2015学年甘肃省酒泉市敦煌市青海油田二中八年级下学期期中数学试卷带解析答案PDF
酒泉市八年级下学期期中数学试卷
酒泉市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019八下·衢州期末) 中国传统扇文化有着深厚的底蕴,下列扇面图形是中心对称图形的是()A .B .C .D .2. (2分) (2019八下·尚志期中) 下列图形中,不是轴对称图形的是()A . 等边三角形B . 平行四边形C . 矩形D . 菱形3. (2分) (2015八下·苏州期中) 若x=2y,则分式的值为()A .B .C .D .4. (2分) (2015八下·苏州期中) 若y与x成反比例.且当x=2时,y=4,则y与x的函数关系式为()A . y=B . y=C . y=D . y=5. (2分) (2015八下·苏州期中) 下列分式变形正确的是()A . =B . =﹣1C . =D . 1﹣ =6. (2分) (2015八下·苏州期中) 菱形具有而矩形不具有的性质是()A . 对角线互相垂直B . 对角线相等C . 四个角都是直角D . 对角线互相平分7. (2分) (2015八下·苏州期中) 关于反比例函数y=﹣,下列说法正确的是()A . 图像在第一、三象限B . 图像经过(2,1)C . 在每个象限中,y随x的增大而减小D . 当x>1时,﹣2<y<08. (2分) (2015八下·苏州期中) 如图,四边形ABCD中,AC=BD,E,F,G,H分别为AB,BC,CD,DA的中点,则四边形EFGH是()A . 平行四边形B . 菱形C . 矩形D . 正方形9. (2分) (2015八下·苏州期中) 如图,△ABC中,∠A=75°,∠B=50°,将△ABC绕点C按逆时针方向旋转,得到△A,B,C,点A的对应点A,落在AB边上,则∠BCA'的度数为()A . 20°B . 25°C . 30°D . 35°10. (2分) (2015八下·苏州期中) 甲乙两人同时加工一批零件,已知甲每小时比乙多加工5个零件,甲加工100个零件与乙加工80个零件所用的时间相等,设乙每小时加工x个零件,根据题意,所列方程正确的是()A . =B . =C . ﹣5=D . =二、填空题 (共13题;共13分)11. (1分)冬天某日上午的温度是3℃,中午上升了5℃达到最高温度,到夜间最冷时下降了10℃,则这天的日温差是________ ℃.12. (1分) (2019九上·温州月考) 如图,一段抛物线:y=-x(x-2)(0≤x≤2)记为C1 ,它与x轴交于两点O,A;将C1绕点A旋转180°得到C2 ,交x轴于A1;将C2绕点A1旋转180°得到C3 ,交x轴于点A2 . .....如此进行下去,直至得到C2018 ,若点P(4035,m)在第2018段抛物线上,则m的值为________.13. (1分)(2017·盘锦模拟) 函数中,自变量x的取值范围是________.14. (1分) (2017七下·高阳期末) 在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点为整点,若整点P(,)在第四象限,则m的值为________;15. (1分) (2015八下·苏州期中) 菱形ABCD的对角线AC=5,BD=6,则菱形ABCD的面积为________.16. (1分) (2015八下·苏州期中) 反比例函数,在每个象限内,y随x的增大而增大,则m的取值范围是________.17. (1分) (2015八下·苏州期中) 矩形ABCD中,AB=5,BC=12,对角线AC,BD交于点O,E,F分别为AB,AO中点,则线段EF=________18. (1分) (2015八下·苏州期中) 已知点A在反比例函数y= 的图像上,点B与点A关于原地对称,BC∥y 轴,与反比例函数y=﹣的图像交于点C,连接AC,则△ABC的面积为________.19. (1分) (2015八下·苏州期中) 如图,△ABC中,∠C=90°,AC=3,AB=5,D为AB边上一点,DE∥AC,交BC于点E,DF∥BC,交AC于点F,连接EF,则线段EF的最小值为________20. (1分) (2015八下·苏州期中) 如图,矩形OABC中,AB=1,AO=2,将矩形OABC绕点O按顺时针转90°,得到矩形OA′B′C,则BB′=________21. (1分) (2015八下·苏州期中) 若关于x的方程﹣2= 的解为正数,则m的取值范围是________.22. (1分) (2015八下·苏州期中) 如图,y1= x+1与双曲线y2= 的两个交点A,B的纵坐标分别为﹣1,2,则使得y2<y1<0成立的自变量x的取值范围是________.23. (1分) (2015八下·苏州期中) 如图,四边形ABCD中,∠BAD=∠BCD=90°,AB=AD= ,CD=2,BC=4,则AC=________三、解答题 (共9题;共66分)24. (7分)(2019·桥东模拟) 如图,数轴上的点A、B、C、D、E表示连续的五个整数,对应的数分别为a、b、c、d、e.(1)若a+e=0,直接写出代数式b+c+d的值为:________(2)若a+b=7,先化简,再求值::(3)若a+b+c+d+e=5,数轴上的点M表示的实数为m,且MM+ME>12,则m的取值范围是________ .25. (2分) (2020七上·扬州期末) 有两个大小完全一样长方形OABC和EFGH重合着放在一起,边OA、EF 在数轴上, O为数轴原点(如图1),长方形OABC的边长OA的长为6个坐标单位.(1)数轴上点A表示的数为________.(2)将长方形EFGH沿数轴所在直线水平移动.①若移动后的长方形EFGH与长方形OABC重叠部分的面积恰好等于长方形OABC面积的一半时,则移动后点F 在数轴上表示的数为________.②若长方形EFGH向左水平移动后,D为线段AF的中点,求当长方形EFGH移动距离x为何值时,D、E两点在数轴上表示的数时互为相反数?26. (5分) (2015八下·苏州期中) 化简求值,,其中x=2.27. (5分) (2015八下·苏州期中) 已知:如图.在平行四边形ABCD中,点E、F分别是AB、DC的中点.求证:四边形BEDF是平行四边形.28. (10分) (2015八下·苏州期中) 点A(2,﹣3)在反比例函数y= 的图像上.(1)试判断点B(﹣1,6),C(﹣3,﹣2)是否在这个反比例函数的图像上,请说明理由;(2)若P(a﹣1,b),Q(a,c)也在这个反比例函数的图像上,且a<0,试比较b,c的大小.29. (10分) (2015八下·苏州期中) 已知:菱形ABCD的两条对角线AC,BD交于点O,BE∥AC,CE∥BD.(1)若AC=8,BD=6,求AB的长;(2)求证:四边形OBEC为矩形.30. (10分) (2015八下·苏州期中) 如图,一次函数y=kx+b与反比例函数y= 的图像交于(1,3),B (3,n)两点.(1)求一次函数和反比例函数的解析式;(2)连接AO,BO,求△ABO的面积.31. (7分) (2015八下·苏州期中) 如图,点A的坐标为(8,0),点B的坐标为(6,4),点C的坐标为(0,4),点P从原点O出发,以每秒3的单位长度的速度沿x轴向右运动,点Q从点B出发,以每秒1的单位长度的速度沿线段BC向左运动,P,Q两点同时出发,当点Q运动到点C时,P,Q两点停止运动,设运动时间为t(秒).(1)当t=________时,四边形OPQC为矩形;(2)当t=________时,线段PQ平分四边形OABC的面积;(3)在整个运动过程中,当以ACPQ为顶点的四边形为平行四边形时,求该平行四边形的面积.32. (10分) (2015八下·苏州期中) 已知:如图,直线AB与x轴y轴分别交于A,B两点,与双曲线y= 在第一象限内交于点C,BO=2AO=4,△AOC的面积为2 +2.(1)求点C的坐标和k的值;(2)若点P在双曲线y= 上,点Q在y轴上,且以A,B,P,Q为顶点的四边形为平行四边形,求所有符合题意的点Q的坐标.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共13题;共13分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、21-1、22-1、23-1、三、解答题 (共9题;共66分)24-1、24-2、24-3、25-1、25-2、26-1、27-1、28-1、28-2、29-1、29-2、30-1、30-2、31-1、31-2、31-3、32-1、32-2、。
甘肃省酒泉市八年级下学期数学期中考试试卷
甘肃省酒泉市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)向东走7千米记作+7千米,那么﹣5千米表示()A . 向北走5千米B . 向南走5千米C . 向西走5千米D . 向东走5千米2. (2分)(2017·贵港模拟) 国家体育馆“鸟巢”的建筑面积达25.8万平方米,请将“25.8万”用科学记数法表示,结果是()A . 25.8×104B . 25.8×105C . 2.58×104D . 2.58×1053. (2分)(2016·孝感) 下列运算正确的是()A . a2+a2=a4B . a5﹣a3=a2C . a2•a2=2a2D . (a5)2=a104. (2分)下列各点:①(-3,4);②(3,-2);③(1,-5);④(2,-1),其中在函数y=-x+1的图像上的点()A . 1个B . 2个C . 3个D . 4个5. (2分) (2019九上·孝义期中) 下列方程中① ;② ;③ ;④ ,是一元二次方程的有()A . 个B . 个C . 个D . 个6. (2分)(2017·南开模拟) 如图,在平行四边形ABCD中,对角线AC,BD相交于点O,若BD,AC的和,为18cm,CD:DA=2:3,△AOB的周长为13cm,那么BC的长是()A . 6cmB . 9cmC . 3cmD . 12cm7. (2分)下面的式子有一个与是同类二次根式,这个式子是().A .B .C .D .8. (2分)亭湖区于3月中旬进行了初三英语口语测试模拟考试,王老师为了了解他所教的甲、乙两个班学生英语口语测验成绩哪一班比较整齐,通常需要知道两个班成绩的()A . 平均数B . 方差C . 众数D . 频率分布9. (2分) (2018九上·丹江口期末) 如图,在△ABC中,AC=6,BC=8,AB=10,D,E分别是AC,BC的中点,则以DE为直径的圆与AB的位置关系是()A . 相切B . 相交C . 相离D . 无法确定10. (2分)(2018·荆州) 解分式方程﹣3= 时,去分母可得()A . 1﹣3(x﹣2)=4B . 1﹣3(x﹣2)=﹣4C . ﹣1﹣3(2﹣x)=﹣4D . 1﹣3(2﹣x)=411. (2分)下列命题正确的是()A . 若两个角相等,则这两个角是对顶角B . 若两个角是对顶角,则这两个角不等C . 若两个角是对顶角,则这两个角相等D . 所有同顶点的角都相等12. (2分) (2017八下·徐州期末) 如图,P为正方形ABCD的对角线BD上任一点,过点P作PE⊥BC于点E,PF⊥CD于点F,连接EF.给出以下4个结论:①△FPD是等腰直角三角形;②AP=EF;③AD=PD;④∠PFE=∠BAP.其中,所有正确的结论是()A . ①②B . ①④C . ①②④D . ①③④二、填空题 (共6题;共7分)13. (1分) (2016八下·大石桥期中) 函数的自变量x的取值范围是________.14. (2分)如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,DE=2,矩形的周长为16,则AE的长是________.15. (1分)(2017·广安) 已知点P(1,2)关于x轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为________.16. (1分) (2019九上·海淀期中) 如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB长为半径的圆恰好经过AB的中点D,则AC的长等于________.17. (1分)已知关于x的不等式组的整数解共有4个,则a的最小值为________.18. (1分)(2018·邵阳) 如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是________.三、解答题 (共8题;共77分)19. (5分)(2017·于洪模拟) 计算:4sin60°+|3﹣ |﹣()﹣1+(π﹣2016)0 .20. (10分)(2018·绍兴)(1)计算:(2)解方程:x2-2x-1=021. (15分) (2016九上·凯里开学考) 某公司为了了解员工每人所创年利润情况,公司从各部抽取部分员工对每年所创年利润情况进行统计,并绘制如图1,图2统计图.(1)将图补充完整;(2)本次共抽取员工________人,每人所创年利润的众数是________,平均数是________;(3)若每人创造年利润10万元及(含10万元)以上位优秀员工,在公司1200员工中有多少可以评为优秀员工?22. (10分) (2017八下·门头沟期末) 如图,在平面直角坐标系xOy中,一次函数的图象与正比例函数的图象交于点A(m , 4).(1)求m、n的值;(2)设一次函数的图象与x轴交于点B,求△AOB的面积;(3)直接写出使函数的值小于函数的值的自变量x的取值范围.23. (2分) (2016九上·东海期末) 某公司投资1200万元购买了一条新生产线生产新产品.根据市场调研,生产每件产品需要成本50元,该产品进入市场后不得低于80元/件且不得超过160元/件,该产品销售量y(万件)与产品售价x(元)之间的关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,公司第二年重新确定产品售价,能否使前两年盈利总额达790万元?若能,求出第二年产品售价;若不能,说明理由.24. (10分)(2017·鄞州模拟) 如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.25. (10分)(2018·河北模拟) 如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=________,BC=________,AC=________;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择哪题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.26. (15分) (2017八上·秀洲月考) 如图,直线y=-2x+6与坐标轴分别交于点A,B,正比例函数y=x的图象与直线y=-2x+6交于点C。
甘肃初二初中数学期中考试带答案解析
