化合物半导体材料性质与特点

合集下载

半导体材料第9章II--VI VI族化合物半导体 族化合物半导体

半导体材料第9章II--VI VI族化合物半导体 族化合物半导体

吉林大学电子科学与工程学院
半导体材料
ZnO P型掺杂至今仍存在的问题
1997年出现了第一篇ZnO实现P型掺杂的报道,但掺 杂效果还不能达到制作注入型发光器件的要求(Jpn.
J. Appl. Phys. 36, L1453, 1997)
尝试了各种可能的杂质源和掺杂办法,但都不理
想,至今仍存在空穴浓度偏低、迁移率偏低、掺杂
Cd CdS 2.4eV CdSe 1.67eV CdTe 1.6eV Hg α-HgS 2.1eV HgSe 0eV HgTe -0.15eV
吉林大学电子科学与工程学院
半导体材料
元素
S
Se
Te
Zn ZnS 3.6eV ZnSe 2.7eV ZnTe 2.26eV
Cd CdS 2.4eV CdSe 1.67eV CdTe 1.6eV Hg α-HgS 2.1eV HgSe 0eV HgTe -0.15eV
Co
Pb Co Cu
Co Cu
Cl
Cu Al
I
Mn
Cl
ZnS自然界中稳定存在的是 闪锌矿结构(β相)1020℃ 相变为纤锌矿结构(α相)
吉林大学电子科学与工程学院
半导体材料
ZnS作为电子显示和发光材料,其发射光谱和发光 效率都可以通过掺杂和晶粒尺寸的控制加以调制
ZnS的量子尺寸效应: ¾ 禁带宽度也随尺寸减小而展宽,3nm ZnS粉体的禁
4. 光电导探测器,CdS,ZnSe
5. 太阳电池,CdS/CdTe其理论转换效率为30%,已开 始大规模产业化
6. 热/红外探测 HgCdTe/CdTe
吉林大学电子科学与工程学院
半导体材料
ZnS
作为一种用途广泛的电致发光材料,ZnS的突出特点是 其发光光谱会因掺杂元素的不同而变化。其色彩由红至 蓝可以覆盖整个可见光范围(最近还有掺稀土元素)

