平行四边形的性质及判定-典型例题
平行四边形性质经典例题及练习
平行四边形性质经典例题及练习(4)一、平行四边形的性质: 1、平行四边形对边相等且平行 2、平行四边形对角相等,邻角互补 3、平行四边形对角线互相平分 二、典型例题 1、角度的计算例1 、 一个平行四边形的一个内角是它邻角的3倍,那么这个平行四边形的四个内角各是多少度?解 设平行四边形的一个内角的度数为x ,则它的邻角的度数为3x ,根据题意,得x+3x=180,解得x=45,∴ 3x=135∴这个平行四边形的四个内角的度数分别为45°,135°,45°,135°. 练习:(1).在平行四边形ABCD 中,∠A : ∠B=3:2,则∠C=____ 度, ∠D=_______度. (2)平行四边形 ABCD 中,∠A+∠C=200°.则:∠A= _______,∠B= _____ . (3) 在平行四边形ABCD 中,∠B -∠A=20°,则∠D 的度数是 。
2、边长及周长计算 例2 已知:如图,ABCD 的周长为60cm ,对角线AC 、BD 相交于点O ,的周长比 的 周长多8cm ,求这个平行四边形各边的长. (答案:19cm ,11cm ,19cm ,11cm .)说明:学习本题可以得出两个结论:(1)平行四边形两邻边之和等于平行四边形周长的一半.(2)平行四边形被对角线分成四个小三角形,相邻两个三角形周长之差等于邻边之差. 练习:(1)已知:平行四边形一边AB=12 cm,它的长是周长的1/6,则BC=______ cm,CD=______ cm.(2)已知平行四边形的周长是100cm, AB:BC=4 : 1,则AB 的长是______.(3)已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长是______________.(4)用20米长的一铁丝围成一个平行四边形,使长边与短边的比为3:2,则它的边长为________短边长为__________.3、面积计算例3、已知:如图,ABCD 的周长是,由钝角顶点D 向AB ,BC 引两条高DE ,DF ,且,.求这个平行四边形的面积.解答:设. ∵ 四边形ABCD 为平行四边形,∴.又∵四边形ABCD 的周长为36,∴ ① ∵, ∴∴ ② 解由①,②组成的方程组,得.∴.说明:本题考查平行四边形的性质及面积公式,解题关键是把几何问题转化为方程组的问题. 练习:1、平行四边形两邻边分别是4和6,其中一边上的高是3,则平行四边形的面积是____________.2、如图,中,对角线AC 长为10 cm ,∠CAB =30°,AB 长为6 cm ,则的面积是____________.3、平行四边形邻边长是4 cm 和8cm ,一边上的高是5 cm ,则另一边上的高是____________. 4、在中,∠A =30°,AB =7 cm ,AD =6 cm ,则=______.5、如图,平行四边形ABCD 的周长为50,其中AB=15,∠ABC=60°,求平行四边形面积。
专题 平行四边形的性质和判定(原卷版)
八年级下册数学《第十八章 平行四边形》专题 平行四边形的性质与判定【例题1】如图,在平行四边形ABCD 中,CE 平分∠BCD ,交AB 于点E ,AE =3,EB =5,ED =4.则CE 的长是( )A .2√2B .6√2C .5√5D .4√5【变式1-1】如图,在平行四边形ABCD 中,AB =5,AD =7,AE 平分∠BAD 交BC 于点E ,作DG ⊥AE 于点G 并延长交BC 于点F ,则线段EF 的长为( )A .2B .52C .3D .2√6【变式1-2】如图,在▱ABCD 中,O 为对角线AC 与BD 的交点,AC ⊥AB ,E 为AD 的中点,并且OF ⊥BC ,∠D =53°,则∠FOE 的度数是( )A .143°B .127°C .53°D .37°【变式1-3】如图,将平行四边形OABC 放置在平面直角坐标系xOy 中,O 为坐标原点,若点C 的坐标是(1,3),点A 的坐标是(5,0),则点B 的坐标是( )A .(5,3)B .(4,3)C .(6,3)D .(8,1)【变式1-4】如图,在平行四边形ABCD 中P 是CD 边上一点,且AP 和BP 分别平分∠DAB 和∠CBA ,若AD =5,AP =8,则△APB 的周长是( )A.18B.24C.23D.14【变式1-5】如图,在平行四边形ABCD中,∠B=60°,AE平分∠BAD交BC于点E,若∠AED=80°,则∠ACE的度数是()A.30°B.35°C.40°D.45°【变式1-6】▱ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是()A.3≤AB≤4B.2<AB<14C.1<AB<7D.1≤AB≤7【变式1-7】在平行四边形ABCD中,∠A的角平分线把边BC分成长度为4和5的两条线段,则平行四边形ABCD的周长为()A.13或14B.26或28C.13D.无法确定【变式1-8】如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD分别相交于点E、F,连接EC.(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是10,求▱ABCD的周长.【例题2】(2022•南京模拟)如图,在平行四边形ABCD中,E,F是对角线AC上的两点,且AE=EF =FC.(1)求证:DE∥BF;(2)若BE⊥BC,DE=6,求对角线AC的长.【变式2-1】(2022春•西吉县校级月考)如图.已知四边形ABCD是平行四边形,BE⊥AC,DF⊥AC,求证:BE=DF.【变式2-2】(2022•泉山区校级三模)已知,如图,在平行四边形ABCD中,点E、F分别在AB、CD的延长线上,BE=DF,连接EF,分别交BC、AD于G、H.求证:EG=FH.【变式2-3】(2022秋•北碚区校级期末)如图,平行四边形ABCD中,CB=2AB,∠DCB的平分线交BA 的延长线于点F.(1)求证:DE=AE;(2)若∠DAF=70°,求∠BEA的度数.【变式2-4】(2022秋•道里区校级月考)在平行四边形ABCD中,点E在CD边上,点F在AB边上,连接AE、CF、DF、BE,∠DAE=∠BCF.