甘肃初二初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.下列各数:1.414,,,0,其中是无理数的为( )A.1.414B.C.D.02.点(2,3),(1,0),(0,-2),(0,0),(-3,2)中,不属于任何象限的有( )A.1个B.2个C.3个D.4个3.以下列各组数为边长,能组成直角三角形的是( )A.8,15,7B.8,10,6C.5,8,10D.8,3,404.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=D.在数轴上可以找到表示的点5.若kb>0,则函数y=kx+b的图象可能是()A.B.C.D.6.下列根式是最简二次根式是( )A.B.C.D.7.在以下四点中,哪一点与点(-3,4)所连的线段与x轴和y轴都不相交( )A.(-5,1)B.(3,-3)C.(2,2)D.(-2,-1) 8.将直角三角形的三边长同时扩大2倍,得到的三角形是( )A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形9.对于一次函数y=-2x+4,下列结论错误的是( )A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=-2x的图象D.函数的图象与x轴的交点坐标是(0,4)10.由于干旱,某水库的蓄水量随时间的增加而直线下降.若该水库的蓄水量V(万立方米)与干旱的时间t(天)的关系如图所示,则下列说法正确的是( )A .干旱开始后,蓄水量每天减少20万立方米B .干旱开始后,蓄水量每天增加20万立方米C .干旱开始时,蓄水量为200万立方米D .干旱第50天时,蓄水量为1200万立方米二、填空题1.已知点A(a ,5)与B(2,b)关于y 轴对称,则a +b =______.2.将直线y =2x +1向下平移3个单位长度后所得直线的表达式是 ______.3.8100的算术平方根的倒数是______;4.若函数y =(a -3)x |a|-2+1是一次函数,则a =_______.5.计算=_________. 6.比较大小:-3________.(填“>””<”或“=”号)7.如图,已知A 地在B 地正南方3千米处,甲乙两人同时分别从A ,B 两地向正北方向匀速直行,他们与A 地的距离s(千米)与所行的时间t(小时)之间的函数关系图象用如图所示的AC 和BD 表示,当他们行走3小时后,他们之间的距离为_____千米.8.直线y =2x +b 与x 轴的交点坐标是(2,0),则关于x 的方程2x +b =0的解是x =_______.9.若直角三角形的两直角边长为a ,b ,且满足a 2-6a +9+|b -4|=0,则该直角三角形的斜边长为________.10.在平面直角坐标系中,点A 1(1,1),A 2(2,4),A 3(3,9),A 4(4,16),…,用你发现的规律确定点A 9的坐标为 . 三、解答题 1.计算:(1); (2)(+1)÷×(-1)-()0.2.求下列各式中x 的值:(1)(x +2)2-36=0; (2)64(x +1)3=27.3.实数a ,b 在数轴上的位置如图所示,化简:.4.如图,在△ABC 中,AB =AC =13,BC =10,求△ABC 的面积.5.如图,一次函数的图象与x 轴,y 轴交于点A ,B ,如果点A 的坐标为(4,0),且OA =2OB ,求一次函数的表达式.6.如图,在平面直角坐标系中,分别写出△ABC的顶点坐标,并求出△ABC三边的长和△ABC的面积.7.如图,与分别表示步行与骑车同一路上行驶的路程与时间的关系.(1)出发时与相距多少千米?(2)走了一段路后,自行车发生故障,进行修理,所用的时间是多少小时?(3)出发后经过多少小时与相遇?若的自行车不发生故障,保持出发时的速度前进,那么经过多少时间与相遇?在图中表示出这个相遇点.甘肃初二初中数学期中考试答案及解析一、选择题1.下列各数:1.414,,,0,其中是无理数的为( )A.1.414B.C.D.0【答案】B【解析】试题解析:是无理数.故选B.点睛:无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2.点(2,3),(1,0),(0,-2),(0,0),(-3,2)中,不属于任何象限的有( )A.1个B.2个C.3个D.4个【答案】C【解析】试题解析:不属于任何象限的点有(0,0),(1,0),(0,2)共3个.故选C.点睛:不属于任何象限的点是坐标轴上的点,即横坐标为0或者纵坐标为0的点.3.以下列各组数为边长,能组成直角三角形的是( )A.8,15,7B.8,10,6C.5,8,10D.8,3,40【答案】B【解析】试题解析:A、82+72≠152,故不是直角三角形,故错误;B、62+82=102,故是直角三角形,故正确;C、52+82≠102,故不是直角三角形,故错误;D、82+32≠402,故不是直角三角形,故错误.故选B.4.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=D.在数轴上可以找到表示的点【答案】A.【解析】是无理数,A项错误,故答案选A.【考点】无理数.5.若kb>0,则函数y=kx+b的图象可能是()A.B.C.D.【答案】A【解析】试题解析:当k>0,b>0时,函数y=kx+b的图象过第一、二、三象限;当k<0,b<0时,函数y=kx+b的图象过第一、二、四象限.由此可知选项A是正确的.故选A.6.下列根式是最简二次根式是( )A.B.C.D.【答案】C【解析】试题解析:A. =,不是最简二次根式,故该选项错误;B. =,不是最简二次根式,故该选项错误;C. ,是最简二次根式,故该选项正确;D. =11,不是最简二次根式,故该选项错误.故选C.7.在以下四点中,哪一点与点(-3,4)所连的线段与x轴和y轴都不相交( )A.(-5,1)B.(3,-3)C.(2,2)D.(-2,-1)【答案】A【解析】试题解析:点(-3,4)在第二象限,选项中是第二象限中的点的只有第一个(-2,3),故选A.8.将直角三角形的三边长同时扩大2倍,得到的三角形是( )A.钝角三角形B.锐角三角形C.直角三角形D.等腰三角形【答案】C【解析】试题解析:∵设原直角三角形的三边的长是a、b、c,则a2+b2=c2,如图,∴4a2+4b2=4c2,即(2a)2+(2b)2=(2c)2,∴将直角三角形的三条边长同时扩大2倍,得到的三角形还是直角三角形,故选C.9.对于一次函数y=-2x+4,下列结论错误的是( )A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=-2x的图象D.函数的图象与x轴的交点坐标是(0,4)【答案】D【解析】A、因为一次函数y=﹣2x+4中k=﹣2<0,因此函数值随x的增大而减小,故A选项正确;B、因为一次函数y=﹣2x+4中k=﹣2<0,b=4>0,因此此函数的图象经过一、二、四象限,不经过第三象限,故B选项正确;C、由“上加下减”的原则可知,函数的图象向下平移4个单位长度得y=﹣2x的图象,故C选项正确;D、令y=0,则x=2,因此函数的图象与x轴的交点坐标是(2,0),故D选项错误.故选:D.【考点】一次函数的性质;一次函数图象与几何变换.10.由于干旱,某水库的蓄水量随时间的增加而直线下降.若该水库的蓄水量V(万立方米)与干旱的时间t(天)的关系如图所示,则下列说法正确的是( )A.干旱开始后,蓄水量每天减少20万立方米B.干旱开始后,蓄水量每天增加20万立方米C.干旱开始时,蓄水量为200万立方米D.干旱第50天时,蓄水量为1200万立方米【答案】A【解析】试题解析:刚开始时水库有水1200万米3;50天时,水库蓄水量为200万米3,减少了1200-200=1000万米3;那么每天减少的水量为:1000÷50=20万米3.故选A.二、填空题1.已知点A(a,5)与B(2,b)关于y轴对称,则a+b=______.【答案】3【解析】试题解析:∵点A(a,5)与点B(2,b)关于y轴对称,∴a=-2,b=5,∴a+b=-2+5=3.2.将直线y=2x+1向下平移3个单位长度后所得直线的表达式是 ______.【答案】y=2x-2【解析】直线y=2x+1向下平移3个单位长度,根据函数的平移规则“上加下减”,可得平移后所得直线的解析式为y=2x+1﹣3=2x﹣2.【考点】一次函数图象与几何变换.3.8100的算术平方根的倒数是______;【答案】【解析】试题解析:∵8100的算术平方根是90,90的倒数是,∴8100的算术平方根的倒数是.4.若函数y =(a -3)x |a|-2+1是一次函数,则a =_______.【答案】-3【解析】试题解析:∵函数y=(a-3)x |a|-2+2a+1是一次函数,∴a=±3,又∵a≠3,∴a=-3.5.计算=_________. 【答案】2-【解析】故填2-.6.比较大小:-3________.(填“>””<”或“=”号) 【答案】<【解析】因为 ,∴ ,∴ .故答案为:<.7.如图,已知A 地在B 地正南方3千米处,甲乙两人同时分别从A ,B 两地向正北方向匀速直行,他们与A 地的距离s(千米)与所行的时间t(小时)之间的函数关系图象用如图所示的AC 和BD 表示,当他们行走3小时后,他们之间的距离为_____千米.【答案】1.5【解析】试题解析:由题,图可知甲走的是C 路线,乙走的是D 路线,设s=kt+b ①,因为C 过(0,0),(2,4)点,所以代入①得:k=2,b=0,所以s C =2t .因为D 过(2,4),(0,3)点,代入①中得:k=,b=3,所以s D =t+3, 当t=3时,s C -s D =6-4.5=1.5.点睛:根据图分别求出甲乙两人行走时的路程与时间的关系一次函数,设s=kt+b ,甲走的是C 路线,乙走的是D 路线,C 、D 线均过(2,4)点,且分别过(0,0),(0,3),很容易求得,要求他们三小时后的距离即是求当t=3时,s C 与s D 的差.8.直线y =2x +b 与x 轴的交点坐标是(2,0),则关于x 的方程2x +b =0的解是x =_______.【答案】2.【解析】由一次函数与一元一次方程的关系及已知得x =2.9.若直角三角形的两直角边长为a ,b ,且满足a 2-6a +9+|b -4|=0,则该直角三角形的斜边长为________.【答案】5.【解析】试题解析:∵a 2-6a +9+|b -4|=0∴a 2-6a+9=0,b-4=0,解得a=3,b=4,∵直角三角形的两直角边长为a 、b ,∴该直角三角形的斜边长=.点睛:任意一个数的绝对值(二次根式)都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.10.在平面直角坐标系中,点A 1(1,1),A 2(2,4),A 3(3,9),A 4(4,16),…,用你发现的规律确定点A 9的坐标为 . 【答案】(9,81) 【解析】首先观察各点坐标,找出一般规律,然后根据规律确定点A 9的坐标.解:设A n (x ,y ).∵当n=1时,A 1(1,1),即x=1,y=12;当n=2时,A 2(2,4),即x=2,y=22;当n=3时,A 3(3,9),即x=3,y=32;当n=4时,A 1(4,16),即x=4,y=42;… ∴当n=9时,x=9,y=92,即A 9(9,81).故答案填(9,81).点评:解决本题的关键在于总结规律.对于寻找规律的题,应通过观察,发现哪些部分没有变化,哪些部分发生了变化,变化的规律是什么.三、解答题1.计算:(1); (2)(+1)÷×(-1)-()0.【答案】(1) ;(2). 【解析】(1)运用乘法对加法的分配律进行计算即可求得结果;(2)先计算零次幂,再计算乘除法,最后算加减即可.试题解析:(1)原式=;(2)原式===.2.求下列各式中x 的值:(1)(x +2)2-36=0; (2)64(x +1)3=27.【答案】(1)x =4或x =-8 ;(2)x =-.【解析】(1)先移项,再开平方法进行解答;(2)先系数化为1,再开立方法进行解答.试题解析:(1)(x+2)2-36=0,(x+2)2=36,x+2=±6,x=4或x=-8;(2)64(x+1)3=27,(x+1)3=,x+1=, x=-.3.实数a ,b 在数轴上的位置如图所示,化简:.【答案】-2b.【解析】利用数轴得出各项符号,进而利用二次根式的性质化简求出即可.试题解析:由数轴可知a<0<b<1,∴原式=-a -b -(b -a)=-2b4.如图,在△ABC 中,AB =AC =13,BC =10,求△ABC 的面积.【答案】60.【解析】过A 作BC 的垂线,由勾股定理易求得此垂线的长,即可求出△ABC 的面积.试题解析:作AD ⊥BC 于D.∵AB =AC , ∴BD =CD =5, ∴AD =12,∴S △ABC =BC·AD =605.如图,一次函数的图象与x 轴,y 轴交于点A ,B ,如果点A 的坐标为(4,0),且OA =2OB ,求一次函数的表达式.【答案】y =-x +2.【解析】先确定B 点坐标,然后利用待定系数法求直线AB 的解析式.试题解析:设一次函数的表达式为y =kx +b(k≠0,k ,b 都是常数),由点A 的坐标为(4,0),且OA =2OB ,可知B(0,2).又点A ,B 的坐标满足一次函数表达式,∴b =2,4k +b =0,解得k =-. 则一次函数的表达式为y =-x +26.如图,在平面直角坐标系中,分别写出△ABC 的顶点坐标,并求出△ABC 三边的长和△ABC 的面积.【答案】10.【解析】由图知,△ABC 的顶点坐标分别是A (2,3),B (-2,-1),C (1,-3),如图,S △ABC =S 矩形ADEF -S △ADB -S △BEC -S △ACF ,代入解答出即可.试题解析:由图知,△ABC 的顶点坐标分别是A (2,3),B (-2,-1),C (1,-3),∴S △ABC =S 矩形ADEF -S △ADB -S △BEC -S △ACF ,=4×6-×4×4-×2×3-×1×6,=24-8-3-3,=10.答:三角形ABC 的面积是10.7.如图,与分别表示步行与骑车同一路上行驶的路程与时间的关系.(1)出发时与相距多少千米?(2)走了一段路后,自行车发生故障,进行修理,所用的时间是多少小时?(3)出发后经过多少小时与相遇?若的自行车不发生故障,保持出发时的速度前进,那么经过多少时间与相遇?在图中表示出这个相遇点.【答案】(1)10km ;(2)1h ;(3)3h ;(4)h. 【解析】(1)观察图象,即可求得B 出发时与A 相距10千米;(2)观察图象可得自行车发生故障,是在0.5~1.5小时时间内修理的,即可求得进行修理,所用的时间;(3)从图象可得两函数的交点坐标的横坐标为3,即可得B 出发后3小时与A 相遇;(4)首先求得两函数的解析式,然后有其相等时的交点即是C 点,解方程即可求得答案.试题解析:(1)B 出发时与A 相距10千米.(2)修理自行车的时间为:1.5-05=1小时.(3)3小时时相遇.(4)设B 修车前的关系式为:y=kx ,过(0.5,7.5)点.7.5=0.5kk=15.y=15x .相遇时:S=yx+10=15x x=.。
2014-2015年甘肃省酒泉市敦煌市青海油田二中八年级(上)数学期中试卷及参考答案