有机半导体材料

有机半导体材料

有机半导体材料有机半导体材料是一种兼具有机化合物和半导体特性的材料。

它具有低成本、柔性可塑性和易加工等特点,在电子器件和光电器件中有广泛的应用前景。

有机半导体材料已经成为新一代电子器件中的重要组成部分。

与传统的无机半导体材料相比,有机半导体材料具有许多独特的优点。

首先,有机半导体材料的合成成本低廉,相对于无机半导体材料的制备过程更简单,能够大规模工业化生产。

其次,有机半导体材料具有极强的柔性可塑性,可以通过简单的加热和压力处理使其呈现出不同的形状和结构,这在制备柔性电子器件中具有重要的意义。

此外,有机半导体材料的能级调节范围广,能够实现不同电子能态的控制,从而满足不同电子器件的要求。

有机半导体材料在电子器件中的应用十分广泛。

有机场效应晶体管是其中的一种典型应用。

它通过控制材料内部电媒介的通道,能够实现信号的放大和开关。

由于有机半导体材料具有高度柔性、低工艺成本等特点,在高分辨率柔性显示器、可卷曲的电子设备、智能贴到皮肤上的传感器等领域有着广泛的应用潜力。

此外,有机半导体材料在有机太阳能电池中也有着重要的应用。

有机太阳能电池的特点是轻薄柔性,可实现大面积的制备和低成本的生产。

因此,有机半导体材料在解决能源问题和保护环境方面具有重要的意义。

然而,有机半导体材料在一些方面还存在一些挑战。

首先,有机半导体材料的电导率相对较低,效率较低。

其次,有机半导体材料对于温度和湿度等环境因素较为敏感,容易受到破坏。

此外,有机半导体材料的寿命较短,需要进一步改进,提高其稳定性和可靠性。

总的来说,有机半导体材料具有众多优点和应用潜力,是未来电子器件和光电器件领域的重要研究方向。

随着材料合成、加工技术以及理论模拟等各个方面的不断发展,有机半导体材料的性能和应用将会有进一步的提升和拓展。

有机半导体材料的未来发展将会推动电子技术的革新,并对科学技术的发展起到重要的推动作用。

有机半导体化学-概述说明以及解释

有机半导体化学-概述说明以及解释

有机半导体化学-概述说明以及解释1.引言1.1 概述有机半导体化学是研究有机材料在电子学领域中的应用与性质的一个重要分支。

有机半导体材料由碳和氢等元素组成,其分子内部包含有共轭结构,能够通过供电或光照来激发电子,在一定条件下形成载流子并传输电子或空穴,从而具备半导体特性。

有机半导体在半导体器件中的应用得到了广泛关注和研究。

相比传统的无机半导体材料,有机半导体材料具有诸多优势,如可塑性、低成本生产、可印刷性和柔性等特点,为新型电子学设备的发展提供了多种可能性。

因此,有机半导体材料的合成方法和性质研究成为当前有机半导体化学领域的热点和前沿。

文章将围绕有机半导体的基本概念、合成方法以及性质与应用展开论述。

首先,对有机半导体的基本概念进行介绍,包括其特点、原理和基本结构等方面的内容。

其次,从合成方法的角度探讨有机半导体材料的合成策略和技术,包括常见的有机合成方法和有机半导体材料的特殊合成方法。

最后,展示有机半导体材料的性质与应用,包括电学性质、光学性质以及在柔性显示器、有机太阳能电池和有机场效应晶体管等领域的应用。

通过本文的研究和总结,旨在对有机半导体化学领域的研究进展进行归纳和分析,为进一步的研究和应用提供参考和指导。

同时,期望能够展望未来有机半导体化学在新材料的发现、合成方法的改进以及在电子学领域应用的拓展方向上所取得的新突破。

最后,通过本文的撰写,也希望能够唤起读者对有机半导体化学的关注和兴趣,进一步推动该领域的发展和应用。

1.2 文章结构本文将围绕有机半导体的化学性质和应用展开详细介绍,分为引言、正文和结论三个部分。

引言部分首先简要概述了有机半导体的基本概念,引出了文章的研究背景和重要性。

接着,介绍了本文的结构安排,让读者对全文有一个整体的了解。

正文部分是文章的重点内容,主要包括三个方面。

首先,对有机半导体的基本概念进行详细阐述,介绍其组成结构以及与传统半导体的区别。

其次,介绍有机半导体的合成方法,包括常见的有机合成路线和先进的合成技术。

半导体物理与器件-课件-教学PPT-作者-裴素华-第1章-半导体材料的基本性质

半导体物理与器件-课件-教学PPT-作者-裴素华-第1章-半导体材料的基本性质

简化为
J = pqv p
1.6.4 半导体的电阻率ρ
电阻率是半导体材料的一个重要参数,其值为电导率
的倒数。 1
1
ρ= =
σ nqμn + pqμ p
对于强P型和强N型半导体业有相应的简化。
从上面的公式可以看出,半导体电阻率的大小决定于 n, p, μn ,μp的具体数值,而这些参数又与温度有关, 所以电阻率灵敏的依赖于温度,这是半导体的重要 特点之一。
b) P型硅中电子和空穴 的迁移率
载流子的迁移率还要随温度而变化。
硅中载流子迁移率随温度变化的曲线 a) μn b) μp
1.6.3 半导体样品中的漂移电流密度
设一个晶体样品如图所示, 以单位面积为底,以平 均漂移速度v为长度的矩 形体积。先求出电子电 流密度,设电场E为x方 向,在电场的作用下, 电子应沿着-x方向运动。
不论半导体中的杂质激发还是本征激发,都是依靠吸收 晶格热振动能量而发生的。由于晶格的热振动能量是随 温度变化的,因而载流子的激发也要随温度而变化。
载流子激发随温度的变化 a)温度很低 b)室温临近 c)温度较高 d)温度很高
伴随着温度的升高,半导体的费米能级也相应地发 生变化
杂质半导体费米能级随温度的变化 a)N型半导体 b)P型半导体
a)随机热运动 b) 随机热运动和外加电场作用下的运动合成
随机热运动的结果是没有电荷迁移,不能形成电流。
引入两个概念:
1. 大量载流子碰撞间存在一个路程的平均值,称为平 均自由程,用λ表示,其典型值为10-5cm;
2. 两次碰撞间的平均时间称为平均自由时间,用τ表示, 约为1ps;
建立了上述随机热运动的图像后,就可以比较实际地去 分析载流子在外加电场作用下的运动了。