(1)如图1,求证:DE=BF;(2)如图2,设AE交DF于点G,BE交CF于点H,连接GH,若E是CD边的中点,在不添加任何辅助线的情况下,请直接写出图中以G为顶点并且与△EHC全等的所有三角形.【变式2-5】(2021春•九龙坡区校级期中)在▱ABCD中,∠ABC=45°,过A作AE⊥CD于E,连接BE,延长EA至F,使CE=AF,连接DF.(1)求证:DF=BE;(2)若DF=√34,AD=3√2,求四边形ADEB的周长.【变式2-6】(2022春•济南期中)如图,将▱ABCD的边BC延长到点E,使BE=CD,连接AE交CD 于点F.(1)求证:AE平分∠BAD;(2)已知BC=CE=3,EF=4,FG⊥AB,求FG的长.【例题3】如图,平行四边形ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.CE=AF B.BE=DF C.∠DAF=∠BCE D.AF∥CE【变式3-1】在下列条件中,能够判定一个四边形是平行四边形的有()①一组对边平行,另一组对边相等②一组对边平行,一条对角线平分另一条对角线③一组对边平行,一组对角相等④一组对角相等,一条对角线平分另一条对角线A.1个B.2个C.3个D.4个【变式3-2】下列条件能判定四边形ABCD是平行四边形的是()A.∠A=∠B,∠C=∠D B.AB=AD,BC=CDC.AB=CD,AD=BC D.AB∥CD,AD=BC【变式3-3】四边形ABCD中,对角线AC,BD交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB∥CD,∠BAD=∠BCD;③AO=CO,BO=DO;④AB∥CD,AD=BC.一定能判定四边形ABCD 是平行四边形的条件有()A.1组B.2组C.3组D.4组【变式3-4】如图,在△ABC中,D,F分别是AB,AC上的点,且DF∥BC.点E是射线DF上一点,若再添加下列其中一个条件后,不能判定四边形DBCE为平行四边形的是()A.∠ADE=∠E B.∠B=∠E C.DE=BC D.BD=CE【变式3-5】如图,在△ABC中,点D,E分别是AB,BC边的中点,点F在DE的延长线上.添加一个条件,使得四边形ADFC为平行四边形,则这个条件可以是()A.∠B=∠F B.DE=EF C.AC=CF D.AD=CF【变式3-6】如图,在▱ABCD中,E,F分别是边AD,BC上的点,连接AF,CE,只需添加一个条件即可证明四边形AFCE是平行四边形,这个条件可以是(写出一个即可).【变式3-7】平行四边形ABCD中,E、F是对角线BD上不同的两点,写出一个能使四边形AECF一定为平行四边形的条件.(用题目中的已知字母表示)【例题4】(2021•江华县一模)如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE.(1)求证:△ACD≌△CBF;(2)点D在线段BC上何处时,四边形CDEF是平行四边形且∠DEF=30°.【变式4-1】如图,点B、C、E、F在同一直线上,BE=CF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)四边形ABED是平行四边形.【变式4-2】如图所示,△ABC中,D是BC边上中点,AE是∠BAC的平分线,CE⊥AE,EF∥BC交AB于点F,求证:四边形BDEF是平行四边形.【变式4-3】(2021秋•海阳市期末)如图,在△ABC中,AD是BC边的中线,F是AC上一点,且满足2AF=CF,连接BF与AD相交于点E.若G为线段BF上一动点,试分析当点G在何位置时,四边形AFDG为平行四边形?【变式4-4】(2022春•顺义区校级月考)如图,四边形ABCD中,BD垂直平分AC,垂足为点F、E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC.(1)求证:四边形ABDE是平行四边形;(2)如果DA平分∠BDE,AB=3,AD=4,求AC的长.【变式4-5】(2021春•西安期末)如图,在△AFC中,∠F AC=45°,FE⊥AC于点E,在EF上取一点B,连接AB、BC,使得AB=FC,过点A作AD⊥AF,且AD=BC,连接CD,求证:四边形ABCD是平行四边形.【变式4-6】(2022春•礼泉县期末)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)求证:△AEF≌△BAC;(2)四边形ADFE是平行四边形吗?请说明理由.【例题5】如图,在▱ABCD 中,要在对角线BD 上找两点E 、F ,使A 、E 、C 、F 四点构成平行四边形,现有①,②,③,④四种方案,①只需要满足BE =DF ;②只需要满足AE ⊥BD ,CF ⊥BD ;③只需要满足AE ,CF 分别平分∠BAD ,∠BCD ,④只需要满足AE =CF .则对四种方案判断正确的是( )A .①②③B .①③④C .①②④D .②③④【变式5-1】如图,在▱ABCD 中,E 、F 分别为边AB 、DC 的中点,连接AF 、CE 、DE 、BF 、EF ,AF 与DE 交于点G ,CE 与BF 交于点H ,则图中共有平行四边形( )A .3个B .4个C .5个D .6个【变式5-2】如图,已知△ABC 是边长为6的等边三角形,点D 是线段BC 上的一个动点(点D 不与点B ,C 重合),△ADE 是以AD 为边的等边三角形,过点E 作BC 的平行线,分别交线段AB ,AC 于点F ,G ,连接BE 和CF .则下列结论中:①BE =CD ;②∠BDE =∠CAD ;③四边形BCGE 是平行四边形;④当CD =2时,S △AEF =23,其中正确的有( )A .4个B .3个C .2个D .1个【变式5-3】(2022春•南海区月考)如图,在▱ABCD 中,点E 是BC 边的中点,连接AE 并延长与DC的延长线交于F.(1)求证:四边形ABFC是平行四边形;(2)若AF平分∠BAD,∠D=60°,AD=8,求▱ABCD的面积.【变式5-4】(2022春•重庆月考)已知,如图,在▱ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.