2014-2015学年甘肃省酒泉市敦煌市青海油田二中八年级(上)期中数学试卷一.填空题(本大题共17小题,每空2分,共34分)1.(2分)角是轴对称图形,则对称轴是.2.(2分)三角形的外角和是内角和的倍.3.(2分)当多边形的边数每增加1条时,它的内角和增加度.4.(2分)在△ABC中,∠A=60°,∠C=2∠B,则∠C=度.5.(2分)要使一个五边形具有稳定性,则需至少添加条对角线.6.(2分)一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.7.(2分)等腰三角形底角为15°,腰长为4,则三角形面积为.8.(2分)如果一个正多边形的内角和是900°,则这个正多边形是正边形.9.(2分)三角形的三边长分别为5,1+2x,8,则x的取值范围是.10.(2分)直角三角形的两个锐角的平分线所交成的角的度数是.11.(2分)能将三角形的面积二等分的线段是三角形的.12.(2分)点M(1,2)关于y轴对称的点的坐标为,点M(1,2)关于x轴对称的点的坐标为.13.(2分)已知等腰三角形的两边长分别为3和6,则其周长为.14.(2分)如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是边形.15.(2分)如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB的长为.16.(2分)等腰三角形底角的一个外角为100°,则它的顶角为.17.(2分)等腰三角形的两边长为4和6,则等腰三角形的周长为.二.选择题(本大题共10小题,每小题3分,共30分)18.(3分)下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.19.(3分)下列语句:①面积相等的两个三角形全等;②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同;④边数相同的图形一定能互相重合.其中错误的说法有()A.4个 B.3个 C.2个 D.1个20.(3分)如果一个三角形两边上的高的交点在三角形的内部,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形21.(3分)下列图形中不是轴对称图形的是()A.线段B.角C.等腰直角三角形 D.含40°和80°角的三角形22.(3分)下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角 B.已知两角和夹边C.已知两边和其中一边的对角D.已知三边23.(3分)在△ABC中,∠A=∠C,∠B∠C,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形24.(3分)如图,用直尺和圆规作出∠AOB的角平分线OC的依据是()A.SSSB.ASAC.AASD.角平分线上的点到角两边的距离相等25.(3分)下列两个三角形中,一定全等的是()A.有一个角是40°,腰相等的两个等腰三角形B.两个等边三角形C.有一个角是100°,底相等的两个等腰三角形D.有一条边相等,有一个内角相等的两个等腰三角形26.(3分)不一定在三角形内部的线段是()A.三角形的角平分线B.三角形的中线C.三角形的高D.以上皆不对27.(3分)下面哪个点到三角形三边的距离相等()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三角形内任意一点三.作图题:共14分28.(5分)如图,l1、l2交于A点,P、Q的位置如图所示,试确定M点,使它到l1、l2的距离相等,且到P、Q两点的距离也相等.(用直尺和圆规)29.(9分)如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)作出△ABC关于直线x=﹣1(即直线AB)的对称图形△A1B1C1.(3)写出点△A1B1C1的坐标.四.解答题(本大题共6小题,共40分)30.(6分)如图,在等腰△ABC中,∠BAC=120°,DE是AC的垂直平分线,DE=1cm,求BD的长.31.(7分)如图,点D、E在△ABC的边BC上,AD=AE,AB=AC,求证:BD=EC.32.(6分)如图,AD=BC,AC=BD,求证:△EAB是等腰三角形.33.(7分)一个零件的形状如图所示,按规定∠A等于90°,∠B、∠D应分别等于20°和30°,小李量得∠BCD=145°,他断定这个零件不合格,你能说出其中的道理吗?34.(7分)如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ 的数是多少?35.(7分)在△ABC中,AD是它的角平分线,且BD=CD,DE、DF分别垂直AB、AC,垂足为E、F,求证:EB=FC.2014-2015学年甘肃省酒泉市敦煌市青海油田二中八年级(上)期中数学试卷参考答案与试题解析一.填空题(本大题共17小题,每空2分,共34分)1.(2分)角是轴对称图形,则对称轴是角平分线所在的直线.【解答】解:角的对称轴是角平分线所在的直线.2.(2分)三角形的外角和是内角和的2倍.【解答】解:∵根据三角形内角和定理以及任意多边形外角和定理,∴三角形内角和为180°,任意多边形外角和等于360°,∴三角形的外角和等于它的内角和的360÷180=2倍.故答案为:2.3.(2分)当多边形的边数每增加1条时,它的内角和增加180度.【解答】解:n边形的内角和是(n﹣2)•180度,因而多边形的边数增加1条变成n+1条,内角和是(n﹣1)•180度,它的内角和增加(n﹣1)•180﹣(n﹣2)•180=180度,所以当多边形的边数每增加1条时,它的内角和增加180度.4.(2分)在△ABC中,∠A=60°,∠C=2∠B,则∠C=80度.【解答】解:∵∠A=60°,∴∠B+∠C=120°,∵∠C=2∠B,∴∠C=80°.5.(2分)要使一个五边形具有稳定性,则需至少添加2条对角线.【解答】解:如图需至少添加2条对角线.故答案为:2.6.(2分)一个多边形的每一个外角都等于36°,则该多边形的内角和等于1440度.【解答】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.故答案为:1440.7.(2分)等腰三角形底角为15°,腰长为4,则三角形面积为4.【解答】解:作腰上的高CD,如图,∵AB=AC,∴∠B=∠C=15°,∴∠CAD=30°,∴CD=AC=2,∴三角形面积=AB•CD=×4×2=4.故答案为4.8.(2分)如果一个正多边形的内角和是900°,则这个正多边形是正七边形.【解答】解:设这个正多边形的边数是n,则(n﹣2)•180°=900°,解得:n=7.则这个正多边形是正七边形.9.(2分)三角形的三边长分别为5,1+2x,8,则x的取值范围是1<x<6.【解答】解:由题意,有8﹣5<1+2x<8+5,解得:1<x<6.10.(2分)直角三角形的两个锐角的平分线所交成的角的度数是45°或135°.【解答】解:直角三角形的两个锐角的平分线所交成的锐角是×90°=45°,则直角三角形的两个锐角的平分线所交成的钝角是180°﹣45°=135°.故答案为:45°或135°.11.(2分)能将三角形的面积二等分的线段是三角形的中线.【解答】解:由题意画出图形:S△ABD=BD•AH,S△ACD=CD•AH,=S△ACD,∵S△ABD∴BD•AH=CD•AH,∴BD=CD,即:AD是中线,故将三角形分成面积相等的两部分的是三角形的中线,故答案为中线.12.(2分)点M(1,2)关于y轴对称的点的坐标为(﹣1,2),点M(1,2)关于x轴对称的点的坐标为(1,﹣2).【解答】解:点M(1,2)关于y轴对称的点的坐标为:(﹣1,2),点M(1,2)关于x轴对称的点的坐标为:(1,﹣2).故答案为:(﹣1,2),(1,﹣2).13.(2分)已知等腰三角形的两边长分别为3和6,则其周长为15.【解答】解:当等腰三角形的腰为3时,三边为3,3,6,3+3=6,三边关系不成立,当等腰三角形的腰为6时,三边为3,6,6,三边关系成立,周长为3+6+6=15.故答案为:15.14.(2分)如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是六边形.【解答】解:设多边形的边数为n,依题意,得:(n﹣2)•180°=2×360°,解得n=6,故答案为:六.15.(2分)如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB的长为8.【解答】解:∵DE是AB的中垂线∴AE=BE,∵△BCE的周长为14∴BC+CE+BE=BC+CE+AE=BC+AC=14∵BC=6∴AC=8∴AB=AC=8.故填8.16.(2分)等腰三角形底角的一个外角为100°,则它的顶角为20°.【解答】解:∵100°的角是底角的外角,∴底角的度数为180°﹣100°=80°,∴顶角的度数为180°﹣2×80°=20°;∴故顶角的度数为20°,故答案为:20°.17.(2分)等腰三角形的两边长为4和6,则等腰三角形的周长为14或16.【解答】解:当4为腰时,因为4﹣4<6<4+4,所以能构成三角形,故周长=4+4+6=14;当6为腰长时,因为6﹣6<4<6+6,所以能构成三角形,故周长=6+6+4=16;故答案为:14或16.二.选择题(本大题共10小题,每小题3分,共30分)18.(3分)下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.【解答】解:A选项中,BE与AC不垂直;B选项中,BE与AC不垂直;C选项中,BE与AC不垂直;∴线段BE是△ABC的高的图是D选项.故选:D.19.(3分)下列语句:①面积相等的两个三角形全等;②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同;④边数相同的图形一定能互相重合.其中错误的说法有()A.4个 B.3个 C.2个 D.1个【解答】解:①面积相等的两个三角形不一定全等,故本选项错误;②两个等边三角形一定是相似图形,但不一定全等,故本选项错误;③如果两个三角形全等,它们的形状和大小一定都相同,符合全等形的定义,正确;④边数相同的图形不一定能互相重合,故本选项错误;综上可得错误的说法有①②④共3个.故选:B.20.(3分)如果一个三角形两边上的高的交点在三角形的内部,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形【解答】解:利用三角形高线的位置关系得出:如果一个三角形两边上的高的交点在三角形的内部,那么这个三角形是锐角三角形.故选:A.21.(3分)下列图形中不是轴对称图形的是()A.线段B.角C.等腰直角三角形 D.含40°和80°角的三角形【解答】解:A、将线段沿以其中点为垂足的垂线所在直线对折,直线两旁的图形可以重合,故线段是轴对称图形;B、将角沿其角平分线所在直线对折,直线两旁的图形可以重合,故角是轴对称图形;C、将等腰直角三角形沿底边上的高所在直线对折,直线两旁的图形可以重合,故等腰直角三角形是轴对称图形;D、将图形D沿某一条直线对折,直线两旁的部分不能够互相重合,就可判断此图形不是轴对称图形.故选:D.22.(3分)下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角 B.已知两角和夹边C.已知两边和其中一边的对角D.已知三边【解答】解:A、B、D三个选项分别符合全等三角形的判定方法SAS,ASA,SSS,故能作出唯一三角形;C、只有涉及的两个三角形同为锐角三角形或者钝角三角形或者直角三角形时,才成立.故选:C.23.(3分)在△ABC中,∠A=∠C,∠B∠C,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【解答】解:∵在△ABC中,∠A=∠C,∠B=∠C,∴设∠C=6x,则∠A=3x,∠B=2x,∵∠A+∠B+∠C=180°,即3x+2x+6x=180°,解得x=,∴∠C=6×≈98.2°,∴此三角形是钝角三角形.故选:C.24.(3分)如图,用直尺和圆规作出∠AOB的角平分线OC的依据是()A.SSSB.ASAC.AASD.角平分线上的点到角两边的距离相等【解答】解:由作图知:OB=OA,BC=AC,OC=OC(公共边),即三边分别对应相等(SSS),△OBC≌△OAC,故选:A.25.(3分)下列两个三角形中,一定全等的是()A.有一个角是40°,腰相等的两个等腰三角形B.两个等边三角形C.有一个角是100°,底相等的两个等腰三角形D.有一条边相等,有一个内角相等的两个等腰三角形【解答】解:A、不正确,没有指明该角是顶角还是底角;B、不正确,虽然其角相等,但边不一定相等;C、正确,分析得该100度角只能为顶角,符合判定SAS;D、不正确,没有指明边与角具体是腰还是底边,是顶角还是底角.故选:C.26.(3分)不一定在三角形内部的线段是()A.三角形的角平分线B.三角形的中线C.三角形的高D.以上皆不对【解答】解:三角形的角平分线、中线一定在三角形的内部,直角三角形的高线有两条是三角形的直角边,钝角三角形的高线有两条在三角形的外部,所以,不一定在三角形内部的线段是三角形的高.故选:C.27.(3分)下面哪个点到三角形三边的距离相等()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三角形内任意一点【解答】解:三条角平分线的交点到三角形三边的距离相等.故选:A.三.作图题:共14分28.(5分)如图,l1、l2交于A点,P、Q的位置如图所示,试确定M点,使它到l1、l2的距离相等,且到P、Q两点的距离也相等.(用直尺和圆规)【解答】解:如图所示:点N,M即为所求.29.(9分)如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)作出△ABC关于直线x=﹣1(即直线AB)的对称图形△A1B1C1.(3)写出点△A1B1C1的坐标.【解答】解:(1)如图所示:△ABC的面积为:×3×4=6;(2)如图所示:△A1B1C1即为所求;(3)A1(﹣1,5,),B1(﹣1,1),C1(2,3).四.解答题(本大题共6小题,共40分)30.(6分)如图,在等腰△ABC中,∠BAC=120°,DE是AC的垂直平分线,DE=1cm,求BD的长.【解答】解:如图,连接AD,∵等腰△ABC中,∠BAC=120°,∴∠B=∠C=(180°﹣120°)=30°,∵DE是AC的垂直平分线,∴AD=CD,∴∠DAC=∠C=30°,∴∠BAD=∠BAC﹣∠DAC=120°﹣30°=90°,在Rt△CDE中,∵DE=1cm,∴CD=2DE=2cm,在Rt△ABD中,BD=2AD=2CD=2×2=4cm.31.(7分)如图,点D、E在△ABC的边BC上,AD=AE,AB=AC,求证:BD=EC.【解答】证明:作AF⊥BC于点F,∵AD=AE,AB=AC,∴BF=CF,DF=EF,∴BF﹣DF=CF﹣EF∴BD=EC32.(6分)如图,AD=BC,AC=BD,求证:△EAB是等腰三角形.【解答】证明:在△ADB和△BCA中,AD=BC,AC=BD,AB=BA,∴△ADB≌△BCA(SSS).∴∠DBA=∠CAB.∴AE=BE.∴△EAB是等腰三角形.33.(7分)一个零件的形状如图所示,按规定∠A等于90°,∠B、∠D应分别等于20°和30°,小李量得∠BCD=145°,他断定这个零件不合格,你能说出其中的道理吗?【解答】解:如图,延长BC与AD相交于点E,由三角形的外角性质得,∠1=∠B+∠A=20°+90°=110°,∠BCD=∠1+∠D=110°+30°=140°,∵小李量得∠BCD=145°,不是140°,∴这个零件不合格.34.(7分)如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ 的数是多少?【解答】解:∵∠BAC=110°,∴∠B+∠C=70°,∵MP和NQ分别垂直平分AB和AC,∴AP=BP,AQ=CQ,∴∠BAP=∠B,∠CAQ=∠C,∴∠BAP+∠CAQ=∠B+∠C=70°,∴∠PAQ=∠BAC﹣(∠BAP+∠CAQ)=40°.35.(7分)在△ABC中,AD是它的角平分线,且BD=CD,DE、DF分别垂直AB、AC,垂足为E、F,求证:EB=FC.【解答】证明:∵DE⊥AB,DF⊥AC,AD平分∠BAC,∴DE=DF,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL),∴EB=FC.。
2015年下学期八年级数学期中试卷(参考答案)
1 1 2 的值. 2 2 x 2x x 4x 4 x 2x
2
考号:
40 30 20 15.Fra bibliotekx 1.5 x
_______-3__________
1 x-2 =-1
=-
三、计算。 (每小题 5 分,共 10 分)
x2 4x 4 x x 1 17. x2 4 x 2 x2
19、
3 2 x x 1
20、
x3 3 1 x2 2 x
姓名:
X=3 检验:
X=1 检验:
一、选择题(每小题 3 分,共 24 分)
题号 答案
1 C
2 C
3 C
4 A
5 D
6 D
7 D
8 A
五、解答题。 (每小题 7 分,共 14 分)
班级:
二、填空题(每小题 3 分,共 24 分) 9.__________80________。 11. A>5 。 ___∠C=∠_D____ 。 _、 13.____AD=BC 14. 16. 60 1 10. 6x2y2 。 12._________7______________。 ______∠CAB=∠DBA___________ 21. 当错误!未找到引用源。时,求
(1)全等。SAS (2)2.4 厘米/秒
(1)求证: FBD CAD ; (2)求证: BE AC 。
C
D
略
第 3 页,共 4 页
第 4 页,共 4 页
出发 3 小时 20 分钟后,错误!未找到引用源。骑摩托车也从甲地去乙地.已知错误!未 找到引用源。的速度是错误!未找到引用源。的速度的 3 倍,结果两人同时到达乙地.求 错误!未找到引用源。两人的速度.