第六章III-V族化合物半导体

第六章III-V族化合物半导体

6-及条件的依据:相图
非凝聚体系相图与凝聚体系相图的差别 非凝聚体系P-T-X相图

GaAs作为重要半导体材料的 主要特征
直接带隙,光电材料 迁移率高,适于制作超高频超高速器件和电路 易于制成非掺杂半绝缘单晶,IC中不必作绝缘
隔离层,简化IC,减少寄生电容,提高集成度 Eg较大,可在较高温度下工作 抗辐射能力强 太阳电池,转换率比Si高 Gunn效应,新型功能器件
能带结构:直接带隙 导带中有两个次能谷X,L,与主能谷能量差不大 主能谷中:电子有效质量较小,迁移率较高 次能谷种:电子有效质量大,迁移率小,态密度大, 室温下:电子处于主能谷 当外电场超过某一阈值时: 电子由主能谷→次能谷,迁移率由大→小, 出现:电场增大,电流减小的负阻效应 体效应(电子转移效应),Gunn效应(1963年)
GaAs晶体生长的两个途径
熔体生长:先合成1:1的化合物熔体然后直
接由熔体中生长其单晶 溶液生长:由某一组分的溶液中生长化合 物晶体(常以III族元素作溶剂)
对Ga-As体系精细相图
GaAs在加热时发生的一些可逆反应 熔体生长的GaAs晶体一般含有较多的Ga空


GaAs的物理、化学性质
暗灰色,有金属光泽 其晶格常数随T及化学计量偏离有关,
a(富As)<a(富Ga) 室温下对H2O和O2是稳定的 大气中600℃以上开始氧化 真空中800 ℃以上开始离解 与盐酸×与浓硝酸∨易溶于王水
GaAs的能带结构与Gunn效应
GaAs能带结构和Gunn效应
第六章 III-V族化合物半导体
IIIA元素:B 、Al、Ga、In
VA元素: N、P、As、Sb 组合形成的化合物15种(BSb除外) 目前得到实用的III-V族化合物半导体 GaN GaP GaAs InP GaSb InSb InAs 原子序数之和:由小→大 材料熔点:由高→低 带隙宽度:由大→小

(完整版)半导体材料的分类_及其各自的性能汇总

(完整版)半导体材料的分类_及其各自的性能汇总

其中晶态半导体又可以分为单晶半导体和多晶半导体。

上述材料中,锗(Ge)、硅(Si)、砷化镓(GaAs)都是单晶,是由均一的晶粒有序堆积组成;而多晶则是由很多小晶粒杂乱地堆积而成。

对于非晶态半导体,有非晶态硅、非晶态锗等,它们没有规则的外形,也没有固定熔点,内部结构不存在长程有序,只是在若干原子间距内的较小范围内存在结构上的有序排列,称作短程有序。

另外,在实际应用中,根据半导体材料中是否含有杂质,又可以将半导体材料分为本征半导体和杂质半导体。

在下面的章节中将会介绍,杂质的存在将对材料的性能产生很大的影响。

二. 半导体材料的结构及其性能1.几种半导体材料的结构1.1金刚石结构型材料Si、Ge等Ⅳ族元素有4个未配对的价电子,每个原子只能与周围4个原子共价键合,使每个原子的最外层都成为8个电子的闭合壳层,因此共价晶体的配位数(即晶体中一个原子最近邻的原子数)只能是 4。

方向性是指原子间形成共价键时,电子云的重叠在空间一定方向上具有最高密度,这个方向就是共价键方向。

共价键方向是四面体对称的,即共价键是从正四面体中心原子出发指向它的四个顶角原子,共价键之间的夹角为109°28′,这种正四面体称为共价四面体,见图 1.2。

图中原子间的二条连线表示共有一对价电子,二条线的方向表示共价键方向。

共价四面体中如果把原子粗略看成圆球并且最近邻的原子彼此相切,圆球半径就称为共价四面体半径。

单纯依靠图1.2那样的一个四面体还不能表示出各个四面体之间的相互关系,为充分展示共价晶体的结构特点,图1.3(a)画出了由四个共价四面体所组成的一个Si、Ge晶体结构的晶胞,统称为金刚石结构晶胞,整个Si、Ge晶体就是由这样的晶胞周期性重复排列而成。