【变式5-5】(2022春•南湖区校级期中)如图,在平行四边形ABCD中,BD是它的一条对角线,过A、C两点分别作AE⊥BD,CF⊥BD,E、F为垂足.(1)求证:四边形AFCE是平行四边形.(2)若AD=13cm,AE=12cm,AB=20cm,求四边形AFCE的面积.【变式5-6】(2021春•南昌期中)如图,点O是平行四边形ABCD对角线的交点,过点O的直线交AD,BC于P,Q两点,交BA,DC的延长线于M,N两点.(1)求证:AP=CQ;(2)连接DM,BN,求证:四边形BNDM是平行四边形.【变式5-7】(2022春•温州校级月考)在Rt△ABC中,∠ACB=90°,D是斜边AB上的一点,作DE ⊥BC,垂足为E,延长DE到F,连结CF,使∠A=∠F.(1)求证:四边形ADFC是平行四边形.(2)连接CD,若CD平分∠ADE,CF=10,CD=12,求四边形ADFC的面积.【变式5-8】(2022春•锦江区校级期中)如图,在等边△ABC中,D、E两点分别在边BC、AC上,BD =CE,以AD为边作等边△ADF,连接EF,CF.(1)求证:△CEF为等边三角形;(2)求证:四边形BDFE为平行四边形;(3)若AE=2,EF=4,求四边形BDFE的面积.。
平行四边形性质判定练习题
平行四边形性质判定练习题平行四边形是几何学中常见的一个概念,它具备一些独特的性质和判定条件。
为了更好地理解和应用这些性质,下面将通过一些练习题来帮助你巩固对平行四边形的认识。
练习题一:已知四边形ABCD,AB∥CD。
如果∠BAD = 80°,则∠ADC等于多少度?解析:由于AB∥CD,根据平行线性质可知∠BAD + ∠ADC = 180°。
又∠BAD = 80°,代入得80° + ∠ADC = 180°,解方程得∠ADC = 100°。
练习题二:在平行四边形ABCD中,已知AB = 6 cm,BC = 8 cm,AD = 5 cm,求CD的长度。
解析:由平行四边形的性质可知,对角线相等,即AC = BD。
又ABCD为平行四边形,AB∥CD,所以AD与BC平行,根据平行线性质可知∠ADC = ∠CBD。
根据余弦定理,可以得出∠ADC关于边长AD、CD、AC的关系:AD² + CD² - 2·AD·CD·cos∠ADC = AC²代入已知数据,得5² + CD² - 2·5·CD·cos∠ADC = AC²根据AC = BD,即6² + 8² = 10²,可以求得AC = 10 cm。
再代入已知数据,得25 + CD² - 10·CD·cos∠ADC = 100整理得CD² - 10·CD·cos∠ADC - 75 = 0根据解一元二次方程的方法,求得CD = 15 cm。
练习题三:平行四边形ABCD中,已知AB = 7 cm,将ABCD绕点A逆时针旋转120°得到四边形A'B'C'D',连接DD'交AC于点E。
(完整版)平行四边形的性质判定练习题
第一部分 平行四边形的性质练习题 例题1、平行四边形得周长为50cm ,两邻边之差为5cm,求各边长。
变题1.平行四边形ABCD 的周长为40cm,两邻边AB 、AC 之比为2:3,则AB=_______,BC=________. 变题2.四边形ABCD 是平行四边形,∠BAC=90°,AB=3,AC=4,求AD 的长。
例题2.平行四边形ABCD 中,∠A-∠B=20°,求平行四边形各内角的度数。
变题3.平行四边形ABCD 中,AE 平分∠DAB, ∠DEA=20°,则∠C=_________,∠B_________. 变题4.如图,在平行四边形ABCD 中,∠BAC=34°, ∠ACB=26°,求∠DAC 与∠D 的度数。
例题3.如图,在平行四边形ABCD 中,CE ⊥AD,CF ⊥BA 交BA 的延长线于F ,∠FBC=30°,CE=3cm,CF=5cm,求平行四边形ABCD 的周长。
变题5.如图,平行四边形ABCD 的周长为50,其中AB=15,∠ABC=60°,求平行四边形面积。
1、如图,四边形ABCD 是平行四边形,AB=6cm,BC=8cm ,∠B=70°,则AD=________,CD=______,∠D=_______,∠A=______,∠C=_______.2、平行四边形ABCD 的周长为40cm,两邻边AB 、AC 之比为2:3,则AB=_______,BC=________.3、平行四边形得周长为50cm ,两邻边之差为5cm,则长边是________ ,短边是__________.4、平行四边形ABCD 中,∠A-∠B=20°, 则∠A=_______ ∠B=________5、.平行四边形ABCD 中,AE 平分∠DAB, ∠DEA=20°,则∠C=____,∠B_____.6、平行四边形 ABCD 中,∠A+∠C=200°.则:∠A= _______,∠B= _________ .7、如图,平行四边形ABCD 的周长为50,其中AB=15,∠ABC=60°,求平行四边形面积。
平行四边形的性质与判定经典例题练习
平行四边形的性质与判定经典例题练习一、平行四边形的性质1. 定义:平行四边形是一种具有两对对边平行的四边形。
定义:平行四边形是一种具有两对对边平行的四边形。
2. 性质1:平行四边形的对边相等。
性质1:平行四边形的对边相等。
3. 性质2:平行四边形的对角线相等。
性质2:平行四边形的对角线相等。
4. 性质3:平行四边形的内角和为180度(即任意两个相邻内角之和为180度)。
性质3:平行四边形的内角和为180度(即任意两个相邻内角之和为180度)。
5. 性质4:平行四边形的两组对边分别互相平行并且相互等长。
性质4:平行四边形的两组对边分别互相平行并且相互等长。
二、平行四边形的判定1. 判定方法1:若一个四边形的对边分别平行且相等,则它是一个平行四边形。
判定方法1:若一个四边形的对边分别平行且相等,则它是一个平行四边形。
2. 判定方法2:若一个四边形的对角线互相相等,则它是一个平行四边形。
判定方法2:若一个四边形的对角线互相相等,则它是一个平行四边形。
三、经典例题练1. 例题1:已知四边形ABCD,AB = BC,且AD与BC互相平行,证明四边形ABCD是平行四边形。
例题1:已知四边形ABCD,AB = BC,且AD与BC互相平行,证明四边形ABCD是平行四边形。
2. 例题2:已知四边形EFGH,EF = GH,且EG与FH互相垂直,证明四边形EFGH是平行四边形。