2015八年级(下)期中数学试卷附答 案
八年级(下)期中数学试卷一、细心选一选,你一定准!(每小题3分,共30分;每小题只有一个选项符合题意)1.下列式子是分式的是()A.B.C.+y D.2.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为()A.0.21×10﹣4B.2.1×10﹣4C.2.1×10﹣5D.21×10﹣63.化简的结果是()A.B.C.D.4.分式方程的解是()A.﹣1 B.1 C.﹣2 D.25.已知甲、乙两地相距s(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度v(km/h)的函数关系图象大致是()A.B.C.D.6.函数y=x+m与(m≠0)在同一坐标系内的图象可以是()A. B. C.D.7.如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A 重合,折痕为DE,则BE的长为()A.4cm B.5cm C.6cm D.10cm8.把直角三角形的两直角边同时扩大到原来的3倍,则其斜边扩大到原来的()A.3倍B.6倍C.9倍D.18倍9.在一直角坐标系中,点A、点B的坐标分别为(﹣6,0)、(0,8),则坐标原点O到线段AB的距离为()A.6 B.8 C.10 D.4.810.如图,是反比例函数y=和y=(k1>k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=4,则k1﹣k2的值是()A.1 B.2 C.4 D.8二、填空题(共6小题,每小题3分,满分18分)11.已知点M(a,1)在双曲线上,则a=.12.如图,已知OA=OB,那么数轴上点A所表示的数是.13.如图,已知OA=6,∠AOB=30°,则经过点A的反比例函数的解析式为.14.已知,则=.15.函数的图象如图所示,则结论:①两函数图象的交点A的坐标为(2,2);②当x>2时,y2>y1;③当x=1时,BC=3;④当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.其中正确结论的序号是.16.如图所示,沿DE折叠长方形ABCD的一边,使点C落在AB边上的点F处,若AD=8,且△AFD 的面积为60,则△DEC的面积为.三、认真做一做,你一定棒!(共52分.写出详细的解答或证明过程)1)计算:;(2)化简:.18.解方程:.19.如图,反比例函数y=(k≠0)和一次函数y=ax+b(a≠0)的图象交于A(4,),B(﹣2,n)两点.(1)根据图象写出:当x为何值时,一次函数值大于反比例函数值;(2)求反比例函数的解析式和n的值.20.已知原来从遂宁到内江公路长150km,高速公路路程缩短了30km,如果一辆小车从遂宁到内江走高速公路的平均速度可以提高到原来的1.5倍,需要的时间可以比原来少用1小时10分钟.求小汽车原来和走高速公路的平均速度分别是多少?21.如图,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上找一点P,使PA+PB最小.求P点坐标?22.如图,CD是AB上的高,AC=4,BC=3,DB=.(1)求CD的长;(2)△ABC是直角三角形吗?请说明理由.23.如图,梯形ABCD中,AD∥BC,∠ABC=45°,∠ADC=120°,AD=DC,AB=2,求BC的长.参考答案与试题解析一、细心选一选,你一定准!(每小题3分,共30分;每小题只有一个选项符合题意)1.下列式子是分式的是()A.B.C.+y D.考点:分式的定义.分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解答:解:,+y,的分母中均不含有字母,因此它们是整式,而不是分式.的分母中含有字母,因此是分式.故选:A.点评:本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.2.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为()A.0.21×10﹣4B.2.1×10﹣4C.2.1×10﹣5D.21×10﹣6考点:科学记数法—表示较小的数.专题:应用题.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:0.000 021=2.1×10﹣5.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.化简的结果是()A.B.C.D.考点:分式的加减法.专题:计算题.分析:先把x2﹣9因式分解得到最简公分母为(x+3)(x﹣3),然后通分得到,再把分子化简后约分即可.解答:解:原式=﹣===.故选B.点评:本题考查了分式的加减法:先把各分母因式分解,确定最简公分母,然后进行通分化为同分母的分式,再把分母不变,分子相加减,然后进行约分化为最简分式或整式.4.分式方程的解是()A.﹣1 B.1 C.﹣2 D.2考点:解分式方程.分析:方程两边乘最简公分母x,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘x,得2+x﹣1=2x,解得x=1.检验:把x=1代入x=1≠0.∴原方程的解为:x=1.故选B.点评:本题考查了解分式方程,解题的关键是注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.5.已知甲、乙两地相距s(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度v(km/h)的函数关系图象大致是()A.B.C.D.考点:反比例函数的应用.专题:数形结合.分析:根据实际意义,写出函数的解析式,根据函数的类型,以及自变量的取值范围即可进行判断.解答:解:根据题意有:v•t=s;故v与t之间的函数图象为反比例函数,且根据实际意义v>0、t>0,其图象在第一象限.故选:C.点评:现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.6.函数y=x+m与(m≠0)在同一坐标系内的图象可以是()A. B. C.D.考点:反比例函数的图象;一次函数的图象.分析:先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m的取值,二者一致的即为正确答案.解答:解:A、由函数y=x+m的图象可知m<0,由函数y=的图象可知m>0,相矛盾,故错误;B、由函数y=x+m的图象可知m>0,由函数y=的图象可知m>0,正确;C、由函数y=x+m的图象可知m>0,由函数y=的图象可知m<0,相矛盾,故错误;D、由函数y=x+m的图象可知m=0,由函数y=的图象可知m<0,相矛盾,故错误.故选B.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.7.如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A 重合,折痕为DE,则BE的长为()A.4cm B.5cm C.6cm D.10cm考点:翻折变换(折叠问题).分析:在Rt△ABC中,可求出AB的长度,根据折叠的性质可得出AE=EB=AB.解答:解:∵AC=6cm,BC=8cm,∴AB==10cm,∵由折叠的性质得,∠B=∠DAE,DE⊥AB,∴AE=EB=AB=5cm.故选B.点评:本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.8.把直角三角形的两直角边同时扩大到原来的3倍,则其斜边扩大到原来的()A.3倍B.6倍C.9倍D.18倍考点:勾股定理.分析:设原来直角三角形的两直角边为a、b,斜边为c,根据勾股定理得出a2+b2=c2,即可求出答案.解答:解:设原来直角三角形的两直角边为a、b,斜边为c,则根据勾股定理得:a2+b2=c2,所以(3a)2+(3b)2=9(a2+b2)=9c2=(3c)2,即把直角三角形的两直角边同时扩大到原来的3倍,则其斜边扩大到原来的3倍,故选A.点评:本题考查了勾股定理的应用,能正确根据勾股定理进行计算是解此题的关键,注意:直角三角形的两直角边的平方和等于斜边的平方.9.在一直角坐标系中,点A、点B的坐标分别为(﹣6,0)、(0,8),则坐标原点O到线段AB的距离为()A.6 B.8 C.10 D.4.8考点:勾股定理;坐标与图形性质.分析:在直角坐标系中利用勾股定理求出线段AB的长,然后利用面积相等的方法求得原点到线段AB的距离.解答:解:在坐标系中,OA=6,OB=8,∴由勾股定理得:AB==10,设点O到线段AB的距离为h,∵S△ABO=OA•OB=AB•h,∴6×8=10h,解得h=4.8.故选D.点评:本题考查了勾股定理的知识,利用面积相等求直角三角形的斜边上的高是长采用的方法.10.如图,是反比例函数y=和y=(k1>k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=4,则k1﹣k2的值是()A.1 B.2 C.4 D.8考点:反比例函数系数k的几何意义.分析:设A(a,b),B(c,d),代入双曲线得到k1=ab,k2=cd,根据三角形的面积公式求出cd﹣ab=2,即可得出答案.解答:解:设A(a,b),B(c,d),代入得:k1=ab,k2=cd,∵S△AOB=4,∴ab﹣cd=4,∴ab﹣cd=8,∴k1﹣k2=8,故选D.点评:本题主要考查对反比例函数系数的几何意义,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能求出ab﹣cd=8是解此题的关键.二、填空题(共6小题,每小题3分,满分18分)11.已知点M(a,1)在双曲线上,则a=2.考点:反比例函数图象上点的坐标特征.专题:计算题.分析:根据反比例函数图象上点的坐标特征求解.解答:解:∵点M(a,1)在双曲线上,∴a•1=2,∴a=2.故答案为2.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.如图,已知OA=OB,那么数轴上点A所表示的数是﹣.考点:勾股定理;实数与数轴.分析:首先根据勾股定理得:OB=.即OA=.又点A在数轴的负半轴上,则点A对应的数是﹣.解答:解:由图可知,OC=2,作BC⊥OC,垂足为C,取BC=1,故OB=OA===,∵A在x的负半轴上,∴数轴上点A所表示的数是﹣.故答案为:﹣.点评:熟练运用勾股定理,同时注意根据点的位置以确定数的符号.13.如图,已知OA=6,∠AOB=30°,则经过点A的反比例函数的解析式为.考点:反比例函数综合题.分析:首先过A作AC⊥x轴,利用直角三角形30°角所对的直角边等于斜边的一半可得AC的长,再利用勾股定理算出OC的长,即可得到A点的坐标,最后利用待定系数法求出反比例函数关系式即可.解答:解:过A作AC⊥x轴,∵∠AOB=30°,∴,∵OA=6,∴AC=3,在Rt△ACO中,OC2=AO2﹣AC2,∴,∴A点坐标是:(3,3),设反比例函数解析式为,∵反比例函数的图象经过点A,∴,∴反比例函数解析式为.点评:此题主要考查了直角三角形的性质,勾股定理的应用,以及待定系数法求函数关系式,解决问题的关键是求出A点坐标.14.已知,则=﹣.考点:比例的性质.分析:根据题意设x=3a,y=4a,z=5a,进而代入求出即可.解答:解:∵,∴设x=3a,y=4a,z=5a,∴===﹣.故答案为:﹣.点评:此题主要考查了比例的性质,假设出未知数进而代入求出是解题关键.15.函数的图象如图所示,则结论:①两函数图象的交点A的坐标为(2,2);②当x>2时,y2>y1;③当x=1时,BC=3;④当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.其中正确结论的序号是①③④.考点:反比例函数与一次函数的交点问题.专题:计算题;压轴题;数形结合.分析:①将两函数解析式组成方程组,即可求出A点坐标;②根据函数图象及A点坐标,即可判断x>2时,y2与y1的大小;③将x=1代入两函数解析式,求出y的值,y2﹣y1即为BC的长;④根据一次函数与反比例函数的图象和性质即可判断出函数的增减性.解答:解:①将组成方程组得,,由于x>0,解得,故A点坐标为(2,2).②由图可知,x>2时,y1>y2;③当x=1时,y1=1;y2=4,则BC=4﹣1=3;④当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.可见,正确的结论为①③④.故答案为:①③④.点评:本题考查了反比例函数与一次函数的交点问题,知道函数图象交点坐标与函数解析式组成的方程组的解之间的关系是解题的关键.16.如图所示,沿DE折叠长方形ABCD的一边,使点C落在AB边上的点F处,若AD=8,且△AFD的面积为60,则△DEC的面积为.考点:翻折变换(折叠问题).分析:由AD=8,且△AFD的面积为60,即可求得AF与DF的长,由折叠的性质,可得CD=DF,然后在Rt△BEF中,利用勾股定理即可求得CE的长,继而求得△DEC的面积.解答:解:∵四边形ABCD是矩形,∴∠A=∠B=90°,BC=AD=8,CD=AB,∵△AFD的面积为60,即AD•AF=60,解得:AF=15,∴DF==17,由折叠的性质,得:CD=DF=17,∴AB=17,∴BF=AB﹣AF=17﹣15=2,设CE=x,则EF=CE=x,BE=BC﹣CE=8﹣x,在Rt△BEF中,EF2=BF2+BE2,即x2=22+(8﹣x)2,解得:x=,即CE=,∴△DEC的面积为:CD•CE=×17×=.故答案为:.点评:此题考查了矩形的性质、折叠的性质、勾股定理以及三角形面积问题.此题难度适中,注意掌握数形结合思想与方程思想的应用,注意折叠中的对应关系.三、认真做一做,你一定棒!(共52分.写出详细的解答或证明过程)1)计算:;(2)化简:.考点:实数的运算;分式的混合运算;零指数幂.专题:计算题.分析:(1)原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,第三项利用乘法法则计算,第四项利用乘方的意义计算即可得到结果;(2)原式第一项约分后,相减即可得到结果.解答:解:(1)原式=5+1﹣1+1=6;(2)原式=﹣=0.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解方程:.考点:解分式方程.分析:观察可得最简公分母是(x+1)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程两边都乘以(x+1)(x﹣1),得4﹣(x+1)(x+2)=﹣(x2﹣1),整理,3x=1,解得x=.经检验,x=是原方程的解.故原方程的解是x=.点评:本题考查了分式方程的解法,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.19.如图,反比例函数y=(k≠0)和一次函数y=ax+b(a≠0)的图象交于A(4,),B(﹣2,n)两点.(1)根据图象写出:当x为何值时,一次函数值大于反比例函数值;(2)求反比例函数的解析式和n的值.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)观察函数图象,写出一次函数图象在反比例函数图象上方所对应的自变量的取值范围即可;(2)先根据反比例函数图象上点的坐标特征把A点坐标代入y=可求出k,从而得到反比例函数解析式,然后把B(﹣2,n)代入反比例函数解析式即可求出n的值.解答:解:(1)根据图象可得:当x>4或﹣2<x<0时,一次函数的值大于反比例函数的值;(2)把A(4,)代入y=得k=4×=6,所以反比例函数的解析式为y=把B(﹣2,n)代入y=得﹣2n=6,解得n=﹣3.点评:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.20.已知原来从遂宁到内江公路长150km,高速公路路程缩短了30km,如果一辆小车从遂宁到内江走高速公路的平均速度可以提高到原来的1.5倍,需要的时间可以比原来少用1小时10分钟.求小汽车原来和走高速公路的平均速度分别是多少?考点:分式方程的应用.分析:设小汽车原来的平均速度为x千米/时,走高速公路的平均速度是1.5x千米/时,根据题意可得,小汽车不走高速公路走120千米的路程所用的时间=走高速公路150千米所用时间+1小时10分钟,据此列方程求解.解答:解:设小汽车原来的平均速度为x千米/时,走高速公路的平均速度是1.5x千米/时,根据题意,得,解这个方程,得:x=60.经检验:x=60是所列方程的解,这时1.5x=1.5×60=90且符合题意.答:小汽车原来的平均速度是60千米/时,走高速公路的平均速度是90千米/时.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,根据题意设出适当的未知数,找出等量关系,列方程求解,注意检验.21.如图,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上找一点P,使PA+PB最小.求P点坐标?考点:反比例函数综合题.专题:综合题;压轴题.分析:(1)根据反比例函数图象上的点的横纵坐标的乘积为函数的系数和△OAM的面积为1可得k=2,即反比例函数的解析式为y=.(2)由正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点求得A为(2,1).要使PA+PB最小,需作出A点关于x轴的对称点C,并连接BC,交x轴于点P,P为所求点.A点关于x轴的对称点C(2,﹣1),而B为(1,2),故BC的解析式为y=﹣3x+5,即可求得P点的坐标.解答:解:(1)设A点的坐标为(a,b),则b=∴ab=k∵ab=1,∴k=1∴k=2,∴反比例函数的解析式为y=.(3分)(2)根据题意画出图形,如图所示:得=x,解得x=2或x=﹣2,∵点A在第一象限,∴x=2把x=2代入y=得y=1,∴A为(2,1)(4分)设A点关于x轴的对称点为C,则C点的坐标为(2,﹣1).令直线BC的解析式为y=mx+n∵B点的横坐标为1,B为反比例函数在第一象限图象上的点,∴xy=2,∴y=2,∴B为(1,2),将B和C的坐标代入得:,解得:∴BC的解析式为y=﹣3x+5(6分)当y=0时,x=,∴P点为(,0).(7分)点评:本题考查反比例函数和一次函数解析式的确定、图形的面积求法、轴对称等知识及综合应用知识、解决问题的能力.有点难度.22.如图,CD是AB上的高,AC=4,BC=3,DB=.(1)求CD的长;(2)△ABC是直角三角形吗?请说明理由.考点:勾股定理的逆定理;勾股定理.分析:(1)在△CDB中利用勾股定理计算出CD长即可;(2)首先利用勾股定理计算出AD2,再计算出AD,然后可得AB长,再利用勾股定理逆定理可证出△ABC是直角三角形.解答:解:(1)∵CD是AB上的高,∴,∴CD=;(2)△ABC是直角三角形理由是:∵,∴,∵,又∵32+42=52,∴△ABC是直角三角形.点评:此题主要考查了勾股定理和勾股定理逆定理,关键是掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方;三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.23.如图,梯形ABCD中,AD∥BC,∠ABC=45°,∠ADC=120°,AD=DC,AB=2,求BC的长.考点:梯形.专题:计算题.分析:过点A作AE⊥BC于点E,过点D作DF⊥BC,则AD=EF,再分别求出BE、CF的长,即可得出答案.解答:解:过点A作AE⊥BC于点E,过点D作DF⊥BC,则AD=EF,∵∠ABC=45°,AB=2,∴BE=AE=2,又∠ADC=120°,∴∠CDF=30°,∴AD=DC==,CF=,∴BC=BE+EF+CF=2+=2+2.点评:本题考查了梯形的知识,难度不大,注意熟练应用梯形的性质是关键.。
【人教版】2015-2016年八年级下期中数学试卷及答案解析
【解答】 解:矩形的性质有: ① 矩形的对边相等且平行, ② 矩形的对角相等, 且都是直角,
③ 矩形的对角线互相平分、相等; 平行四边形的性质有: ① 平行四边形的对边分别相等且平行,
② 平行四边形的对角分别相
等, ③ 平行四边形的对角线互相平分;
∴矩形具有而平行四边形不一定具有的性质是对角线相等,
【点评】本题考查了矩形的性质及菱形的判定.注意掌握菱形的判定方法有三种:
① 定义:
一组邻边相等的平行四边形是菱形; ② 四边相等; ③ 对角线互相垂直平分的四边形是菱形.
9.矩形具有而一般的平行四边形不一定具有的特征(
)
A .对角相等 B.对角线相等
C.对角线互相平分 D .对边相等 【分析】举出矩形和平行四边形的所有性质, 找出矩形具有而平行四边形不具有的性质即可.
八年级(下)期中数学试卷(解析版)
参考答案与试题解析
一、选择题(每小题只有 1 个正确答案,每小题 3 分,共 30 分)
1.下列的式子一定是二次根式的是(
)
A.
B . C.
D.
【分析】根据二次根式的被开方数是非负数对每个选项做判断即可.
【解答】解: A 、当 x=0 时,﹣ x﹣ 2< 0,
无意义,故本选项错误;
为负数,则无实数根).
2.下列二次根式中属于最简二次根式的是(
)
A.
B.
C. D.
【分析】 B、 D 选项的被开方数中含有未开尽方的因数或因式; 母;因此这三个选项都不是最简二次根式. 【解答】解:因为: B、 =4 ;
C 选项的被开方数中含有分
C、 =
;
D、
=2
;
所以这三项都不是最简二次根式.故选 A .