它是一个正立方体,立方体的八个顶角和六个面心各有一个原子,内部四条空间对角线上距顶角原子1/4对角线长度处各有一个原子,金刚石结构晶胞中共有8个原子。

金刚石结构晶胞也可以看作是两个面心立方沿空间对角线相互平移 1/4 对角线长度套构而成的。

微电子技术基础-半导体及其基本特性

微电子技术基础-半导体及其基本特性

半导体材料的分类
3.半导体材料的分类
对半导体材料可从不同的角度进行分类。 根据其性能可分为高温半导体、磁性半导体、热电半导 体; 根据其晶体结构可分为金刚石型、闪锌矿型、纤锌矿型 、黄铜矿型半导体; 根据其结晶程度可分为晶体半导体、非晶半导体、微晶 半导体。 比较通用且覆盖面较全的则是按其化学组成的分类,依 此可分为:元素半导体、化合物半导体和固溶半导体三大 类。
载流子
9. 非本征半导体的载流子
热平衡时: 在非本征情形:
np n
2 i
n p
n大于p
p大于n
N型半导体:
P型半导体:
载流子
多子:多数载流子
n型半导体:电子 p型半导体:空穴
少子:少数载流子
n型半导体:空穴 p型半导体:电子
载流子
电中性条件: 正负电荷之和为0
p + Nd – n – Na = 0
原子能级 能带
量子态和能级 固体的能带结构
半导体的能带
半导体的能带结构
导 带
Eg
价 带
价带:0K条件下被电子填充的能量最高的能带; 导带: 0K条件下未被电子填充的能量最低的能带; 禁带:导带底与价带顶之间能带; 带隙:导带底与价带顶之间的能量差。
半导体的能带
电子和空穴的有效质量m*
半导体中载流子的行为可以等效为自由粒子, 但与真空中的自由粒子不同,考虑了晶格作用后的
基本方程
方程的形式1
x, t s 0
2
特例: 方程的形式2
E
1
s 0
x dx
s
均匀Si中,无 外加偏压时,
方程RHS=0, 静电势为常数
电荷 密度

半导体材料分析

半导体材料分析

1、半导体材料定义我们通常把导电性差的材料,如煤、人工晶体、琥珀、陶瓷等称为绝缘体。

而把导电性比较好的金属如金、银、铜、铁、锡、铝等称为导体。

可以简单的把介于导体和绝缘体之间的材料称为半导体(semiconductor material ),电阻率约在1m cm〜1G cm范围内与导体和绝缘体相比,半导体材料的发现是最晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的存在才真正被学术界认可。

反映半导体内在基本性质的却是各种外界因素如光、热、磁、电等作用于半导体而引起的物理效应和现象,这些可统称为半导体材料的半导体性质。

构成固态电子器件的基体材料绝大多数是半导体,正是这些半导体材料的各种半导体性质赋予各种不同类型半导体器件以不同的功能和特性。

半导体的基本化学特征在于原子间存在饱和的共价键。

作为共价键特征的典型是在晶格结构上表现为四面体结构,所以典型的半导体材料具有金刚石或闪锌矿(ZnS)的结构。

由于地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿(PbS)很早就用于无线电检波,氧化亚铜(Cu2O)用作固体整流器,闪锌矿(ZnS)是熟知的固体发光材料,碳化硅(SiC)的整流检波作用也较早被利用。

硒(Se)是最早发现并被利用的元素半导体,曾是固体整流器和光电池的重要材料。

元素半导体锗(Ge)放大作用的发现开辟了半导体历史新的一页,从此电子设备开始实现晶体管化。

中国的半导体研究和生产是从1957年首次制备出高纯度的锗开始的。

采用元素半导体硅(Si)以后,不仅使晶体管的类型和品种增加、性能提高,而且迎来了大规模和超大规模集成电路的时代。

以砷化傢(GaAs)为代表的川-V族化合物的发现促进了微波器件和光电器件的迅速发展。

2、半导体材料的发展历史半导体的发现实际上可以追溯到很久以前,1833年,英国科学家电子学之父法拉第最先发现硫化银的电阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但巴拉迪发现硫化银材料的电阻是随着温度的上升而降低。