例题2:已知四边形EFGH,EF = GH,且EG与FH互相垂直,证明四边形EFGH是平行四边形。
3. 例题3:判定以下四边形是否为平行四边形:(a)四边形ABCD,AB = CD,且AD与BC互相垂直;(b)四边形PQRS,PQ = SR,且PS与QR互相平行。
例题3:判定以下四边形是否为平行四边形:(a)四边形ABCD,AB = CD,且AD与BC互相垂直;(b)四边形PQRS,PQ = SR,且PS与QR互相平行。
- (a)根据对边平行和相等的判定方法,若AB = CD且AD与BC互相垂直,则四边形ABCD是平行四边形。
平行四边形性质及判定练习题及答案
平行四边形性质及判定练习题及答案1、如下图,在中,分别是边的中点,已知,则的长为()A.3 B.4 C.5 D.62、如图,在平行四边形ABCD中,AE⊥BC,垂足为E,AF⊥CD,垂足为F,若AE:AF=2 :3,平行四边形ABCD的周长为40,则AB的长为( )A.12 B.9 C.8 D.6 3、如图,在△ABC中,E,D,F分别是AB,BC,CA的中点,AB=6,AC=4,则四边形AEDF•的周长是()A.10 B.20 C.30 D.404、下列四个命题:(1)两组对边分别相等的四边形是平行四边形;(2)两组对角分别相等的四边形是平行四边形;(3)对角线互相平分的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形.其中正确的命题个数有()A. 4个 B.3个 C.2个 D. 1个5、如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是()A.1cm<OA<4cm B.2cm<OA<8cm C.2cm<OA<5cm D.3cm<OA<8cm6、如图,在▱ABCD中,BD为对角线,E、F分别是AD、BD的中点,连接EF.若EF=3,则CD的长为()A.3 B.6 C.8 D.127、如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4 B.3 C.2.5 D.28、如图,□ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3 cm,则AB的长为( )A.3 cm B.6 cm C.9 cm D.12 cm9、如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论不正确的是()10、A.DC∥AB B.OA=OC C.AD=BC D.DB平分∠ADC10、如图,将ABCD沿对角线AC折叠,使点B落在点B’处.若∠1=∠2=44°,则∠B为( )A. 124° B.114° C. 104° D.6611、在四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,A D∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中,一定能判定四边形ABCD是平行四边形的条件共有。
平行四边形性质和判定综合习题精选(答案详细)
第十九章平行四边形性质和判定综合习题精选一.解答题(共30小题)1.(2011•资阳)如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).2.(2011•昭通)如图所示,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.求证:四边形ABCD是平行四边形.3.(2011•徐州)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.4.(2011•铜仁地区)已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.5.(2011•泸州)如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.6.(2010•恩施州)如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点.7.(2009•永州)如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.8.(2009•来宾)在▱ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形.9.(2006•黄冈)如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE.10.(2006•巴中)已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?11.(2002•三明)如图:已知D、E、F分别是△ABC各边的中点,求证:AE与DF互相平分.12.已知:如图,在▱ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形ABOE、四边形DCOE都是平行四边形.13.如图,已知四边形ABCD中,点E,F,G,H分别是AB、CD、AC、BD的中点,并且点E、F、G、H有在同一条直线上.求证:EF和GH互相平分.14.如图:▱ABCD中,MN∥AC,试说明MQ=NP.15.已知:如图所示,平行四边形ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形.16.如图,已知在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)17.如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.(1)求证:AF=CE;(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论.18.如图平行四边形ABCD中,∠ABC=60°,点E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BF,垂足为点F,DF=2(1)求证:D是EC中点;(2)求FC的长.19.