【精品】2015-2016年甘肃省酒泉市敦煌市青海油田二中八年级(上)期中数学试卷带答案
2015-2016学年甘肃省酒泉市敦煌市青海油田二中八年级(上)期中数学试卷一、选择题:(每小题3分,共24分)1.(3分)下列说法:①能够完全重合的图形叫做全等形;②全等三角形的对应边相等、对应角相等;③全等三角形的周长相等、面积相等;④所有的等边三角形都全等;⑤面积相等的三角形全等.其中正确的说法有()A.5个 B.4个 C.3个 D.2个2.(3分)下列对应相等的条件,不能判定两个三角形全等的是()A.两角和一边B.两边及其夹角C.三条边D.三个角3.(3分)下列平面图形中,不是轴对称图形的是()A. B. C.D.4.(3分)点P(﹣2,1),那么点P关于x轴对称的点P′的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(2,1)5.(3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.166.(3分)已知:△ABC≌△EFG,有∠B=70°,∠E=60°,则∠C=()A.60°B.70°C.50°D.65°7.(3分)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA8.(3分)如图,AB=BC=CD,且∠A=15°,则∠ECD=()A.30°B.45°C.60°D.75°二、填空题:(每空2分,共32分)9.(2分)如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是(填上你认为适当的一个条件即可).10.(2分)已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,AE=CF;则证明△ABF≌△CDE的方法是(用字母表示)11.(6分)已知点A(1,3)和B(1,﹣3),则点A,B关于轴对称;若点M(2,a)和点N(a+b,3)关于y轴对称,则a=b=.12.(4分)四边形的内角和为;多边形的外角和为.13.(2分)如果一个正多边形的每个内角为150°,则这个正多边形的边数是.14.(2分)如图,点P在∠AOB的平分线上,PE⊥OA于E,PF⊥OB于F,若PE=3,则PF=.15.(2分)如图,在△ABC中,AB=AC=14cm,AB的垂直平分线MN交AC于D,△DBC的周长是24cm,则BC=.16.(2分)小明照镜子时,发现衣服上的英文单词在镜子呈现为“”,则这串英文字母是.17.(6分)已知等腰三角形的一个内角为50°,则底角为度.若一个等腰三角形的两边长分别是2cm和5cm,则它的周长是cm;若一个等腰三角形中,已知两边的长分别是9和5,则周长为.18.(4分)等腰三角形底角为15°,腰长为4,则三角形面积为.19.(2分)小明沿倾斜角为30°的山坡从山脚步行到山顶,共走了200米,则山的高度为米.三、计算:(每小题6分,共12分)20.(6分)等腰三角形的周长是18,若一边长为4,求其它两边长?21.(6分)如图,在△ABC中,AB=AD=DC,∠BAD=20°,求∠C的度数?四、解答题(二):(22题8分,23题6分,24题6分共20分)22.(8分)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.23.(6分)某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)24.(6分)如图,阴影部分是由5个大小相同的小正方形组成的图形,请分别在图中方格内涂两个小正方形,使涂后所得阴影部分图形是轴对称图形.五、解答题(三):(第25题7分,第26题题7分,第27、28每题9分,共32分)25.(7分)已知:如图,点A,E,F,C在同一条直线上,AD=CB,∠B=∠D,AD∥BC.求证:AE=CF.26.(7分)如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE.求证:(1)△ABC≌△DEF;(2)GF=GC.27.(7分)已知:∠B=∠C,AD是△BAC的角平分线,DE⊥AB于E,DF⊥AC于F.求证:BE=CF.28.(9分)如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.2015-2016学年甘肃省酒泉市敦煌市青海油田二中八年级(上)期中数学试卷参考答案与试题解析一、选择题:(每小题3分,共24分)1.(3分)下列说法:①能够完全重合的图形叫做全等形;②全等三角形的对应边相等、对应角相等;③全等三角形的周长相等、面积相等;④所有的等边三角形都全等;⑤面积相等的三角形全等.其中正确的说法有()A.5个 B.4个 C.3个 D.2个【解答】解:①中能够完全重合的图形叫做全等形,正确;②中全等三角形的对应边相等、对应角相等,正确;③全等三角形的周长相等、面积相等,也正确;④中所有的等边三角形角都是60°,但由于边不相等,所以不能说其全等,④错误;⑤中面积相等的三角形并不一定是全等三角形,⑤中说法错误;故选:C.2.(3分)下列对应相等的条件,不能判定两个三角形全等的是()A.两角和一边B.两边及其夹角C.三条边D.三个角【解答】解:A、两角和一边,能根据AAS判定两三角形全等,故选项正确;B、两边及其夹角,能根据SAS判定两三角形全等,故选项正确;C、三条边,能根据SSS判定两三角形全等,故选项正确.D、三个角,AAA不能判定两个三角形全等,故选项错误.故选:D.3.(3分)下列平面图形中,不是轴对称图形的是()A. B. C.D.【解答】解::A、不是轴对称图形,本选项正确;B、是轴对称图形,本选项错误;C、是轴对称图形,本选项错误;D、是轴对称图形,本选项错误.故选:A.4.(3分)点P(﹣2,1),那么点P关于x轴对称的点P′的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(2,1)【解答】解:∵点P与点P′关于x轴对称,已知点P(﹣2,1),∴P′的坐标为(﹣2,﹣1).故选:B.5.(3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.16【解答】解:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选:C.6.(3分)已知:△ABC≌△EFG,有∠B=70°,∠E=60°,则∠C=()A.60°B.70°C.50°D.65°【解答】解:∵△ABC≌△EFG∴∠A=∠E=60°∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣70°=50°∴∠C=50°故选:C.7.(3分)如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA【解答】解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故A不符合题意;B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合题意;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故C不符合题意;D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故D 不符合题意.故选:B.8.(3分)如图,AB=BC=CD,且∠A=15°,则∠ECD=()A.30°B.45°C.60°D.75°【解答】解:∵AB=BC=CD,∴∠A=∠ACB,∠CBD=∠CDB,∴∠ECD=3∠A,∵∠A=15°,∴∠ECD=45°,故选:B.二、填空题:(每空2分,共32分)9.(2分)如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是∠B=∠C (填上你认为适当的一个条件即可).【解答】解:∵∠1=∠2,∴∠AEB=∠AEC,又AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).10.(2分)已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,AE=CF;则证明△ABF≌△CDE的方法是HL(用字母表示)【解答】解:如图,∵DE⊥AC,BF⊥AC,AE=CF,∴∠DEC=∠BFA=90°,AE+EF=CF+EF,即AF=CE.∴在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CDE(HL).故答案是:HL(答案不唯一).11.(6分)已知点A(1,3)和B(1,﹣3),则点A,B关于x轴对称;若点M(2,a)和点N(a+b,3)关于y轴对称,则a=3b=﹣5.【解答】解:点A(1,3)和B(1,﹣3),则点A,B关于x轴对称;若点M (2,a)和点N(a+b,3)关于y轴对称,则a=3b=﹣5,故答案为:x,3,﹣5.12.(4分)四边形的内角和为360度;多边形的外角和为360度.【解答】解:四边形的内角和为:(n﹣2)×180°=2×180°=360°;多边形的外角和为360°.故答案为:360°;360°.13.(2分)如果一个正多边形的每个内角为150°,则这个正多边形的边数是12.【解答】解:∵一个正多边形的每个内角为150°,∴它的外角为30°,360°÷30°=12,故答案为:12.14.(2分)如图,点P在∠AOB的平分线上,PE⊥OA于E,PF⊥OB于F,若PE=3,则PF=3.【解答】解:∵点P在∠AOB的平分线上,PE丄0A于E,PF丄OB于F,∴PF=PE,而PE=3,∴PF=3.故答案为:3.15.(2分)如图,在△ABC中,AB=AC=14cm,AB的垂直平分线MN交AC于D,△DBC的周长是24cm,则BC=10cm.【解答】解:∵MN是AB的垂直平分线,∴AD=BD,∴△DBC的周长=BD+CD+BC=AD+CD+BC=AC+BC,∵AC=14cm,△DBC的周长是24cm,∴BC=24﹣14=10cm.故答案为:10cm.16.(2分)小明照镜子时,发现衣服上的英文单词在镜子呈现为“”,则这串英文字母是APPLE.【解答】解:根据镜面对称的性质,分析可得题中所给的图片与APPLE成轴对称.故答案为:APPLE.17.(6分)已知等腰三角形的一个内角为50°,则底角为65或50度.若一个等腰三角形的两边长分别是2cm和5cm,则它的周长是12cm;若一个等腰三角形中,已知两边的长分别是9和5,则周长为19或23.【解答】解:①∵等腰三角形的一个内角为50°,若这个角为顶角,则底角为:=65°,若这个角为底角,则另一个底角也为50°,∴其一个底角的度数是65°或50°,故答案为:65°或50°;②分两种情况讨论腰长为5时,三边为5、5、2,满足三角形的性质,周长=5+5+2=12cm;腰长为2cm时,三边为5、2、2,∵2+2=4<5,∴不满足构成三角形,∴周长为12cm,故答案为:12;③当边长为9的边为底时,三角形的三边长为:9、5、5,满足三角形的三边关系,此时其周长为19;当边长为9的边为腰时,三角形的三边长为:9、9、5,满足三角形的三边关系,此时其周长为23.故答案为:19或23.18.(4分)等腰三角形底角为15°,腰长为4,则三角形面积为4.【解答】解:作腰上的高CD,如图,∵AB=AC,∴∠B=∠C=15°,∴∠CAD=30°,∴CD=AC=2,∴三角形面积=AB•CD=×4×2=4.故答案为4.19.(2分)小明沿倾斜角为30°的山坡从山脚步行到山顶,共走了200米,则山的高度为100米.【解答】解:由题意得,AB=200米,∠A=30°,故可得BC=100米.故答案为:100.三、计算:(每小题6分,共12分)20.(6分)等腰三角形的周长是18,若一边长为4,求其它两边长?【解答】解:若底边长为4,设腰长为x,则x+x+4=18,解得:x=7若腰长为4,设底边为y,则y+4+4=18,解得:y=10而4+4<10,不能构成三角形,舍去,所以这个等腰三角形的另外两边长为7,7.21.(6分)如图,在△ABC中,AB=AD=DC,∠BAD=20°,求∠C的度数?【解答】解:∵∠BAD=20°,AB=AD=DC,∴∠ABD=∠ADB=80°,由三角形外角与外角性质可得∠ADC=180°﹣∠ADB=100°,又∵AD=DC,∴∠C=∠ADB=40°,∴∠C=40°.四、解答题(二):(22题8分,23题6分,24题6分共20分)22.(8分)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.【解答】解:(1)S=×5×3=(或7.5)(平方单位).△ABC(2)如图.(3)A1(1,5),B1(1,0),C1(4,3).23.(6分)某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)【解答】解:如图所示,点M就是所要求作的建立超市的位置.24.(6分)如图,阴影部分是由5个大小相同的小正方形组成的图形,请分别在图中方格内涂两个小正方形,使涂后所得阴影部分图形是轴对称图形.【解答】解:如图所示:五、解答题(三):(第25题7分,第26题题7分,第27、28每题9分,共32分)25.(7分)已知:如图,点A,E,F,C在同一条直线上,AD=CB,∠B=∠D,AD∥BC.求证:AE=CF.【解答】证明:∵AD∥BC(已知),∴∠A=∠C(两直线平行,内错角相等);在△ADF和△CBE中,,∴△ADF≌△CBE (ASA),∴AF=CE(全等三角形的对应边相等),∴AF﹣EF=CE﹣EF,即AE=CF.26.(7分)如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE.求证:(1)△ABC≌△DEF;(2)GF=GC.【解答】证明:(1)∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵AB⊥BE,DE⊥BE,∴∠B=∠E=90°,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);(2)根据(1)△ABC≌△DEF,所以∠ACB=∠DFE,所以GF=GC(等角对等边).27.(7分)已知:∠B=∠C,AD是△BAC的角平分线,DE⊥AB于E,DF⊥AC于F.求证:BE=CF.【解答】证明:∵AD是△BAC的角平分线,DE⊥AB于E,DF⊥AC,∴DE=DF,又∠B=∠C,∠BED=∠CFD,∴Rt△BDE≌Rt△CDF,∴BE=CF.28.(9分)如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.【解答】证明:(1)∵OE平分∠AOB,EC⊥OA,ED⊥OB,∴ED=EC,即△CDE为等腰三角形,∴∠ECD=∠EDC;(2)∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴∠DOE=∠COE,∠ODE=∠OCE=90°,OE=OE,∴△OED≌△OEC(AAS),∴OC=OD;(3)∵OC=OD,且DE=EC,∴OE是线段CD的垂直平分线.。
酒泉市八年级下学期期中考试数学试卷
酒泉市八年级下学期期中考试数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列四种图形中,一定是轴对称图形的有()① 等腰三角形② 等边三角形③ 直角三角形④ 等腰直角三角形A . 1种B . 2种C . 3种D . 4种2. (2分)若为二次根式,则m的取值为()A . m≤3B . m<3C . m≥3D . m>33. (2分)下列方程中,是一元二次方程的为()A . +x=1B . 3x(x+1)=3C . x3﹣3x=4D . =54. (2分)下列计算结果为负数的是()A . ﹣1+2B . |﹣1|C .D . ﹣2﹣15. (2分) (2018九上·扬州期末) 方程配方后,下列正确的是()A .B .C .D .6. (2分)式子-(>0)化简的结果是()A . xB . -xC . xD . -x7. (2分)如图,直线l1∥l2 ,∠1=40°,∠2=75°,则∠3等于()A . 55°B . 60°C . 65°D . 70°8. (2分) (2016八下·罗平期末) 2015年1月1日起,杭州市城区实行全新的阶梯水价,之前为了解某社区居民的用水情况,随机对该社区20户居民进行了调查,下表是这20户居民2014年8月份用水量的调查结果:那么关于这次用水量的调查和数据分析,下列说法错误的是()居民(户)128621月用水量(吨)458121520A . 平均数是10(吨)B . 众数是8(吨)C . 中位数是10(吨)D . 样本容量是209. (2分)(2017·靖远模拟) 一元二次方程2x2+3x+1=0的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 没有实数根D . 无法确定10. (2分)如图,□ABCD中,点E在CD上,AE交BD于点F,若DE =2CE,则等于()A .B .C .D .二、填空题 (共6题;共6分)11. (1分) (2017八下·萧山期中) 已知,那么的值等于________.12. (1分) (2018八上·抚顺期末) 在平面上将边长相等的正方形、正五边形和正六边形按如图所示的位置摆放,则 ________度.13. (1分) (2018八上·金堂期中) 已知a、b、c位置如图所示,试化简:|a+b﹣c|+ =________.14. (1分)(2017·丰县模拟) 某体校要从四名射击选手中选拔一名参加体育运动会,选拔赛中每名选手连续射靶10次,他们各自的平均成绩及其方差s2如表所示,如果要选出一名成绩高,且发挥稳定的选手参赛,则应选择的选手是________.甲乙丙丁(环)8.48.68.67.6S20.740.560.94 1.9215. (1分) (2018九上·华安期末) 已知抛物线与轴的一个交点为(,0),则代数式的值为________.16. (1分)(2016·平房模拟) 用直角边分别为6和8的两个直角三角形拼成一个平行四边形(非矩形),所得的平行四边形的周长是________.三、解答题. (共7题;共35分)17. (5分)计算:(2015﹣π)0+|﹣2|+÷+()﹣1 .18. (5分) (2016九上·桑植期中) 一个三角形的两边长分别为3厘米和7厘米,第三边长为a厘米,且a满足a2﹣10a+21=0,求三角形的周长.19. (5分) (2017八下·天津期末) 为了考察甲、乙两种小麦的长势,分别从中抽取5株麦苗,测得苗高(单位:cm)如下:甲:6、8、9、9、8;乙:10、7、7、7、9.(Ⅰ)分别计算两种小麦的平均苗高;(Ⅱ)哪种小麦的长势比较整齐?为什么?20. (5分) (2016九上·封开期中) 两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是4050元,生产1吨乙种药品的成本是4860元,哪种药品成本的年平均下降率较大?21. (5分) (2016九上·高台期中) 如图,平行四边形ABCD,E,F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.22. (5分)已知关于x的方程x2-2(k-1)x+k2=0有两个实数根x1 , x2 .⑴求k的取值范围;⑵若|x1+x2|=x1x2-1,求k的值.23. (5分) (2017八下·澧县期中) 平行四边形ABCD中,BE⊥CD,BF⊥AD,垂足分别为E、F,若CE=2,DF=1,∠EBF=60°,求平行四边形ABCD的面积.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题. (共7题;共35分)17-1、18-1、19-1、20-1、21-1、22-1、23-1、。
2015年甘肃省酒泉市敦煌市青海油田二中八年级(下)期中数学试卷与解析(word版)