(整理)半导体材料发展简史

(整理)半导体材料发展简史

半导体材料的发展简史半导体材料是半导体工业的基础,它的发展对半导体工业的发展具有极大的影响。

如果按化学成分及内部结构,半导体材料大致可以分为以下几类:一是元素半导体材料,包括锗(Ge)、硅(Si)、硒(Se)、硼(B)等。

20世纪50年代,锗在半导体工业中占主导地位,但锗半导体器件的耐高温和抗辐射性能较差,到20世纪60年代后期逐渐被硅材料取代。

用硅制造的半导体器件,耐高温和抗辐射性能较好,特别适宜制作大功率器件。

因此,硅已成为应用最多的一种半导体材料,目前的集成电路大多数是用硅材料制造的。

二是化合物半导体,它是由两种或两种以上的元素化合而成的半导体材料。

它的种类很多,重要的有砷化镓(GaAs)、磷化铟(InP)、锑化铟(InSb)、氮化镓(GaN)、碳化硅(SiC)、硫化镉(CdS)等。

其中砷化镓是除硅之外研究最深入、应用最广泛的半导体材料。

由于砷化镓是一种直接带隙的半导体材料,并且具有禁带宽度宽、电子迁移率高的优点,因而砷化镓材料不仅可直接研制光电子器件,如发光二极管、可见光激光器、近红外激光器、量子阱大功率激光器、红外探测器和高效太阳能电池等,而且在微电子方面,以半绝缘砷化镓(Si-GaAs)为基体,用直接离子注入自对准平面工艺研制的砷化镓高速数字电路、微波单片电路、光电集成电路、低噪声及大功率场效应晶体管,具有速度快、频率高、低功耗和抗辐射等特点。

碳化硅由于其抗辐射能力强、耐高温和化学稳定性好,在航天技术领域有着广泛的应用。

氮化镓材料是近十年才成为研究热点,它是一种宽禁带半导体材料(Eg=3.4eV),具有纤锌矿结构的氮化镓属于直接跃迁型半导体,是制作绿光、蓝光、紫光乃至紫外发光二极管、探测器和激光器的材料。

氮化镓可以与氮化铟(Eg=1.9eV)、氮化铝(Eg=6.2eV)形成合金InGaN、AlGaN,这样可以调制禁带宽度,进而调节发光管、激光管等的波长。

三是非晶半导体。

上面介绍的都是具有确定晶格结构的半导体材料,在这些材料中原子排列具有对称性和周期性。

半导体的三个特性

半导体的三个特性

反向特性
击穿特性
当反向电压增大到某一数值时,反向 电流急剧增大,称为二极管的击穿现 象。此时二极管失去单向导电性。
在反向电压作用下,随着电压的增大,反向 电流基本保持不变,称为反向饱和电流。反 向伏安特性曲线是一条近似水平的直线。
二极管主要参数及性能指标
最大整流电流IF
最高反向工作电压UR
指二极管长期连续工作时允许通过的最大 正向平均电流值。该值决定了二极管的功 耗和散热设计。
指二极管两端允许施加的最大反向电压。 若超过此值,则反向电流急剧增大,二极 管的单向导电性被破坏。
反向电流IR
最高工作频率fM
指在规定的反向电压下流过二极管的反向 电流。该值越小,说明二极管的单向导电 性越好。
指二极管能正常工作的最高频率。超过此 值时,由于结电容的作用,二极管的性能 将下降。
03
劣环境。
柔性电子器件
基于柔性基板的半导体器件, 可弯曲、折叠,适用于可穿戴
设备等领域。
生物半导体器件
利用生物材料与半导体技术结 合,制造具有生物兼容性的电
子器件。
未来发展趋势预测与挑战
发展趋势
随着人工智能、物联网等技术的快速发展,半导体器件将朝着更高性能、更低功耗、更小体积的方向 发展。同时,柔性电子、生物电子等新兴领域也将为半导体器件带来新的发展机遇。
半导体材料分类与特点
01
02
03
元素半导体
如硅(Si)、锗(Ge)等, 具有独特的 化铟(InP)等,具有优 异的电学、光学和热力学 性质。
有机半导体
如聚乙炔、聚苯胺等,具 有低成本、可弯曲和轻质 等优点。
半导体能带结构与载流子
能带结构
半导体的能带结构包括价带、导带和禁带。价带中的电子被束缚在原子周围, 导带中的电子可以自由移动,禁带则是价带和导带之间的能量间隔。