(2010•厦门)如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.20.(2010•滨州)如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)请判断四边形EFGH的形状?并说明为什么;(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?21.(2008•佛山)如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.(1)当AB≠AC时,证明:四边形ADFE为平行四边形;(2)当AB=AC时,顺次连接A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.22.如图,以△ABC的三边为边,在BC的同侧分别作三个等边三角形即△ABD、△BCE、△ACF,那么,四边形AFED是否为平行四边形?如果是,请证明之,如果不是,请说明理由.23.(2007•黑龙江)在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.若点P在BC边上(如图1),此时PD=0,可得结论:PD+PE+PF=AB.请直接应用上述信息解决下列问题:当点P分别在△ABC内(如图2),△ABC外(如图3)时,上述结论是否成立?若成立,请给予证明;若不成立,PD,PE,PF与AB之间又有怎样的数量关系,请写出你的猜想,不需要证明.24.(2006•大连)如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).25.(2005•贵阳)在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD分割成四个部分,使含有一组对顶角的两个图形全等;(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有_________组;(2)请在图中的三个平行四边形中画出满足小强分割方法的直线;(3)由上述实验操作过程,你发现所画的两条直线有什么规律?26.如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t.(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.27.已知平行四边形的三个顶点的坐标分别为O(0,0)、A(2,0)、B(1,1),则第四个顶点C的坐标是多少?28.已知平行四边形ABCD的周长为36cm,过D作AB,BC边上的高DE、DF,且cm,,求平行四边形ABCD的面积.29.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣3,),B(﹣2,3),C(2,3),点D在第一象限.(1)求D点的坐标;(2)将平行四边形ABCD先向右平移个单位长度,再向下平移个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?(3)求平行四边形ABCD与四边形A1B1C1D1重叠部分的面积?30.如图所示.▱ABCD中,AF平分∠BAD交BC于F,DE⊥AF交CB于E.求证:BE=CF.三角形的中位线练习题姓名1.连结三角形___________的线段叫做三角形的中位线.2.三角形的中位线______于第三边,并且等于_______.3.一个三角形的中位线有_________条.4.如图△ABC中,D、E分别是AB、AC的中点,则线段CD是△ABC的___,线段DE是△ABC_______5、如图,D、E、F分别是△ABC各边的中点(1)如果EF=4cm,那么BC=__cm如果AB=10cm,那么DF=___cm(2)中线AD与中位线EF的关系是___6.如图1所示,EF是△ABC的中位线,若BC=8cm,则EF=_______cm.(1) (2) (3) (4)7.三角形的三边长分别是3cm,5cm,6cm,则连结三边中点所围成的三角形的周长是_________cm.8.在Rt△ABC中,∠C=90°,AC=•5,•BC=•12,•则连结两条直角边中点的线段长为_______.9.若三角形的三条中位线长分别为2cm,3cm,4cm,则原三角形的周长为()A.4.5cm B.18cm C.9cm D.36cm10.如图2所示,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE 的长为10m,则A,B间的距离为()A.15m B.25m C.30m D.20mA 、20081B 、20091C 、220081D 、22009112.如图3所示,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减少C .线段EF 的长不变D .线段EF 的长不能确定13.如图4,在△ABC 中,E ,D ,F 分别是AB ,BC ,CA 的中点,AB=6,AC=4,则四边形AEDF •的周长是( )A .10B .20C .30D .4014.如图所示,□ ABCD 的对角线AC ,BD 相交于点O ,AE=EB ,求证:OE ∥BC .15.如图所示,在△ABC 中,点D 在BC 上且CD=CA ,CF 平分∠ACB ,AE=EB ,求证:EF=12BD .16.如图所示,已知在□ABCD 中,E ,F 分别是AD ,BC 的中点,求证:MN ∥BC .17.已知:如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.求证:四边形EFGH 是平行四边形.18.已知:△ABC 的中线BD 、CE 交于点O ,F 、G 分别是OB 、OC 的中点.求证:四边形DEFG 是平行四边形.C19.已知:如图,E 为□ABCD 中DC 边的延长线上的一点,且CE =DC ,连结AE分别交BC 、BD 于点F 、G ,连结AC 交BD 于O ,连结OF .求证:AB =2OF .1、 已知在四边形ABCD 中,AB=CD ,E 、F 、G 分别是BD 、AC 、BC 的中点,H 是EF 的中点.求证:EF ⊥GH.3、如图所示,△ABC 中,AB >AC ,AD 平分∠BAC ,CD ⊥AD ,点E 是BC 的中点。