2014-2015学年甘肃省酒泉市敦煌市青海油田二中八年级(下)期中数学试卷一.填空(每空2分,共30分)1.(4分)若有意义,则x的取值范围是;若有意义,则x 的取值范围是.2.(2分)比较大小:.(填“>”、“=”、“<”).3.(4分)平行四边形ABCD中,∠A=50°,AB=30cm,则∠B=,DC= cm.4.(2分)菱形的一个内角为120°,平分这个内角的一条对角线长为12cm,则菱形的周长为.5.(2分)已知a、b为两个连续的整数,且,则a+b=.6.(2分)已知一直角三角形的两条直角边长分别为5和12,则第三边的长为.7.(4分)命题“等腰三角形两底角相等”的逆命题是,逆命题是命题(填“真”或“假”).8.(2分)如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A,B,C,D的面积的和为.9.(2分)如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点.若再增加一个条件,就可得BE=DF.10.(2分)将一矩形纸条,按如图所示折叠,则∠1=度.11.(2分)如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=.12.(2分)如图,在平面直角坐标系中,点A、B、C的坐标分别是A(﹣2,5),B(﹣3,﹣1),C(1,﹣1),在第一象限内找一点D,使四边形ABCD是平行四边形,那么点D的坐标是.二.选择(每题3分,共24分)13.(3分)下列的式子一定是二次根式的是()A.B.C.D.14.(3分)若,则()A.x≥6 B.x≥0 C.0≤x≤6 D.x为一切实数15.(3分)△ABC中,AB=13cm,AC=15cm,高AD=12,则BC的长为()A.14 B.4 C.14或4 D.以上都不对16.(3分)矩形、菱形、正方形都具有的性质是()A.对角线互相垂直 B.对角线互相平分C.对角线相等D.对角线平分一组对角17.(3分)若顺次连接四边形ABCD各边中点所得四边形是矩形,则四边形ABCD必然是()A.菱形B.对角线相互垂直的四边形C.正方形D.对角线相等的四边形18.(3分)如图,正方形ABCD中,点E在BC的延长线上,AE平分∠DAC,则下列结论:(1)∠E=22.5°;(2)∠AFC=112.5°;(3)∠ACE=135°;(4)AC=CE;(5)AD:CE=1:.其中正确的有()A.5个 B.4个 C.3个 D.2个19.(3分)如图,矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为()A.36°B.18°C.27°D.9°20.(3分)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF三.计算(4x4=16分)21.(16分)计算(1)4+﹣+4(2)6﹣2﹣3(3)(2+3)(2﹣3)(4)(+)÷.22.(4分)先化简,再求值:•(x+2),其中x=.23.(6分)如图,四边形ABCD中,AB=3cm,BC=4cm,CD=12cm,DA=13cm,且∠ABC=90°.求四边形ABCD的面积.24.(6分)印度数学家什迦逻(1141年﹣1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅”请用学过的数学知识回答这个问题.25.(6分)如图,在▱ABCD中,∠ABC=5∠A,过点B作BE⊥DC交AD的延长线于点E,O是垂足,且DE=DA=4cm,求:(1)▱ABCD的周长;(2)四边形BDEC的周长和面积(结果可保留根号)四.证明26.(6分)如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.27.(6分)如图,已知四边形ABCD是平行四边形,∠BCD的平分线CF交边AB 于F,∠ADC的平分线DG交边AB于G.(1)求证:AF=GB.(2)当时,△EFG为等腰直角三角形.(添加一个适当的条件)28.(6分)已知:如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE 沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG;(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.29.(10分)如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF ⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.2014-2015学年甘肃省酒泉市敦煌市青海油田二中八年级(下)期中数学试卷参考答案与试题解析一.填空(每空2分,共30分)1.(4分)若有意义,则x的取值范围是x≥;若有意义,则x 的取值范围是x≥﹣1且x≠1.【解答】解:∵有意义,∴2x﹣1≥0,解得x≥;∵有意义,∴,解得x≥﹣1且x≠1.故答案为:x≥,x≥﹣1且x≠1.2.(2分)比较大小:<.(填“>”、“=”、“<”).【解答】解:∵=∴∴故答案为:<.3.(4分)平行四边形ABCD中,∠A=50°,AB=30cm,则∠B=130°,DC=30 cm.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=30cm,∴∠A+∠B=180°,∵∠A=50°,∴∠B=130°.故答案为130°,30.4.(2分)菱形的一个内角为120°,平分这个内角的一条对角线长为12cm,则菱形的周长为48cm.【解答】解:菱形的一个内角为120°,则邻角为60°,则60°角所对的这条对角线和一组邻边组成等边三角形,从而能得出菱形的边长为12cm,则菱形周长为48cm.故答案为48cm.5.(2分)已知a、b为两个连续的整数,且,则a+b=11.【解答】解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.6.(2分)已知一直角三角形的两条直角边长分别为5和12,则第三边的长为13.【解答】解:∵直角三角形的两条直角边长分别为5和12,∴第三边的长==13.故答案为:13.7.(4分)命题“等腰三角形两底角相等”的逆命题是两个角相等三角形是等腰三角形,逆命题是真命题(填“真”或“假”).【解答】解:因为原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,所以命题“等腰三角形的两个底角相等”的逆命题是“两个角相等三角形是等腰三角形”,是真命题.故答案为:两个角相等三角形是等腰三角形,真.8.(2分)如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A,B,C,D的面积的和为25.【解答】解:由图可看出,A,B的面积和等于其相邻的直角三角形的斜边的平方,即等于最大正方形上方的三角形的一个直角边的平方;C,D的面积和等于与其相邻的三角形的斜边的平方,即等于最大正方形的另一直角边的平方,则A,B,C,D四个正方形的面积和等于最大的正方形上方的直角三角形的斜边的平方即等于最大的正方形的面积,因为最大的正方形的边长为5,则其面积是25,即正方形A,B,C,D的面积的和为25.故答案为25.9.(2分)如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点.若再增加一个条件AE=CF或BE∥DF,就可得BE=DF.【解答】解:∵BE=DF,DE∥BF∴四边形EBFD为平行四边形故答案为:AE=CF,BE∥DF(即为要增加的条件,任选一个).10.(2分)将一矩形纸条,按如图所示折叠,则∠1=52度.【解答】解:∵该纸条是折叠的,∴∠1的同位角的补角=2×64°=128°;∵矩形的上下对边是平行的,∴∠1=∠1的同位角=180°﹣128°=52°.11.(2分)如图,在正方形ABCD的外侧,作等边△ADE,则∠AEB=15°.【解答】解:∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=90°,∠DAE=60°,∴∠BAE=∠BAD+∠DAE=150°,又∵AB=AE,∴∠AEB==15°.故答案为:15°.12.(2分)如图,在平面直角坐标系中,点A、B、C的坐标分别是A(﹣2,5),B(﹣3,﹣1),C(1,﹣1),在第一象限内找一点D,使四边形ABCD是平行四边形,那么点D的坐标是(2,5).【解答】解:由平行四边形的性质,可知D点的纵坐标一定是5;又由C点相对于B点横坐标移动了1﹣(﹣3)=4,故可得点D横坐标为﹣2+4=2,即顶点D的坐标(2,5).故答案为:(2,5).二.选择(每题3分,共24分)13.(3分)下列的式子一定是二次根式的是()A.B.C.D.【解答】解:A、当x=0时,﹣x﹣2<0,无意义,故本选项错误;B、当x=﹣1时,无意义;故本选项错误;C、∵x2+2≥2,∴符合二次根式的定义;故本选项正确;D、当x=±1时,x2﹣2=﹣1<0,无意义;故本选项错误;故选:C.14.(3分)若,则()A.x≥6 B.x≥0 C.0≤x≤6 D.x为一切实数【解答】解:若成立,则,解之得x≥6;故选:A.15.(3分)△ABC中,AB=13cm,AC=15cm,高AD=12,则BC的长为()A.14 B.4 C.14或4 D.以上都不对【解答】解:(1)如图,锐角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2﹣AD2=132﹣122=25,则BD=5,在Rt△ABD中AC=15,AD=12,由勾股定理得CD2=AC2﹣AD2=152﹣122=81,则CD=9,故BC=BD+DC=9+5=14;(2)钝角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2﹣AD2=132﹣122=25,则BD=5,在Rt△ACD中AC=15,AD=12,由勾股定理得CD2=AC2﹣AD2=152﹣122=81,则CD=9,故BC的长为DC﹣BD=9﹣5=4.16.(3分)矩形、菱形、正方形都具有的性质是()A.对角线互相垂直 B.对角线互相平分C.对角线相等D.对角线平分一组对角【解答】解:矩形、菱形、正方形共有的性质是对角线互相平分.故选:B.17.(3分)若顺次连接四边形ABCD各边中点所得四边形是矩形,则四边形ABCD 必然是()A.菱形B.对角线相互垂直的四边形C.正方形D.对角线相等的四边形【解答】解:已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD;故选B.18.(3分)如图,正方形ABCD中,点E在BC的延长线上,AE平分∠DAC,则(1)∠E=22.5°;(2)∠AFC=112.5°;(3)∠ACE=135°;(4)AC=CE;(5)AD:CE=1:.其中正确的有()A.5个 B.4个 C.3个 D.2个【解答】解:在□ABCD中,∵AE平分∠DAC,AC是对角线,∴∠CAF=∠E,∴AC=CE,∴∠E=∠FAD=,∠AFC=∠E+90°=112.5°∠ACE=90°+45°=135°,∵AC=CE,∴AD:CE=1:.故选:A.19.(3分)如图,矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为()A.36°B.18°C.27°D.9°【解答】解:已知∠ADE:∠EDC=3:2⇒∠ADE=54°,∠EDC=36°,又因为DE⊥AC,所以∠DCE=90°﹣36°=54°,根据矩形的性质可得∠DOC=180°﹣2×54°=72°所以∠BDE=180°﹣∠DOC﹣∠DEO=18°故选:B.20.(3分)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF【解答】解:∵EF垂直平分BC,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故选项A正确,但不符合题意;当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C正确,但不符合题意;当AC=BF时,无法得出菱形BECF是正方形,故选项D错误,符合题意.故选:D.三.计算(4x4=16分)21.(16分)计算(1)4+﹣+4(2)6﹣2﹣3(3)(2+3)(2﹣3)(4)(+)÷.【解答】解:(1)原式=4+3﹣2+4=7+2;(2)原式=6﹣﹣=6﹣;(3)原式=12﹣18=﹣6;(4)原式=(4+)÷3=+.22.(4分)先化简,再求值:•(x+2),其中x=.【解答】解:原式=•(x+2)(3分)=;(6分)x=时,.(8分)23.(6分)如图,四边形ABCD中,AB=3cm,BC=4cm,CD=12cm,DA=13cm,且∠ABC=90°.求四边形ABCD的面积.【解答】解:连接AC,∵∠ABC=90°,AB=4,BC=3,∴根据勾股定理AC==5(cm),又∵CD=12cm,AD=13cm,∴AC2+DC2=52+122=169,AD2=132=169,根据勾股定理的逆定理:∠ACD=90°.∴四边形ABCD的面积=S△ABC +S△ACD=×3×4+×5×12=36(cm2).24.(6分)印度数学家什迦逻(1141年﹣1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅”请用学过的数学知识回答这个问题.【解答】解:设湖水深为x尺,则红莲总长为(x+0.5)尺,根据勾股定理得:在Rt△ABC中,有:x2+s2=(x+0.5)2,在Rt△ADC中,有:0.52+s2=22,由以上两式解得:x=3.5,即湖水深3.5尺.25.(6分)如图,在▱ABCD中,∠ABC=5∠A,过点B作BE⊥DC交AD的延长线于点E,O是垂足,且DE=DA=4cm,求:(1)▱ABCD的周长;(2)四边形BDEC的周长和面积(结果可保留根号)【解答】解:(1)∵∠ABC=5∠A,∠ABC+∠A=180°,∴∠A=30°,又∵AE=AD+DE=8cm,∴AB=AEcos∠A=4cm,BE=AEsin∠A=4cm,故可得▱ABCD的周长=2(AD+AB)=(8+8)cm.(2)∵点D是AE的中点,∠ABE是直角,∴BD=DE=AD,又∵四边形BDEC是平行四边形,∴四边形BDEC是菱形,故四边形BDEC的周长=4DE=16cm;面积=DC•BE=8cm2.四.证明26.(6分)如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.【解答】证明:连接BD,交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形DEBF是平行四边形.27.(6分)如图,已知四边形ABCD是平行四边形,∠BCD的平分线CF交边AB 于F,∠ADC的平分线DG交边AB于G.(1)求证:AF=GB.(2)当矩形时,△EFG为等腰直角三角形.(添加一个适当的条件)【解答】(1)证明∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC,又∵CF平分∠BCD,∴∠BCF=∠DCF,∵AB∥CD,∴∠DCF=∠BFC,∴∠BCF=∠BFC,∴BF=BC,同理:AG=AD,∴BF=AG,∴AF=GB;(2)解:∵四边形ABCD是矩形,∴∠A=∠B=90°,∴∠AGD=∠BFC=90°,∵AD=AG,BC=BF,∴△EFG为等腰直角三角形.∴当四边形ABCD是矩形时,△EFG为等腰直角三角形.故答案为:矩形.28.(6分)已知:如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE 沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG;(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD.∵AE是BC边上的高,且CG是由AE沿BC方向平移而成.∴CG⊥AD.∴∠AEB=∠CGD=90°.∵AE=CG,∴Rt△ABE≌Rt△CDG(HL).∴BE=DG;(2)解:当BC=AB时,四边形ABFG是菱形.证明:∵AB∥GF,AG∥BF,∴四边形ABFG是平行四边形.∵Rt△ABE中,∠B=60°,∴∠BAE=30°,∵BC=AB∴BE=CF∴EF=AB∴AB=BF∴四边形ABFG是菱形,29.(10分)如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF ⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.【解答】(1)证明:在正方形ABCD中,AB=AD,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,,∴△ABE≌△DAF(ASA),∴AF=BE;(2)解:MP与NQ相等.理由如下:如图,过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,∵AB∥CD,AD∥BC,∴四边形AMPF与四边形BNQE是平行四边形,∴AF=PM,BE=NQ,∵在正方形ABCD中,AB=AD,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,,∴△ABE≌△DAF(ASA),∴AF=BE;∴MP=NQ.。
2015-2016学年八年级(下)期中数学试卷含答案解析