半导体材料导论3 (2)-文档资料

半导体材料导论3 (2)-文档资料

杂质导电:
另一种导电机制是靠电活性杂质形成的载流子导 电,这种导电称为杂质导电。其原理如图3.2所 示。 施主杂质:以杂质导电为主的、能向导带贡献电 子的杂质,称为施主杂质。对IV族元素半导体而 言,V族元素就是施主杂质。 受主杂质:从价带俘获电子,而在价带形成空穴 的杂质称为 受主杂质。对IV族素半导体而言, III族元素就是受主杂质。 电离能:施主或受主分别向导带或价带释放电子 或空穴所需的能量称为电离能,分别用ΔED、 ΔEA表示(见图3.2)。
图21霍尔效应原理211存在两种载流子的证明专业资料?从图27可以看出这种热激发的电子脱离价键后使某个硅原子中少了一个价电子从电平衡的角度相当于带一个正电荷粒子这种电子的缺位称为空穴?而空穴也可以发生流动即邻近原子的价电子跑过来填补这个缺位而本身又产生一个空穴在电场下如此连续传递就形成了电流
半导体材料
(3)有两种载流子参加导电。一种是为大家所熟悉的电子,另一种则是带正电的 载流子,称为空穴。而且同一种半导体材料,既可以形成以电子为主的导电,也可 以形成以空穴为主的导电。在金属中是仅靠电子导电,而在电解质中,则靠正离子 和负离子同时导电。
1.2半导体材料的类别
对半导体材料可从不同的角度进行分类例如: 根据其性能可分为高温半导体、磁性半导体、热电半导体; 根据其晶体结构可分为金刚石型、闪锌矿型、纤锌矿型、黄铜矿型半导体; 根据其结晶程度可分为晶体半导体、非晶半导体、微晶半导体, 但比较通用且覆盖面较全的则是按其化学组成的分类,依此可分为:元素半导体、 化合物半导体和固溶半导体三大类,见表1。 在化合物半导体中,有机化合物半导体虽然种类不少,但至今仍处于研究探索阶段, 所以本书在叙述中只限于无机化合物半导体材料,简称化合物半导体材料。
金属

半导体材料的基本性质

半导体材料的基本性质

半导体材料硅的基本性质一.半导体材料1.1 固体材料按其导电性能可分为三类:绝缘体、半导体及导体,它们典型的电阻率如下:图1 典型绝缘体、半导体及导体的电导率范围1.2 半导体又可以分为元素半导体和化合物半导体,它们的定义如下:元素半导体:由一种材料形成的半导体物质,如硅和锗。

化合物半导体:由两种或两种以上元素形成的物质。

1)二元化合物GaAs —砷化镓SiC —碳化硅2)三元化合物As —砷化镓铝AlGa11AlInAs —砷化铟铝111.3 半导体根据其是否掺杂又可以分为本征半导体和非本征半导体,它们的定义分别为:本征半导体:当半导体中无杂质掺入时,此种半导体称为本征半导体。

非本征半导体:当半导体被掺入杂质时,本征半导体就成为非本征半导体。

1.4 掺入本征半导体中的杂质,按释放载流子的类型分为施主与受主,它们的定义分别为:施主:当杂质掺入半导体中时,若能释放一个电子,这种杂质被称为施主。

如磷、砷就是硅的施主。

受主:当杂质掺入半导体中时,若能接受一个电子,就会相应地产生一个空穴,这种杂质称为受主。

如硼、铝就是硅的受主。

图1.1 (a)带有施主(砷)的n型硅 (b)带有受主(硼)的型硅1.5 掺入施主的半导体称为N型半导体,如掺磷的硅。

由于施主释放电子,因此在这样的半导体中电子为多数导电载流子(简称多子),而空穴为少数导电载流子(简称少子)。

如图1.1所示。

掺入受主的半导体称为P型半导体,如掺硼的硅。

由于受主接受电子,因此在这样的半导体中空穴为多数导电载流子(简称多子),而电子为少数导电载流子(简称少子)。

如图1.1所示。

二.硅的基本性质1.1 硅的基本物理化学性质硅是最重要的元素半导体,是电子工业的基础材料,其物理化学性质(300K)如表1所示。

表1 硅的物理化学性质(300K)1.2 硅的电学性质硅的电学性质有两大特点:一、导电性介于半导体和绝缘体之间,其电阻率约在10-4~1010Ω·cm二、导电率和导电类型对杂质和外界因素(光热,磁等)高度敏感。

金属镓 金属锗

金属镓 金属锗

金属镓金属锗1. 引言金属镓(Gallium,Ga)和金属锗(Germanium,Ge)是两种重要的半导体材料。

它们具有独特的物理和化学性质,广泛应用于电子、光电子、光伏等领域。

本文将从以下几个方面对金属镓和金属锗进行介绍:物理性质、化学性质、制备方法以及应用领域。

2. 物理性质2.1 金属镓•原子序数:31•原子量:69.72•密度:5.91 g/cm³•熔点:29.76℃•沸点:2403℃金属镓是一种银白色的固体,在常温下呈蜡状。