平行四边形的判定与性质
平行四边形的性质与判定一、平行四边形定义及其性质:1、两组对边分别平行的四边形是平行四边形,平行四边形对边平行且相等。
定义的几何语言表述 ∵ AB ∥CD AD ∥BC ∴四边形ABCD 是平行四边形 。
∵四边形ABCD 是平行四边形(或在 ABCD 中) ∴ AB=CD ,AD=BC 。
例题1、如图5,AD ∥BC ,AE ∥CD ,BD 平分∠ABC ,求证AB=CE2、平行四边形除了对边平行且相等外,其对角也相等。
∵四边形ABCD 是平行四边形(或在ABCD 中) ∴ ∠A=∠C ,∠B=∠D 。
例题2、在平行四边形ABCD 中,若∠A :∠B=2:3,求∠C 、∠D 的度数。
3、平行四边形的对角线互相平分。
例题3.已知O 是平行四边形ABCD 的对角线的交点,AC=24cm ,BD=38 cm ,AD= 28cm ,求三角形OBC 的周长。
5.如图,平行四边形ABCD 中,AC 交BD 于O ,AE ⊥BD 于E ,∠EAD=60°,AE=2cm,AC+BD=14cm, 求三角形BOC 的周长。
例题4:已知平行四边形ABCD ,AB=8cm ,BC=10cm,∠B=30°, 求平行四边形平行四边形ABCD 的面积。
对边分别平行 边 对边分别相等 对角线互相平分 平行四边形角 对角相等 邻角互补图(5)DCB AA B C D二、平行四边形的判定 方法一(定义法):两组对边分别平行的四边形的平边形。
几何语言表达定义法:∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形方法二:两组对边分别相等的四边形是平行四边形。
∵AB=CD ,AD=BC ,∴四边形ABCD 是平行四边形 方法三:对角线互相平分的四边形是平行四边形。
∵OA=OC , OB= OD ∴四边形ABCD 是平行四边形 方法四:有一组对边平行且相等的四边形是平行四边形 ∵AB=CD ,AB ∥CD ,∴四边形ABCD 是平行四边形方法五:两组对角分别相等的四边形是平行四边形∵ ∠A =∠C ,∠B=∠D ,∴四边形ABCD 例1:已知:E 、F 分别为平行四边形ABCD 两边AD 、BC 的中点,连结BE 、DF 求证:2∠1∠=三、三角形中位线:三角形两边的中点连线线段(即中位线)与三角形的第三边平行,并且等于第三边的一半。
专题 平行四边形的性质和判定(解析版)
八年级下册数学《第十八章平行四边形》专题平行四边形的性质与判定【例题1】如图,在平行四边形ABCD中,CE平分∠BCD,交AB于点E,AE=3,EB=5,ED=4.则CE的长是( )A.B.C.D.【分析】由平行四边形的性质和角平分线的性质可证BE =BC =5,由勾股定理的逆定理可求∠AED =90°,由勾股定理可求CE 的长.【解答】解:∵AE =3,EB =5,∴AB =8,∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD =BC ,AB =CD =8,∴∠DCE =∠BCE ,∠AED =∠EDC ,∵CE 平分∠BCD ,∴∠DCE =∠BCE ,∴∠BCE =∠BEC ,∴BE =BC =5,∴AD =5,∵AD 2=25=16+9=DE 2+AE 2,∴∠AED =90°,∴∠AED =∠EDC =90°,∴CE =故选:D .【点评】本题考查了平行四边形的性质,角平分线的性质,勾股定理及勾股定理的逆定理,证明∠AED =90°是解题的关键.【变式1-1】如图,在平行四边形ABCD 中,AB =5,AD =7,AE 平分∠BAD 交BC 于点E ,作DG ⊥AE 于点G 并延长交BC 于点F ,则线段EF 的长为( )A .2B .52C .3D .【分析】据平行四边形的性质证明∠DAE =∠BEA ,∠ADF =∠CFD ,进而证明∠BAE =∠BEA 得到BE =BA=5,∠CDF=∠CFD得到CF=CD=5,由此即可得到答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,CD=AB=6,BC=AD=7,∴∠BAD+∠ADC=180°,∠DAE=∠BEA,∠ADF=∠CFD,∵AG⊥DG,∴∠AGD=90°,∴∠DAE+∠ADF=90°,∴∠BAE+∠CDF=∠BAD+∠ADC﹣∠DAE﹣∠ADF=90°,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∵∠BEA+∠CFD=90°,∴BE=BA=5,∠CDF=∠CFD,∴CE=BC﹣BE=2,CF=CD=5,∴EF=CF﹣CE=3,故选:C.【点评】本题主要考查了平行四边形的性质,等腰三角形的性质与判定,证明BE=BA=5,CF=CD=5是解题的关键.【变式1-2】如图,在▱ABCD中,O为对角线AC与BD的交点,AC⊥AB,E为AD的中点,并且OF ⊥BC,∠D=53°,则∠FOE的度数是( )A.143°B.127°C.53°D.37°【分析】先由等角的余角相等证明∠FOC=∠D=53°,再根据三角形的中位线定理证明OE∥CD,则∠COE=180°﹣∠ACD=90°,即可求得∠FOE=143°,于是得到问题的答案.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠CAD=∠OCF,∵AC⊥AB,OF⊥BC,∴∠ACD=∠CAB=∠OFC=90°,∵∠D+∠CAD=90°,∠FOC+∠OCF=90°,∴∠FOC=∠D=53°,∵O为对角线AC与BD的交点,∴O为AC的中点,∵E为AD的中点,∴OE∥CD,∴∠COE=180°﹣∠ACD=180°﹣90°=90°,∴∠FOE=∠FOC+∠COE=53°+90°=143°,故选:A.【点评】此题重点考查平行四边形的性质、平行线的性质、等角的余角相等、直角三角形的两个锐角互余、三角形的中位线定理等知识,证明OE∥CD是解题的关键.【变式1-3】如图,将平行四边形OABC放置在平面直角坐标系xOy中,O为坐标原点,若点C的坐标是(1,3),点A的坐标是(5,0),则点B的坐标是( )A.(5,3)B.(4,3)C.(6,3)D.