2015-2016学年八年级(下)期中数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.使式子有意义,则x的取值范围是()A.x>5 B.x≠5 C.x≥5 D.x≤52.下列二次根式中,属于最简二次根式的是()A.B.C.D.3.下列运算正确的是()A.()2=4 B. =﹣4 C. =×D.﹣=4.如图,直角三角形的三边长分为a、b、c,下列各式正确的是()A.a2+b2=c2B.b2+c2=a2C.c2+a2=b2D.以上都不对5.一个直角三角形的两边长分别为4cm、3cm,则第三条边长为()A.5cm B.4cm C. cm D.5cm 或cm6.下列各组数中不能作为直角三角形的三边长的是()A.1.5,2,3 B.7,24,25 C.6,8,10 D.9,12,157.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm8.菱形具有而矩形不具有的性质是()A.对角线互相平分B.四条边都相等C.对角相等 D.邻角互补9.两条对角线互相垂直平分且相等的四边形是()A.矩形 B.菱形 C.正方形D.都有可能10.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6 B.8 C.10 D.12二、填空题(本题共10小题,每小题4分,共40分)11.如图,△ABC中,D、E分别是AB、AC边的中点,且DE=7cm,则BC= cm.12.写出命题“对顶角相等”的逆命题.13.比较大小:.(填“>、<、或=”)14.如果+(b﹣7)2=0,则的值为.15.如图,有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树尖飞到另一棵树的树尖,那么这只小鸟至少要飞行m.16.如图,一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是cm.17.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的面积为cm2.18.菱形的两条对角线长分别为6和8,则这个菱形的周长为.19.若两对角线长分别为4cm和6cm的菱形的面积与一个正方形的面积相等,那么该正方形的边长为cm.20.如图,在矩形ABCD中,AD=4,AB=3,MN∥BC分别交AB、CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是.三.解答题(共50分)21.计算:(1)(﹣)2﹣+(2)(3﹣)﹣(+)22.已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2(2)a2﹣2ab+b2.23.如图,在四边形ABCD中,∠A=90°,AD=3,AB=4,BC=12,CD=13,试判断△BCD的形状,并说明理由.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.25.如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.26.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.27.已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB= 时,四边形MENF是正方形(只写结论,不需证明).2015-2016学年八年级(下)期中数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.使式子有意义,则x的取值范围是()A.x>5 B.x≠5 C.x≥5 D.x≤5【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子有意义,∴x﹣5≥0,解得x≥5.故选C.【点评】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.2.下列二次根式中,属于最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的条件进行判断即可.【解答】解: =,被开方数含分母,不是最简二次根式;=,被开方数含分母,不是最简二次根式;=2,被开方数中含能开得尽方的因数,不是最简二次根式;是最简二次根式,故选:D.【点评】本题考查的是最简二次根式的概念,最简二次根式的条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式.3.下列运算正确的是()A.()2=4 B. =﹣4 C. =×D.﹣=【考点】二次根式的混合运算.【分析】分别利用二次根式的性质以及结合二次根式混合运算法则化简求出答案.【解答】解:A、()2=4,正确;B、=4,故此选项错误;C、=×,故此选项错误;D、﹣无法计算,故此选项错误;故选:A.【点评】此题主要考查了二次根式的混合运算以及二次根式的化简,正确掌握二次根式的性质是解题关键.4.如图,直角三角形的三边长分为a、b、c,下列各式正确的是()A.a2+b2=c2B.b2+c2=a2C.c2+a2=b2D.以上都不对【考点】勾股定理.【分析】由勾股定理即可得出结论,注意a是斜边长.【解答】解:∵∠A=90°,∴由勾股定理得:b2+c2=a2.故选:B.【点评】本题考查了勾股定理;熟记勾股定理是解决问题的关键.5.一个直角三角形的两边长分别为4cm、3cm,则第三条边长为()A.5cm B.4cm C. cm D.5cm 或cm【考点】勾股定理.【分析】题中没有指明哪个是直角边哪个是斜边,故应该分情况进行分析.【解答】解:(1)当两边均为直角边时,由勾股定理得,第三边为5cm;(2)当4为斜边时,由勾股定理得,第三边为cm;故直角三角形的第三边应该为5cm或cm.故选:D.【点评】此题主要考查学生对勾股定理的运用,注意分情况进行分析.6.下列各组数中不能作为直角三角形的三边长的是()A.1.5,2,3 B.7,24,25 C.6,8,10 D.9,12,15【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【解答】解:A、1.52+22≠32,不符合勾股定理的逆定理,故正确;B、72+242=252,符合勾股定理的逆定理,故错误;C、62+82=102,符合勾股定理的逆定理,故错误;D、92+122=152,符合勾股定理的逆定理,故错误.故选A.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm【考点】平行四边形的性质.【专题】几何图形问题.【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,所以根据AD、AB的值,求出EC的值.【解答】解:∵AD∥BC,∴∠DAE=∠BEA∵AE平分∠BAD∴∠BAE=∠DAE∴∠BAE=∠BEA∴BE=AB=3∵BC=AD=5∴EC=BC﹣BE=5﹣3=2故选:B.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.8.菱形具有而矩形不具有的性质是()A.对角线互相平分B.四条边都相等C.对角相等 D.邻角互补【考点】矩形的性质;菱形的性质.【专题】证明题.【分析】与平行四边形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等.【解答】解:A、对角线互相平分是平行四边形的基本性质,两者都具有,故A不选;B、菱形四条边相等而矩形四条边不一定相等,只有矩形为正方形时才相等,故B符合题意;C、平行四边形对角都相等,故C不选;D、平行四边形邻角互补,故D不选.故选:B.【点评】考查菱形和矩形的基本性质.9.两条对角线互相垂直平分且相等的四边形是()A.矩形 B.菱形 C.正方形D.都有可能【考点】多边形.【分析】如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是正方形,理由为:利用对角线互相平分的四边形为平行四边形得到ABCD为平行四边形,再利用对角线互相垂直的平行四边形为菱形,再利用对角线相等的菱形为正方形即可得证.【解答】解:如果一个四边形的两条对角线互相垂直平分且相等,那么这个四边形是正方形,已知:四边形ABCD,AC⊥BD,OA=OC,OB=OD,AC=BD,求证:四边形ABCD为正方形,证明:∵OA=OC,OB=OD,∴四边形ABCD为平行四边形,∵AC⊥BD,∴平行四边形ABCD为菱形,∵AC=BD,∴四边形ABCD为正方形.故选C.【点评】此题考查了正方形的判定,以及角平分线定理,熟练掌握正方形的判定方法是解本题的关键.10.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC 的面积为()A.6 B.8 C.10 D.12【考点】翻折变换(折叠问题).【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,于是得到AF=AB﹣BF,即可得到结果.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故选C.【点评】本题考查了翻折变换﹣折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.二、填空题(本题共10小题,每小题4分,共40分)11.如图,△ABC中,D、E分别是AB、AC边的中点,且DE=7cm,则BC= 14 cm.【考点】三角形中位线定理.【分析】根据三角形中位线定理得出BC=2DE,代入求出即可.【解答】解:∵D、E分别是AB、AC边的中点,且DE=7cm,∴BC=2DE=14cm,故答案为:14.【点评】本题考查了三角形中位线定理的应用,能熟记三角形的中位线定理的内容是解此题的关键,注意:三角形的中位线平行于第三边,并且等于第三边的一半.12.写出命题“对顶角相等”的逆命题如果两个角相等,那么这两个角是对顶角.【考点】命题与定理.【分析】根据逆命题的定义可以写出命题“对顶角相等”的逆命题,本题得以解决.【解答】解:命题“对顶角相等”的逆命题是如果两个角相等,那么这两个角是对顶角,故答案为:如果两个角相等,那么这两个角是对顶角.【点评】本题考查命题与定理,解题的关键是明确逆命题的定义,可以写出一个命题的逆命题.13.比较大小:<.(填“>、<、或=”)【考点】实数大小比较.【分析】先把两个实数平方,然后根据实数的大小比较方法即可求解.【解答】解:∵()2=12,(3)2=18,而12<18,∴2<3.故答案为:<.【点评】此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.14.如果+(b﹣7)2=0,则的值为 3 .【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先利用偶次方的性质以及二次根式的性质进而得出a,b的值,进而求出答案.【解答】解:∵ +(b﹣7)2=0,∴a=2,b=7,则==3.故答案为:3.【点评】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.15.如图,有两棵树,一棵高10m,另一棵高4m,两树相距8m.一只小鸟从一棵树的树尖飞到另一棵树的树尖,那么这只小鸟至少要飞行10 m.【考点】勾股定理的应用.【专题】应用题.【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树尖进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:两棵树的高度差为6m,间距为8m,根据勾股定理可得:小鸟至少飞行的距离==10m.【点评】本题主要是将现实问题建立数学模型,运用数学知识进行求解.16.如图,一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是15 cm.【考点】平面展开﹣最短路径问题.【专题】推理填空题.【分析】根据题意,可以画出长方体的展开图,根据两点之间线段最短和勾股定理,可以解答本题.【解答】解:如右图所示,点A到B的最短路径是: cm,故答案为:15.【点评】本题考查平面展开﹣最短路径问题,解题的关键是明确两点之间线段最短,能画出图形的平面展开图.17.若矩形的对角线长为8cm,两条对角线的一个交角为60°,则该矩形的面积为cm2.【考点】矩形的性质.【专题】计算题.【分析】根据矩形的性质,画出图形求解.【解答】解:∵ABCD为矩形∴OA=OC=OB=OD∵一个角是60°∴BC=OB=cm∴根据勾股定理==∴面积=BC•CD=4×=cm2.故答案为.【点评】本题考查的知识点有:矩形的性质、勾股定理.18.菱形的两条对角线长分别为6和8,则这个菱形的周长为20 .【考点】菱形的性质;勾股定理.【分析】根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.【解答】解:如图所示,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB===5,∴此菱形的周长为:5×4=20.故答案为:20.【点评】本题主要考查了菱形的性质,利用勾股定理求出菱形的边长是解题的关键,同学们也要熟练掌握菱形的性质:①菱形的四条边都相等;②菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.19.若两对角线长分别为4cm和6cm的菱形的面积与一个正方形的面积相等,那么该正方形的边长为2cm.【考点】正方形的性质;菱形的性质.【分析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积,进一步开方求得正方形的边长即可.【解答】解:根据对角线的长可以求得菱形的面积,根据S=ab=×4×6=12cm2,∵菱形的面积与正方形的面积相等,∴正方形的边长是=2cm.故答案为:2.【点评】本题考查了菱形的面积和正方形的面积计算的方法,本题中根据菱形对角线求得菱形的面积是解题的关键.20.如图,在矩形ABCD中,AD=4,AB=3,MN∥BC分别交AB、CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是 6 .【考点】矩形的性质.【分析】用矩形的面积减去△ADQ和△BCP的面积求解即可.【解答】解:∵四边形ABCD为矩形,∴AD=BC=4.S阴影=S矩形ABCD﹣S△BPC﹣S△ADQ=AB•CB﹣BC•MB AD•AM=4×3﹣4×BM﹣×4×AM=12﹣2MB﹣2AM=12﹣2(MB+AM)=12﹣2×3=6.故答案为:6.【点评】本题主要考查的是矩形的性质、三角形的面积公式,将阴影部分的面积转化为S矩形ABCD﹣S△﹣S△ADQ求解是解题的关键.BPC三.解答题(共50分)21.计算:(1)(﹣)2﹣+(2)(3﹣)﹣(+)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先化简二次根式,再合并同类项即可解答本题;(2)根据去括号的法则去掉括号,然后合并同类项即可解答本题.【解答】解:(1)(﹣)2﹣+=3﹣2+3=4;(2)(3﹣)﹣(+)==.【点评】本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.22.已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2(2)a2﹣2ab+b2.【考点】二次根式的化简求值.【分析】(1)利用平方差公式分解因式后再代入计算;(2)利用完全平方差公式分解因式后再代入计算.【解答】解:当a=3+,b=3﹣时,(1)a2﹣b2,=(a+b)(a﹣b),=(3+3﹣)(3+﹣3+),=6×2,=12;(2)a2﹣2ab+b2,=(a﹣b)2,=(3﹣3+)2,=(2)2,=8.【点评】本题是运用简便方法进行二次根式的化简求值,熟练掌握平方差公式和完全平方公式是解题的关键.23.如图,在四边形ABCD中,∠A=90°,AD=3,AB=4,BC=12,CD=13,试判断△BCD的形状,并说明理由.【考点】勾股定理的逆定理;勾股定理.【分析】先根据勾股定理计算BD的长,再利用勾股定理的逆定理证明∠DBC=90°,所以:△BCD是直角三角形.【解答】解:△BCD是直角三角形,理由是:在△ABD中,∠A=90°,∴BD2=AD2+AB2=32+42=25,在△BCD中,BD2+BC2=52+122=169,CD2=132=169,∴BD2+BC2=CD2,∴∠DBC=90°∴△BCD是直角三角形.【点评】本题考查了勾股定理及其逆定理,熟练掌握定理的内容是关键,注意各自的条件和结论.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.【考点】翻折变换(折叠问题).【专题】计算题.【分析】根据矩形的性质得DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=4,设EC=x,则DE=EF=8﹣x,在Rt△EFC 中,根据勾股定理得x2+42=(8﹣x)2,然后解方程即可.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,∵折叠矩形的一边AD,使点D落在BC边的点F处∴AF=AD=10,DE=EF,在Rt△ABF中,BF===6,∴FC=BC﹣BF=4,设EC=x,则DE=8﹣x,EF=8﹣x,在Rt△EFC中,∵EC2+FC2=EF2,∴x2+42=(8﹣x)2,解得x=3,∴EC的长为3cm.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.25.如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:四边形DEBF是平行四边形.【考点】平行四边形的判定与性质;全等三角形的性质.【专题】证明题;压轴题.【分析】首先连接BD,交AC于点O,由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OA=OC,OB=OD,又由AE=CF,可得OE=OF,然后根据对角线互相相平分的四边形是平行四边形.【解答】证明:连接BD,交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形DEBF是平行四边形.【点评】此题考查了平行四边形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.26.如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求AC、OA以及平行四边形ABCD的面积.【考点】平行四边形的性质.【分析】由四边形ABCD是平行四边形,可求得BC=AD=8,又由AC⊥BC,利用勾股定理即可求得AC 的长,然后由平行四边形的对角线互相平分,求得OA的长,继而求得平行四边形ABCD的面积.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵AB=10,AC⊥BC,∴AC==6,∴OA=AC=3,∴S平行四边形ABCD=BC•AC=8×6=48.【点评】此题考查了平行四边形的性质以及勾股定理.注意平行四边形的对边相等,对角线互相平分.27.已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB= 2:1 时,四边形MENF是正方形(只写结论,不需证明).【考点】矩形的性质;全等三角形的判定与性质;菱形的判定;正方形的判定.【分析】(1)根据矩形的性质可得AB=CD,∠A=∠D=90°,再根据M是AD的中点,可得AM=DM,然后再利用SAS证明△ABM≌△DCM;(2)四边形MENF是菱形.首先根据中位线的性质可证明NE∥MF,NE=MF,可得四边形MENF是平行四边形,再根据△ABM≌△DCM可得BM=CM进而得ME=MF,从而得到四边形MENF是菱形;(3)当AD:AB=2:1时,四边形MENF是正方形,证明∠EMF=90°根据有一个角为直角的菱形是正方形得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠D=90°,又∵M是AD的中点,∴AM=DM.在△ABM和△DCM中,,∴△ABM≌△DCM(SAS).(2)解:四边形MENF是菱形.证明如下:∵E,F,N分别是BM,CM,CB的中点,∴NE∥MF,NE=MF.∴四边形MENF是平行四边形.由(1),得BM=CM,∴ME=MF.∴四边形MENF是菱形.(3)解:当AD:AB=2:1时,四边形MENF是正方形.理由:∵M为AD中点,∴AD=2AM.∵AD:AB=2:1,∴AM=AB.∵∠A=90,∴∠ABM=∠AMB=45°.同理∠DMC=45°,∴∠EMF=180°﹣45°﹣45°=90°.∵四边形MENF是菱形,∴菱形MENF是正方形.故答案为:2:1.【点评】此题主要考查了矩形的性质,以及菱形的判定和正方形的判定,关键是掌握菱形和正方形的判定方法.。
甘肃省敦煌八年级下学期期中检测数学试题有答案
图2第二学期期中检测试卷 八年级下册 (满分:130分)一、选择题(每题3分,共30分)1、已知两个不等式的解集在数轴上如图表示,那么这个解集为( )A. x <-1B. x ≤2C. -1<x ≤2D. x ≤-12. 不等式2x +3≥5的解集在数轴上表示正确的是( )3. 已知b a <,下列不等式中错误的是( )A .z b z a +<+B .c b c a ->-C .b a 22<D .b a 44->-4.下列图形中,是中心对称图形的是( )5. 、如图2所示,OA 是∠BAC 的平分线,OM ⊥AC 于M ,ON ⊥AB 于N ,若ON=8cm ,则OM 长为( )A .4cmB .5cmC .8cmD .不能确定 6. 等腰三角形的一个角是80°,则它顶角的度数是( ) A .80° B .80°或20° C .80°或50° D .20°7.有一直角三角板,30°角所对直角边长是4㎝,则斜边的长是( ) A .2㎝ B. 4㎝ C. 8㎝ D. 10㎝8.直角三角形中两锐角平分线所交成的角的度数是()A. 45°B. 135°C. 45°或135°D. 都不对9. 如图所示,DE 是线段AB 的垂直平分线,下列结论一定成立的是( ) A. ED=CD B. ∠DAC=∠B C. ∠C>2∠B D. BD=AD10. 如果(1)1m x m +>+的解集为1x <,则m 的取值范围是( ) A. 0m <B. 1m <-C. 1m >-D. m 是任意实数二: 填空题(每小题4分,共40分)ABCD图111.不等式组⎩⎨⎧-≤-->xx x 28132的最小整数解是 .12.如图所示,在数轴上点A 所表示的数为a ,则a 的值为 . 13、已知数a 、b 的对应点在数轴上的位置如图所示: 则a -3 b -3 14、已知点P ()a a 3,2-在第二象限,那么a 的取值范围是15.不等式组⎩⎨⎧≤-->0542x x 的解集是 。
