水后,很快发生水化反应,水化产物相互交结,使 浆体失去流动性,变成具有一定强度的石状体。此为水泥的凝 结,即水化导致凝结硬化。 一、水泥浆体能凝结硬化的原因 1.结晶理论:雷霞特利。水化物的结晶交结而凝结硬化 2.胶体理论:米哈艾利斯。胶体由于内吸脱水而成刚性凝 胶的过程 3.拜依柯夫三阶段学说(综合1、2理论):溶解、胶化、结 晶 4.洛赫尔三阶段学说:水化产物形成强弱不等的接触点, 将各颗粒联接成网而形成强度 5.泰勒早、中、后三时期
凝胶, 得到Ca/Si 比较为真实, 波动也较小.
图7 a
图7e
在水化12 h 的水泥浆体中, 通过SEM 可以观察到针状产物, 长度约为1~2 um, 如图7(a)中所 示. 一般认为这是AFt 或AFm 的特征形貌. 但在SEM 中,我们无法辨别其到底是AFt 还是 AFm, 因为EDX 分析的最小尺寸往往远大于早期生成的AFt 与AFm 的尺寸, 得到的元素构 成如图7(e)所示, 有大量的Al, Si和Ca 元素, 也有少量的S, Mg 和K 元素. 参照2.2.2章节CSH 凝胶元素分析中遇到的问题及其机理解释,我们发现SEM 得到的元素分析结果大部分是来 源于未水化的水泥颗粒, 因此, 无法通过SEM 附带的EDX 辨别某个细小水化产物到底是AFt 还是Afm。
• 晶种对硬化水泥浆体结构的影响 晶种能为普通硅酸盐水泥的水化产物提供成核基体,降低成 核势垒,使产物易于生成,促进水泥水化和硬化。 由普通硅酸盐水泥完全水化后破碎、粉磨过 75μ m 方孔, 制得晶种制得晶种
通过对表 4.4 的分析可得,随着 龄期的增长,水泥的抗压、抗折 强度逐渐增长;当晶种掺量为 4% 时,同一龄期的强度达到最高值, 继续增加晶种掺量,强度反而下
通过SEM 和TEM 观察水泥浆体样品中的Ca(OH)2 晶体, 结果如图1 所示. 在SEM 图 像中, 能够发现大量的六方板状Ca(OH)2 晶体, 图1(a), 其尺寸为2 um 左右.。 Ca(OH)2 晶体在TEM 中形貌见图1(b), 同样为片状六方晶体. 用电子衍射方法能够 得到规则的衍射花样如图2 所示, 证明水泥浆体早期水化生成的Ca(OH)2 晶体为规 则的单晶结构。
使用TEM 研究水化12 h 的水泥样品, 可以观察到与SEM 观察结果类似的
针状产物, 长度约为1~2um, 如图7(b)所示. SEM 观察结果与TEM 观察
结果能够相互印证. 利用TEM 附带的高精度EDX 可以准确分辨AFt 和AFm, 如图7(f)与图7(e)所示, AFt 中的硫元素含量要远高于AFm. 在TEM 中进
一步精细观察水泥浆体中的针状水化产物, 如图7(c)与图7(d).AFt 与
AFm 都呈现定向生长. AFt 呈现较为完整的针状, 产物边缘整齐、棱角 分明; AFm 是由AFt 和C3A二次反应生成的, SEM 观察下也呈针状, 但在
TEM中, 可以发现AFm边缘不平整, 几乎没有棱角, 形貌趋向片层状发展,
结果比较接近。SEM 得到的结果明显大于TEM。
如图5 所示, 中心黑色部分为未水化的熟料颗粒, 直径约3 um, 外围包
裹的颜色较浅的产物为疏松的早期CSH 凝胶, 厚度约400 nm.大圈为SEM
附带EDX 的测量范围, 小圈为TEM 附带EDX 的测量范围. 可以发现, SEM 附带的EDX 测量不论选取哪个位置, 都会导致大部分元素分析结果来自
图3 b
图3 d
使用TEM 观察水化12 h 的样品中CSH 凝胶的形貌, 结果如图3(b)所示。生成的CSH
凝胶层较薄,CSH凝胶絮状结构的尺寸也在200~500 nm, 与SEM观测结果一致。能够 看到CSH 凝胶呈无定向的箔状,且普遍较疏松。使用EDX分析其元素构成, 结果如图 3(d)所示, 进一步确认了该产物为CSH 凝胶。
降,即晶种掺量为 4%时所测得的
抗压、抗折强度明显优于晶种掺 量为 3%、5%的,这和掺加晶种
后,其凝结时间的变化相对应。
这说明晶种掺量适当有利于提高 水泥的力学性能。
由表 4.6 可以看出,掺加晶种 后,各试验组的吸水率比空白 样的都降低了,其中M2 组硬化水泥浆体的吸水率相比 其它组要低,表明该组浆体结 构比较致密,相应龄期 所对应的强度也高。这是由于 晶种能为水化产物的形核提供
未水化的水泥颗粒. 水泥未水化熟料主要是由C3S, C2S, C3A 和C4AF 四
种矿物相组成, 4 种组分未水化前的Ca/Si 比都大于或等于2, 必然造成 SEM中EDX 测量的Ca/Si 比结果远大于CSH 凝胶实际的Ca/Si 比, 并导致
结果的波动增加, 数据方差增大;而TEM 则可以保证测量范围内均为CSH
有明显的二次反应迹象.
各单矿在龄期达28天时水化速度关系为: C3A>C3S>C4AF>C2S 各单矿水化放热量及放热速率: C3A>C3S>C4AF>C2S 因此,适当增加C4AF减少C3A含量,或减少C3S,并相应增加C2S含, 均能降低水泥水化热。
三、水化放热模型
水泥水化放热模型 关于水泥的水化放热模型,近年来国外研究有了新进展。 ①Klaus Meinhard 等建立的基本水化模型确定了普通硅酸盐水泥水化时 的热释放量及热释放率,并将其适用范围扩大至其他类别的混合水泥
在图3(c)与图3(d)中选取同一样品中不同位置的CSH 凝胶进行多次测量, 精确计算Ca/Si 比并进行统计, 结果如图4所示。比较同一样品在SEM和 TEM中的Ca/Si比数据,发现两者相差甚远, SEM得到的Ca/Si比平均值为 2.35,TEM 得到的平均值为1.29。两种方法的实验结果分别与已有研究的
描述了水化过程与水化速率的关系,进而得出水化程度与水化龄期的关 系[21]。该模型认为水泥基材料的水化反应有3 个基本过程:结晶成核
与晶体生长(NG)、相边界反应(I)和扩散(D)。
这3 个过程可以同时发生,但是水化过程的整体发展程度取决于其中最
慢的一个反应过程。在水化初期,水分供应比较充足,水化产物较少时,
成核基体,降低成核势垒,使
水化产物易于形成,这样大量 晶核及长大后的晶体等产物占
据空隙,从而使吸水率降低。
[20]。这个多阶段水化模型考虑到了主要熟料相的水化反应动力学,并
且也考虑了在工程实践中经常使用的混合水泥的水化的影响。此水化模 型可以通过差示量热分析来验证。
②基于自适应神经模糊推理系统(ANFIS)的基础上Abdulhamit Subasi 等
提出了一种用来预测普通水泥和混合水泥早期水化热的新方法[21],此 法分别结合了神经网络的适应能力和模糊逻辑的定性方法。试验结果表 明,该法可作为一个评价
相关文档
最新文档