(8,1)【分析】由平行四边形的性质可得BC∥OA,BC=OA=5,即可求解.【解答】解:∵点A的坐标是(5,0),∴OA=5,∵四边形OABC是平行四边形,∴BC∥OA,BC=OA=5,∵点C的坐标是(1,3),∴点B坐标为(6,3),故选:C.【点评】本题考查了平行四边形的性质,坐标与图形性质,掌握平行四边形的性质是解题的关键.【变式1-4】如图,在平行四边形ABCD中P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是( )A.18B.24C.23D.14【分析】根据平行四边形性质得出AD∥CB,AB∥CD,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB中求出∠APB=90°,由勾股定理求出BP,证出AD=DP=5,BC=PC=5,得出DC=10=AB,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD,∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠PAB+∠PBA=12(∠DAB+∠CBA)=90°,在△APB中,∠APB=180°﹣(∠PAB+∠PBA)=90°;∵AP平分∠DAB,∴∠DAP=∠PAB,∵AB∥CD,∴∠PAB=∠DPA∴∠DAP=∠DPA∴△ADP是等腰三角形,∴AD=DP=5,同理:PC=CB=5,即AB=DC=DP+PC=10,在Rt△APB中,AB=10,AP=8,∴BP=6,∴△APB的周长=6+8+10=24;故选:B.【点评】本题考查了平行四边形性质,平行线性质,等腰三角形的性质和判定,三角形的内角和定理,勾股定理等知识点的综合运用.【变式1-5】如图,在平行四边形ABCD中,∠B=60°,AE平分∠BAD交BC于点E,若∠AED=80°,则∠ACE的度数是( )A.30°B.35°C.40°D.45°【分析】证△ABE是等边三角形,得AB=AE,再证△BAC≌△AED中(SAS),得∠BAC=∠AED=80°,即可求解.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠ADC=60°,AD∥BC,∴∠BAD=180°﹣∠B=180°﹣60°=120°,∵AE平分∠BAD,∴∠BAE=∠DAE=12∠BAD=60°,∴∠B=∠DAE,△ABE是等边三角形,∴AB=AE,∠AEB=∠BAE=60°,在△BAC和△AED中,AB=EA∠B=∠DAEBC=AD,∴△BAC≌△AED(SAS),∴∠BAC=∠AED=80°,∴∠EAC=∠BAC﹣∠BAE=80°﹣60°=20°,∴∠ACE=∠AEB﹣∠EAC=60°﹣20°=40°.故选:C.【点评】本题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质等知识;熟练掌握平行四边形的性质,证明△BAC≌△AED是解题的关键.【变式1-6】▱ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是( )A.3≤AB≤4B.2<AB<14C.1<AB<7D.1≤AB≤7【分析】根据平行四边形对角线互相平分可得AO=4,BO=3,再根据三角形的三边关系可得4﹣3<AB<4+3,再解即可.【解答】解:∵四边形ABCD是平行四边形,∴AO=12AC,BO=12BD,∵AC=8,BD=6,∴AO=4,BO=3,∴4﹣3<AB<4+3,解得1<AB<7.故选:C.【点评】此题主要考查了三角形的三边关系以及平行四边形的性质,关键是掌握“平行四边形的对角线互相平分”的性质.【变式1-7】在平行四边形ABCD中,∠A的角平分线把边BC分成长度为4和5的两条线段,则平行四边形ABCD的周长为( )A.13或14B.26或28C.13D.无法确定【分析】设∠A的平分线交BC于点E,可证明AB=EB,再分两种情况讨论,一是EB=5,EC=4,则AB =EB=5,BC=EB+EC=9;二是EB=4,EC=5时,则AB=EB=4,BC=EB+EC=9,分别求出平行四边形ABCD的周长即可.【解答】解:设∠A的平分线交BC于点E,∵四边形ABCD是平行四边形,∴BC∥AD,∴∠BEA=∠DAE,∵∠BAE=∠DAE,∴∠BEA=∠BAE,∴AB=EB,当EB=5,EC=4时,如图1,则AB=EB=5,BC=EB+EC=9,∴2AB+2BC=2×5+2×9=28;当EB=4,EC=5时,如图2,则AB=EB=4,BC=EB+EC=9,∴2AB+2BC=2×4+2×9=26,∴平行四边形ABCD的周长为26或28,故选:B.【点评】此题重点考查平行四边形的性质、平行线的性质、等腰三角形的判定等知识,熟练掌握平行四边形的性质和等腰三角形的判定是解题的关键.【变式1-8】如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD分别相交于点E、F,连接EC.(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是10,求▱ABCD的周长.【分析】根据平行四边形的性质得出OD=OB,DC∥AB,推出∠FDO=∠EBO,证出△DFO≌△BEO即可;(2)由平行四边形的性质得出AB=CD,AD=BC,OA=OC,由线段垂直平分线的性质得出AE=CE,由已知条件得出BC+AB=10,即可得出▱ABCD的周长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OD=OB,DC∥AB,∴∠FDO=∠EBO,在△DFO和△BEO中,∠FDO=∠EBOOD=OB∠FOD=∠EOB,∴△DFO≌△BEO(ASA),∴OE=OF.(2)解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OA=OC,∵EF⊥AC,∴AE=CE,∵△BEC的周长是10,∴BC+BE+CE=BC+BE+AE=BC+AB=10,∴▱ABCD的周长=2(BC+AB)=20.【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定、线段垂直平分线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.