溅射镀膜类型
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
9
直流二极溅射放电所形成电回路,是依靠气体放电产生的正离子飞向 阴极靶,一次电子飞向阳极而形成的。而放电是依靠正离子轰击阴极 所产生的二次电子,经阴极暗区被加速后去补充被消耗的一次电子来 维持的。因此,在溅射镀膜过程中,溅射效应是手段,沉积效应是目 的,电离效应是条件。
a
10
为了提高淀积速率,在不影响 辉光放电前提下,基片应尽量 靠近阴极靶。但基片接近阴极 时,甚至在未达到阴极暗区之 前,就会产生放电电流急剧变 小而使溅射速率下降的现象。 这时,从基片上膜厚分布来看 , 在阴极遮蔽最强的中心区膜最 薄。因此,有关资料指出:阴 极靶与基片间的距离以大于阴 极暗区的3~4倍较为适宜。
(1)溅射参数不易独立控制,放电电流易随电压和气压变化,工艺重复 性差;
(2)气体压Hale Waihona Puke Baidu较高(10Pa左右),溅射速率较低,这不利于减少杂质污 染及提高溅射效率,使薄膜纯度较差,成膜速度慢;
( 3 ) 电子在电场力作用下迅速飞向基片表面:电子运动路径短,轰击在 基片上速度快,导致基片温度升高;
(4)为了在辉光放电过程中使靶表面保持可控的负高压,靶材必须是导 体。(直流溅射法要求靶材能够将从离子轰击过程中得到的正电荷传 递给与其紧密接触的阴极,从而该方法只能溅射导体材料,不适于绝 缘材料。因为轰击绝缘靶材时表面的离子电荷无法中和,这将导致靶 面电位升高,外加电压几乎都加在靶上,两极间的离子加速与电离的 机会将变小,甚至不能电离,导致不能连续放电甚至放电停止,溅射 停止。故对于绝缘靶材或导电性很差的非金属靶材,须用射频溅射 法。)
a
6
基片
二级溅射结构原理图
a
7
直流二极溅射原理
先将真空室预抽到高真空(如10-3Pa),然后,通入惰性气体(通常 为氩气),使真空室内压力维持在1~10Pa;
接通电源(直流负高压),电子在电场的作用下加速飞向基片的过程 中与Ar原子发生碰撞, 电 离 出 大 量 的 Ar+和电子,电子飞向基片,在 此过程中不断和Ar原子碰撞,产生更多的Ar+和电子 , Ar+离子 经 电 场 加速后撞击靶材表面,使靶材原子被轰击而飞出来,同时产生二次电 子,二次电子再撞击气体原子从而形成更多的带电离子,更多的离子轰 击靶又释放更多的电子,从而使辉光放电达到自持;
a
2
各种溅射镀膜类型的比较
a
3
a
4
a
5
一.二极溅射
阴极靶由镀膜材料制成,成膜的基板及其固定架作为阳极,
构成了溅射装置的两个极 。
使用直流电源则称为直流二极溅射,因为溅射过程发生在 阴极,故又称为阴极溅射。
使用射频电源时称为射频二极溅射。
靶和基板固定架都是平板状的称为平面二极溅射。
若二者是同轴圆柱状布置就称为同轴二极溅射。
成为阳极,导致大量电子流向基片,引起基片发热所致。
图3-34 钽膜电阻率与基片偏压关系
a
14
三、三极或四极溅射
二极直流溅射只能在较高气压下进行,因为它是依赖离子 轰击阴极所发射的次级电子来维持辉光放电。如果气压降 到1.3~2.7Pa(10~20mTorr)时,则阴极暗区扩大,电子 自由程增加,等离子体密度降低,辉光放电便无法维持。
溅射镀膜类型
a
1
溅射镀膜的方式很多,从电极结构上可分为二极 溅射、三或四极溅射和磁控溅射。
直流溅射系统一般只能用于靶材为良导体的溅射; 射频溅射适用于绝缘体、导体、半导体等任何一
类靶材的溅射; 反应溅射可制备化合物薄膜; 为了提高薄膜纯度而分别研究出偏压溅射、非对
称交流溅射和吸气溅射等; 对向靶溅射可以进行磁性薄膜的高速低温制备。
a
15
在低压下,为了增加离化率并保持放电自持,一个可供选 择的方法就是提供一个额外的电子源(额外电子源提供具 有合适能量的额外电子,保持高离化效率),而不是从靶 阴极获得电子。
三极溅射克服了二极溅射的缺点,它在真空室内附加一个 独立的电子源——热阴极(热阴极通常是一加热的钨丝, 他可以承受长时间的离子轰击),它通过热离子辐射形式 发散电子并和阳极产生等离子体,同时使靶相对于该等离 子体为负电位,用等离子体中的正离子轰击靶材而进行溅 射。如果为了引入热电子并使放电稳定,再附加第四电 极——稳定化电极,即称为四极溅射。
直流二极溅射的工作参数为溅 射功率、放电电压、气体压力 和电极间距。溅射时主要监视 功率、电压和气压参数。当电 压一定时,放电电流与气体压 强的关系如图3-32所示。气体 压力不低于lPa,阴极靶电流 密度为0.15 ~1.5MA/CM²。
a
11
优点:
结构简单,可获得大面积膜厚均匀的薄膜。
缺点:
直流偏压溅射的原理示意图
a
13
(2)偏压溅射还可改变淀积薄膜的结构。图3-34示出了基片加不同偏
压时钽膜电阻率的变化。偏压在-100V至100V范围,膜层电阻率较高,属 β-Ta即四方晶结构。当负偏压大于100V时,电阻率迅速下降,这时钽膜 已相变为正常体心立方结构。这种情况很可能是因为基片加上正偏压后,
从靶面飞溅出来的粒子以足够的动能飞向阳极并沉积在基材表面,形 成镀层。
基片
e-
E
Ar
+ Ar+
+ Ar+
e-
e-
靶材
V (<0a)
8
溅射过程中涉及到复杂的散射过程和多种能量传递过程: 首先,入射粒子与靶材原子发生弹性碰撞,入射粒子的一 部分动能会传给靶材原子,某些靶材原子的动能超过由其 周围存在的其它原子所形成的势垒(对于金属是5-10eV), 从而从晶格点阵中被碰撞出来,产生离位原子,并进一步 和附近的原子依次反复碰撞,产生碰撞级联。当这种碰撞 级联到达靶材表面时,如果靠近靶材表面的原子的动能大 于表面结合能(对于金属是1-6eV),这些原子就会从靶材 表面脱离从而进入真空。
a
12
二、偏压溅射
直流偏压溅射的原理示意如图 所示。它与直流二极溅射的区别 在于基片上施加一固定直流偏压。
特点:
(1)若施加的是负偏压,则在 薄膜淀积过程中,基片表面都将 受到气体离子的稳定轰击,随时 清除可能进入薄膜表面的气体, 有利于提高薄膜的纯度。并且也 可除掉粘附力弱的淀积粒子,加 之在淀积之前可对基片进行轰击 清洗,使表面净化,从而提高了 薄膜的附着力。