它具有低熔点、低毒性和高折射率等特点。

此外,金属镓还具有良好的导电性能,在液态状态下可以作为传热介质使用。

2.2 金属锗•原子序数:32•原子量:72.63•密度:5.323 g/cm³•熔点:938.25℃•沸点:2830℃金属锗是一种灰白色的固体,在常温下呈脆性。

它具有良好的导电性能和热导性能,同时还具有较高的折射率和吸收率。

金属锗可以被用作半导体材料,广泛应用于光电子器件制造。

3. 化学性质3.1 金属镓金属镓在常温下与氧气反应生成氧化镓(Ga2O3),在酸性溶液中容易被溶解生成相应的盐酸盐。

此外,金属镓还可以与非金属元素发生反应,形成多种化合物。

3.2 金属锗金属锗在常温下与氧气反应生成二氧化锗(GeO2),在强酸中不易溶解。

它可以与许多非金属元素反应,形成不同的化合物。

4. 制备方法4.1 金属镓碳热法将含镓矿石与过量的碳粉混合,在高温下进行还原反应,得到纯净的金属镓。

溶剂萃取法利用有机溶剂提取含镓矿石中的金属镓,然后通过蒸馏和结晶等工艺步骤得到纯净的金属镓。

4.2 金属锗碳热法将含锗矿石与过量的碳粉混合,在高温下进行还原反应,得到纯净的金属锗。

溶液电解法将含锗矿石溶解在适当的溶液中,通过电解方法将金属锗从溶液中析出。

5. 应用领域5.1 金属镓•半导体材料:金属镓可以用于制备半导体器件,如太阳能电池、光电二极管等。

•合金材料:金属镓可以与其他元素形成合金,提高合金的性能。

《微电子学概论》-半导体物理学-半导体及其基本特性

《微电子学概论》-半导体物理学-半导体及其基本特性
且公式 np ni2 不成立
过剩载流子和电中性
平衡时
过剩载流子
电中性:
小注入条件
小注入条件:注入的非平衡载流子浓度 比平衡时的多数载流子浓度小的多
N型材料 P型材料
p n0 , n n0 n p0 , p p0
非平衡载流子寿命
▪ 假定光照产生 n和 ,如p 果光突然关闭, 和n 将随p时间逐渐衰减直至0,衰减的时间常数称为
半导体物理学
一.半导体中的电子状态 二.半导体中杂质和缺陷能级 三.半导体中载流子的统计分布 四.半导体的导电性 五.非平衡载流子 六.pn结 七.金属和半导体的接触 八.半导体表面与MIS结构
半导体的纯度和结构
▪ 纯度
➢ 极高,杂质<1013cm-3
▪ 结构
晶体结构
▪ 单胞
➢ 对于任何给定的晶体,可以用来形成其晶体结构的 最小单元
▪ 杂质处于两种状态:中性态和离化态。 当处于离化态时,施主杂质向导带提供 电子成为正电中心;受主杂质向价带提 供空穴成为负电中心。
ND ห้องสมุดไป่ตู้ A
▪ 半导体中同时存在施主和受主杂质, 且 ND N A 。
N型半导体
N型半导体
N A ND
▪ 半导体中同时存在施主和受主杂质, 且 N A ND 。
E hv
2k 2 E
2m0
半导体中电子的平均速度
▪ 在周期性势场内,电子的平均速度u可表示 为波包的群速度
u dv E hv u 1 dE
dk
dk
E(k) E(0) h 2k 2 2mn*
u
k mn*
自由电子的速度
▪ 微观粒子具有波粒二象性
p m0u
p2 E

半导体特性

半导体特性
面体, 具 有 金 刚 石 晶 体 结 构
半导体的结合和晶体结构
金刚石结构
半导体有元素半导体,如:Si、Ge 化合物半导体,如:GaAs、InP、ZnS
2. 半导体中的载流子:能够导电的自由粒子
本征半导体:n=p=ni
电子:Electron,带负电的导电载流 子,是价电子脱离原子束缚 后 形成的自由电子,对应于导带 中占据的电子
P
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4
+4 P
+4
+4
+4
多出 一个 电子 出现 了一 个正 离子
+4
+4
+4
+4
+4
P
半导体中产生了大量的自由电子和正离子
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