甘肃省酒泉市八年级下学期期中数学试卷
甘肃省酒泉市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共6题;共12分)1. (2分) (2018八上·东城期末) 下列式子为最简二次根式的是()A .B .C .D .2. (2分) (2019八上·灌云月考) 下列说法正确的是()A . 一定是一次函数B . 有的实数在数轴上找不到对应的点C . 长为的三条线段能组成直角三角形D . 无论为何值,点总是在第二象限3. (2分) (2019八下·融安期中) 如图,在菱形ABCD中,AB=6,∠ABC=60°,M为AD中点,P为对角线BD 上一动点,连接PA和PM,则PA+PM的最小值是()A . 3B . 2C . 3D . 64. (2分)(2016·南岗模拟) 下列说法正确的个数为()个①两组对边分别相等的四边形是平行四边形②对角线相等的四边形是矩形③对角线互相垂直的平行四边形是菱形④正方形是轴对称图形,有2条对称轴.A . 1B . 2C . 3D . 45. (2分)如图,正方形ABCD的对角线BD是菱形BEFD的一边,菱形BEFD的对角线交正方形ABCD的一边CD于点P,∠FPC的度数是()A . 135°B . 120°C . 112.5°D . 67.5°6. (2分)如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为()A . 14B . 16C . 20D . 28二、填空题: (共8题;共9分)7. (1分)(2016·龙东) 在函数y= 中,自变量x的取值范围是________.8. (1分) (2015八下·鄂城期中) 已知a+ = ,则a﹣ =________.9. (1分)如图,在矩形ABCD中,BC= ,AB=1,以BC为边作等边△BEC,CE,BE分别交AD于F,G两点,连接AE,则△AEF的周长等于________10. (1分) (2020八下·厦门期末) 已知:平行四边形ABCD的一边AB=12 cm,它的长是周长的,则BC=________cm.11. (1分) (2020八上·大丰期末) 如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了________步路(假设2步为1米),却踩伤了花草.12. (2分) (2020八上·高台月考) 在Rt△ABC中,∠C=90°,(1)若a=5,b=12,则c=________;(2)b=8,c=17 ,则 = ________13. (1分)(2020·黄冈模拟) 如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在M处,∠BEF =70°,则∠ABE=________度.14. (1分)已知梯形ABCD中,AD∥BC,AB=15,CD=13,AD=8,∠B是锐角,∠B的正弦值为,那么BC的长为________ .三、解答 (共4题;共30分)15. (5分) (2019八上·仁寿期中) 计算16. (5分)(2017·深圳模拟) 先化简:÷( - ),再从-2<x<3的范围内选取一个你喜欢的x值代入求值.17. (15分) (2019八下·兰州期中) 如图,在中,,,AD是的角平分线,,垂足为E.(1)求证:;(2)已知,求AC的长;(3)求证: .18. (5分)如图所示,数轴上表示1和对应点分别为A、B,点B到点A的距离等于点C到点O的距离相等,设点C表示的数为x.(1)请你写出数x的值;(2)求(x﹣)2的立方根.四、解答题 (共6题;共55分)19. (10分)(2020·陕西模拟) 菱形ABCD的对角线AC,BD相交于点O,AC=16,BD=12,动点P在线段AC 上从点A向点C以4个单位/秒的速度运动,过点P作EF⊥AC,交菱形ABCD的边于点E、F,在直线AC上有一点G,使△AEF与△GEF关于EF对称.设菱形ABCD被四边形AEGF盖住部分的面积为S1 ,未被盖住部分的面积为S2 ,点P运动时间为x秒.(1)用含x的代数式分别表示S1 , S2;(2)若S1=S2 ,求x的值.20. (5分)已知:x+y=2,xy=7,求x3y+xy3的值.21. (10分)(2018·潍坊) 如图,点是正方形边上一点,连接 ,作于点 , 手点 ,连接.(1)求证: ;(2)已知 ,四边形的面积为24,求的正弦值.22. (10分) (2016八上·平南期中) 如图所示,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于E,F在AC上,∠B=∠CFD.证明:(1) CF=EB(2) AB=AF+2EB.23. (10分) (2019九上·官渡期末) 如图,AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,OD⊥BC于E.(1)求证:OD∥AC;(2)若BC=8,DE=3,求⊙O的直径.24. (10分)(2018·宁夏) 已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N.(1)求证:△ABE≌△BCN;(2)若N为AB的中点,求tan∠ABE.参考答案一、选择题: (共6题;共12分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:二、填空题: (共8题;共9分)答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:三、解答 (共4题;共30分)答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、答案:17-2、答案:17-3、考点:解析:答案:18-1、考点:解析:四、解答题 (共6题;共55分)答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、考点:解析:。
甘肃省酒泉市八年级下学期数学期中考试试卷
甘肃省酒泉市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)某地区有8所高中和22所初中.要了解该地区中学生的视力情况,下列抽样方式获得的数据最能反映该地区中学生视力情况的是()A . 从该地区随机选取一所中学里的学生B . 从该地区30所中学里随机选取800名学生C . 从该地区一所高中和一所初中各选取一个年级的学生D . 从该地区的22所初中里随机选取400名学生2. (2分)(2016·菏泽) 以下微信图标不是轴对称图形的是()A .B .C .D .3. (2分)掷一枚均匀的骰子,前5次朝上的点数恰好是1~5,则第6次朝上的点数().A . 一定是6B . 一定不是6C . 是6的可能性大于是1~5中的任意一个数的可能性D . 是6的可能性等于是1~5中的任意一个数的可能性4. (2分)一个不透明的盒子里有n个除颜色外其它完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后在放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是().A . 6B . 10C . 18D . 205. (2分)我国发现的首例甲型H1N1流感确诊病例曾在成都某医院隔离观察,要掌握他在一周内的体温是否稳定,则医生需要了解这位病人7天体温的()A . 中位数B . 平均数C . 方差D . 众数6. (2分) (2020八下·沈河期末) 下列命题中,逆命题是真命题的是()A . 平行四边形的两组对角分别相等B . 正多边形的每条边都相等C . 成中心对称的两个图形一定全等D . 矩形的两条对角线相等7. (2分)(2017·东海模拟) 如图,把一块含有30°角(∠A=30°)的直角三角板ABC的直角顶点放在矩形桌面CDEF的一个顶点C处,桌面的另一个顶点F与三角板斜边相交于点F,如果∠1=40°,那么∠AFE=()A . 50°B . 40°C . 20°D . 10°8. (2分)(2017·巨野模拟) 如图,在平行四边形ABCD中,下列结论一定正确的是()A . AC⊥BDB . ∠A+∠B=180°C . AB=ADD . ∠A+∠C=180°二、填空题 (共8题;共10分)9. (1分) (2020七上·吉安期末) 一个扇形统计图中,某部分占总体的百分比为5%,则该部分所对扇形圆心角的度数为________度.10. (1分) (2020八下·无锡期中) 为了了解本校1000学生视力情况,随机抽取了50名学生进行调查,这次抽样调查的样本容量是________.11. (1分) (2020八下·江都期末) 在一个不透明的盒子里装有黑、白两种颜色的球共50只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中.不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n100200300500800 1 000 3 000摸到白球的次数m651241783024816201845摸到白球的频率0.650.620.5930.6040.6010.6200.615请估计:当n很大时,摸到白球的频率将会接近________;(精确到0.1)12. (2分)(2017·海宁模拟) 如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是________.13. (2分)(2018·淄博) 在如图所示的平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D 落在△ABC所在平面内的点E处,且AE过BC的中点O,则△ADE的周长等于________.14. (1分)(2017·广陵模拟) 在RT△ABC中,∠C=90°,AB=10,sinA= ,那么AC=________.15. (1分)正方形、菱形、矩形的对角线都具有的共同特征是________.16. (1分) (2016八下·高安期中) 已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于________.三、解答题 (共9题;共42分)17. (5分)如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形.18. (5分)下列事件中,哪些是确定事件?哪些是不确定事件?哪些是必然事件?哪些是不可能事件?⑴上海每年都有人出生.⑵掷一枚均匀的骰子,3点朝上.⑶你将长到4m.⑷15道选择题全选A.⑸你最喜欢的篮球队将获得CBA冠军.⑹打开电视,正在播电视剧.⑺任买一张足球彩票,中一等奖.19. (6分) (2019九上·湖州月考) 杨老师为了了解所教班级学生课后复习的具体情况,对本班部分学生进行了一个月的跟踪调查,然后将调查结果分成四类:A:优秀;B:良好;C:一般;D:较差。
酒泉市八年级下学期期中数学试卷
酒泉市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列式子:中,一定是二次根式有()A . 1个B . 2个C . 3个D . 4个2. (2分) (2016九上·盐城开学考) 使代数式有意义的x的取值范围()A . x>2B . x≥2C . x>3D . x≥2且x≠33. (2分)下列计算正确的是()A . x=B . +=C . =4D . -=4. (2分)(2016·武汉) 实数的值在()A . 0和1之间B . 1和2之间C . 2和3之间D . 3和4之间5. (2分) 9的算术平方根是()A . ±81B . 81C . ±3D . 36. (2分) (2019八下·江城期中) 如图,AD∥BC ,要使四边形ABCD为平行四边形还需要条件()A . AB=DCB . ∠1=∠2C . AB=ADD . ∠D=∠B7. (2分)如图,在梯形ABCD中,AB∥DC,∠ADC+∠BCD=90°,且DC=2AB,分别以DA、BC、DC为边向梯形外作正方形,其面积分别为S1、S2、S3 ,则S1、S2、S3之间数量的关系是()A . S1+S2=S3B . S1+S2=S3C . S1+S2=S3D . S1+S2=S38. (2分) (2016八上·沈丘期末) 将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形()A . 可能是锐角三角形B . 不可能是直角三角形C . 仍然是直角三角形D . 可能是钝角三角形9. (2分)(2018·牡丹江) 如图,正方形ABCD中,E为CD的中点,AE的垂直平分线分别交AD,BC及AB 的延长线于点F,G,H,连接HE,HC,OD,连接CO并延长交AD于点M.则下列结论中:①FG=2AO;②OD∥HE;③ ;④2OE2=AH•DE;⑤GO+BH=HC正确结论的个数有()A . 2B . 3C . 4D . 510. (2分)下列说法中,错误的是()A . 一组对边平行且相等的四边形是平行四边形B . 四个角都相等的四边形是矩形C . 两条对角线互相垂直且平分的四边形是菱形D . 邻边相等的四边形是正方形11. (2分)如图,顺次连结圆内接矩形各边的中点,得到菱形ABCD,若BD=10,DF=4,则菱形ABCD的边长为()A .B .C .D .12. (2分)下列四个命题中假命题是()A . 对角线互相垂直的平行四边形是菱形B . 对角线相等的平行四边形是矩形C . 对角线互相垂直平分且相等的四边形是正方形D . 对角线相等的四边形是平行四边形二、填空题 (共6题;共6分)14. (1分) (2016八上·龙湾期中) 折叠长方形纸片ABCD的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,折痕AE的长是________.15. (1分) (2017八下·宁波期中) 顺次连接一个四边形的各边中点,所得到的四边形一定是________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
2014-2015 学年甘肃省酒泉市敦煌市青海油田二中八年 级(下)期中数学试卷
参考答案与试题解析
一.填空(每空 2 分,共 30 分) 1. (4 分)若 有意义,则 x 的取值范围是 . x≥ ;若 有意义,则 x
的取值范围是 x≥﹣1 且 x≠1 【解答】解:∵ 有意义,
∴2x﹣1≥0,解得 x≥ ; ∵ ∴ 有意3 分,共 24 分) 13. (3 分)下列的式子一定是二次根式的是( A. B. C. D. ,则( ) )
14. (3 分)若 A.x≥6
B.x≥0C.0≤x≤6 D.x 为一切实数 )
2
15. (3 分)△ABC 中,AB=13cm,AC=15cm,高 AD=12,则 BC 的长为(
A.5 个 B.4 个 C.3 个 D.2 个 19. (3 分)如图,矩形 ABCD 中,DE⊥AC 于 E,且∠ADE:∠EDC=3:2,则∠ BDE 的度数为( )
A.36° B.18° C.27° D.9° 20. (3 分)如图,在△ABC 中,∠ACB=90°,BC 的垂直平分线 EF 交 BC 于点 D, 交 AB 于点 E,且 BE=BF,添加一个条件,仍不能证明四边形 BECF 为正方形的是 ( )
3
A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF
三.计算(4x4=16 分) 21. (16 分)计算 (1)4 + ﹣ ﹣3 +3 + ) (2 )÷ ﹣3 . •(x+2) ,其中 x= . ) +4
(2)6﹣2 (3) (2 (4) (
22. (4 分)先化简,再求值:
23. (6 分)如图,四边形 ABCD 中,AB=3cm,BC=4cm,CD=12cm,DA=13cm, 且∠ABC=90°.求四边形 ABCD 的面积.
28. (6 分)已知:如图,在平行四边形 ABCD 中,AE 是 BC 边上的高,将△ABE 沿 BC 方向平移,使点 E 与点 C 重合,得△GFC. (1)求证:BE=DG; (2)若∠B=60°,当 AB 与 BC 满足什么数量关系时,四边形 ABFG 是菱形?证明 你的结论.
5
29. (10 分)如图 1,在正方形 ABCD 中,E、F 分别是边 AD、DC 上的点,且 AF ⊥BE. (1)求证:AF=BE; (2)如图 2,在正方形 ABCD 中,M、N、P、Q 分别是边 AB、BC、CD、DA 上的 点,且 MP⊥NQ.MP 与 NQ 是否相等?并说明理由.
度.
11. (2 分)如图,在正方形 ABCD 的外侧,作等边△ADE,则∠AEB=
.
12. (2 分)如图,在平面直角坐标系中,点 A、B、C 的坐标分别是 A(﹣2,5) , B(﹣3,﹣1) ,C(1,﹣1) ,在第一象限内找一点 D,使四边形 ABCD 是平行四 边形,那么点 D 的坐标是 .
2014-2015 学年甘肃省酒泉市敦煌市青海油田二中八年级(下) 期中数学试卷
一.填空(每空 2 分,共 30 分) 1. (4 分)若 的取值范围是 有意义,则 x 的取值范围是 . . (填“>”、“=”、“<”) . , DC= ;若 有意义,则 x
2. (2 分)比较大小:
3. (4 分)平行四边形 ABCD 中,∠A=50°, AB=30cm ,则∠ B= cm.
C.正方形 D.对角线相等的四边形 18. (3 分)如图,正方形 ABCD 中,点 E 在 BC 的延长线上,AE 平分∠DAC,则 下列结论: (1)∠E=22.5°; (2)∠AFC=112.5°; (3)∠ACE=135°; (4)AC=CE; (5)AD: CE=1: . )
其中正确的有(
A.14 B.4
C.14 或 4 D.以上都不对 )
16. (3 分)矩形、菱形、正方形都具有的性质是( A.对角线互相垂直 B.对角线互相平分 C.对角线相等 D.对角线平分一组对角
17. (3 分) 若顺次连接四边形 ABCD 各边中点所得四边形是矩形, 则四边形 ABCD 必然是( A.菱形 ) B.对角线相互垂直的四边形
8. (2 分)如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直 角三角形,其中最大的正方形的边长为 5,则正方形 A,B,C,D 的面积的和 为 .
9. (2 分)如图,平行四边形 ABCD 中,E,F 分别为 AD,BC 边上的一点.若再 增加一个条件 ,就可得 BE=DF.
1
10. (2 分)将一矩形纸条,按如图所示折叠,则∠1=
4. (2 分)菱形的一个内角为 120°,平分这个内角的一条对角线长为 12cm,则 菱形的周长为 . ,则 a+b= .
5. (2 分)已知 a、b 为两个连续的整数,且
6. (2 分)已知一直角三角形的两条直角边长分别为 5 和 12,则第三边的长 为 . , 逆命题是 命
7. (4 分) 命题“等腰三角形两底角相等”的逆命题是 题(填“真”或“假”) .
四.证明 26. (6 分)如图,E、F 是平行四边形 ABCD 的对角线 AC 上的两点,AE=CF.求 证:四边形 DEBF 是平行四边形.
27. (6 分)如图,已知四边形 ABCD 是平行四边形,∠BCD 的平分线 CF 交边 AB 于 F,∠ADC 的平分线 DG 交边 AB 于 G. (1)求证:AF=GB. (2)当 时,△EFG 为等腰直角三角形. (添加一个适当的条件)
24. (6 分)印度数学家什迦逻(1141 年﹣1225 年)曾提出过“荷花问题”: “平平湖水清可鉴,面上半尺生红莲; 出泥不染亭亭立,忽被强风吹一边, 渔人观看忙向前,花离原位二尺远; 能算诸君请解题,湖水如何知深浅” 请用学过的数学知识回答这个问题.
4
25. (6 分)如图,在▱ABCD 中,∠ABC=5∠A,过点 B 作 BE⊥DC 交 AD 的延长线 于点 E,O 是垂足,且 DE=DA=4cm, 求: (1)▱ABCD 的周长; (2)四边形 BDEC 的周长和面积(结果可保留根号)