半导体材料应用

半导体材料应用

半导体材料应用有哪些_半导体材料应用领域介绍自然界中的物质,根据其导电性能的差异可划分为导电性能良好的导体(如银、铜、铁等)、几乎不能导电的绝缘体(如橡胶、陶瓷、塑料等)和半导体(如锗、硅、砷化镓等)。

半导体是导电能力介于导体和绝缘体之间的一种物质。

它的导电能力会随温度、光照及掺入杂质的不同而显著变化,特别是掺杂可以改变半导体的导电能力和导电类型,这是其广泛应用于制造各种电子元器件和集成电路的基本依据。

半导体材料的特点半导体材料是一类具有半导体性能,用来制作半导体器件的电子材料。

常用的重要半导体的导电机理是通过电子和空穴这两种载流子来实现的,因此相应的有N型和P型之分。

半导体材料通常具有一定的禁带宽度,其电特性易受外界条件(如光照、温度等)的影响。

不同导电类型的材料是通过掺入特定杂质来制备的。

杂质(特别是重金属快扩散杂质和深能级杂质)对材料性能的影响尤大。

因此,半导体材料应具有很高的纯度,这就不仅要求用来生产半导体材料的原材料应具有相当高的纯度,而且还要求超净的生产环境,以期将生产过程的杂质污染减至最小。

半导体材料大部分都是晶体,半导体器件对于材料的晶体完整性有较高的要求。

此外,对于材料的各种电学参数的均匀性也有严格的要求。

半导体材料的应用半导体材料的早期应用:半导体的第一个应用就是利用它的整流效应作为检波器,就是点接触二极管(也俗称猫胡子检波器,即将一个金属探针接触在一块半导体上以检测电磁波)。

除了检波器之外,在早期,半导体还用来做整流器、光伏电池、红外探测器等,半导体的四个效应都用到了。

从1907年到1927年,美国的物理学家研制成功晶体整流器、硒整流器和氧化亚铜整流器。

1931年,兰治和伯格曼研制成功硒光伏电池。

1932年,德国先后研制成功硫化铅、硒化铅和碲化铅等半导体红外探测器,在二战中用于侦测飞机和舰船。

二战时盟军在半导体方面的研究也取得了很大成效,英国就利用红外探测器多次侦测到了德国的飞机。

典型半导体材料及电子材料 晶体结构特点及有关性质

典型半导体材料及电子材料 晶体结构特点及有关性质

2007-12-20
29
具有闪锌矿结构的晶体的腐蚀特性怎样? 如何区分GaAs的(111)面和 (111)?
Si、Ge 是金刚石型结构的晶体,是由同种元素组成 的晶体。(111)面和 (111) 面是完全等同的。因此,这两个面 所表现的物理和化学性质也是相同的,没有差异。 对于GaAs,属于闪锌矿型结构的晶体,在结构对称 性上缺少一个对称中心。它的(111)面和
2007-12-20 3
为了形成具有八个外层电子的稳定结构,必然趋于与邻 近的四个原子形成四个共价键,由杂化理论可知,一个s轨道 和三个p轨道杂化,结果产生四个等同的sp3 轨道,电子云的 方向刚好指向以原子核为中心的正四面体的四个顶角,四个 键在空间处于均衡,每两个键的夹角都是109°28′。如图5.11 所示。
2007-12-20
4
每个原子都按此正四面体键,彼此以共价键结合 在一起,便形成如图 5.1.2 和图5.1.3所示的三维空间 规则排列结构—金刚石性结构。 金刚石结晶体结构具有Oh群的高度对称性。
2007-12-20
5
5.1.2 闪锌矿结构
化合物半导体GaAs、InSb、GaP等都属于闪锌矿结构,以 GaAs为例介绍其结构特点。 Ga 的原子序数 31 核外电子排布式 1s2 2s22p6 3s23p63d10 4s24p1 As 的原子序数 33 核外电子排布式 1s2 2s22p6 3s23p63d10 4s24p3 Ga 的电负性x=1.6 As的电负性x=2.0 △x=0.4<1.5 形成共价键(极性共价键) 在形成共价键的过程中,与Si、Ge的结构相似,也产生 sp3杂化,所不同的是每个As原子周围有4个Ga原子,每个Ga 原子周围有4个As原子,如果不考虑原子的种类,单从骨架上 看GaAs与Si的结构十分相似。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档