【例题2】(2022•南京模拟)如图,在平行四边形ABCD 中,E ,F 是对角线AC 上的两点,且AE =EF =FC .(1)求证:DE ∥BF ;(2)若BE ⊥BC ,DE =6,求对角线AC 的长.【分析】(1)根据平行四边形的性质得出AD =BC ,AD ∥BC ,AB =CD ,∠BAC =∠DCA ,利用全等三角形的判定和性质得出∠AFB =∠CED ,再由平行线的判定即可证明;(2)根据(1)中全等三角形的性质得出DE =BF =6,再根据直角三角形斜边上的中线等于斜边的一半得出BF =CF =EF =6,即可得出结果.【解答】(1)证明:∵四边形ABCD 为平行四边形,∴AD =BC ,AD ∥BC ,AB =CD ,∴∠BAC =∠DCA ,∵AE =FC ,∴AE +EF =FC +EF ,即AF =EC ,∴△ABF ≌△CDE (SAS ),∴∠AFB =∠CED ,∴DE ∥BF ;(2)解:由(1)得△ABF ≌△CDE ,∴DE =BF =6,∵BE ⊥BC ,CF =EF ,∴点F 为△BEC 的中点,∴BF =CF =EF =6,∵CF =EF =AE,∴AC=18.【点评】此题主要考查平行四边形的性质,全等三角形的判定和性质,直角三角形斜边上的中线的性质等,理解题意,综合运用这些知识点是解题关键.【变式2-1】(2022春•西吉县校级月考)如图.已知四边形ABCD是平行四边形,BE⊥AC,DF⊥AC,求证:BE=DF.【分析】证两条线段所在的两个三角形全等.根据“AAS”可证△ABE≌△CDF或△ADF≌△CBE.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠BAC=∠DCA.∵BE⊥AC于E,DF⊥AC于F,∴∠AEB=∠DFC=90°.在△ABE和△CDF中,∠DFC=∠BEA∠FCD=∠EAB,AB=CD∴△ABE≌△CDF(AAS),∴BE=DF.【点评】此题考查了平行四边形的性质和全等三角形的判定及性质,熟练掌握“平行四边形的对边平行且相等”是解题关键.【变式2-2】(2022•泉山区校级三模)已知,如图,在平行四边形ABCD中,点E、F分别在AB、CD的延长线上,BE=DF,连接EF,分别交BC、AD于G、H.求证:EG=FH.【分析】根据平行四边形的性质和全等三角形的判定和性质定理即可得到结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∠ABC=∠CDA,∴∠EBG=∠FDH,∠E=∠F,在△BEG与△DFH中,∠E=∠FBE=DF,∠EBG=∠FDH∴△BEG≌△DFH(ASA),∴EG=FH.【点评】本题考查了平行四边形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.【变式2-3】(2022秋•北碚区校级期末)如图,平行四边形ABCD中,CB=2AB,∠DCB的平分线交BA 的延长线于点F.(1)求证:DE=AE;(2)若∠DAF=70°,求∠BEA的度数.【分析】(1)根据平行四边形的性质证明A为BF的中点,然后证明△DEC≌△AEF(AAS),进而得出结论;(2)由平行四边形的对边平行证出∠CBF=∠DAF=70°,∠BEA=∠EBC,由等腰三角形的性质得出∠CBE=∠ABE,即可得出答案.【解答】(1)证明:∵CE是∠DCB的平分线,∴∠DCE=∠BCF,∵四边形ABCD是平行四边形,∴AB∥CD,AB=DC,∴∠DCE=∠CFB,∴∠BCF=∠CFB,∴BC=BF,∵BC=2AB,∴BF=2AB,∴A为BF的中点,∴AB=AF,∴AB=DC=AF,在△DEC和△AEF中,∠DCE=∠F∠DEC=∠AEFDC=AF,∴△DEC≌△AEF(AAS),∴DE=AE;(2)解:∵四边形ABCD是平行四边形,∴DA∥CB,∴∠CBF=∠DAF=70°,∠BEA=∠EBC,∵△DEC≌△AEF,∴CE=EF,∵BC=BF,∴∠EBC=∠FBE=12∠CBF=35°,∴∠BEA=35°.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰三角形的性质等知识;熟练掌握平行四边形的性质和等腰三角形的性质,证明三角形全等是解题的关键.【变式2-4】(2022秋•道里区校级月考)在平行四边形ABCD中,点E在CD边上,点F在AB边上,连接AE、CF、DF、BE,∠DAE=∠BCF.(1)如图1,求证:DE=BF;(2)如图2,设AE交DF于点G,BE交CF于点H,连接GH,若E是CD边的中点,在不添加任何辅助线的情况下,请直接写出图中以G为顶点并且与△EHC全等的所有三角形.【分析】(1)由平行四边形的性质得出AB∥CD,∠ADE=∠CBF,AD=BC,由ASA证明△ADE≌△CBF,得出DE=BF;(2)由中点的定义得出DE=CE,由平行四边形的判定方法即可得出平行四边形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∠ADE=∠CBF,AD=BC,在△ADE和△CBF中,∠ADE=∠CBFAD=BC,∠DAE=∠BCF∴△ADE≌△CBF(ASA),∴DE=BF;(2)解:∵E是CD的中点,∴DE=CE,∴以GH为边的平行四边形有平行四边形GHFA、平行四边形GHBF、平行四边形GHED、平行四边形GHCE.【点评】本题考查了平行四边形的性质与判定、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等得出DE=BF是解决问题(1)的关键.【变式2-5】(2021春•九龙坡区校级期中)在▱ABCD中,∠ABC=45°,过A作AE⊥CD于E,连接BE,延长EA至F,使CE=AF,连接DF.(1)求证:DF=BE;(2)若DF=AD=ADEB的周长.【分析】(1)由已知证得AB=EF,DE=AE,根据全等三角形的判定证得△FDE≌△BEA,根据全等三角形的性质可得结论;(2)由勾股定理得求得DE=3,EF=5,由(1)知,AB=EF,BE=DF,即可求得结论.【解答】(1)证明:∵AE⊥CD,∴∠FED=90°,∵四边形ABCD是平行四边形,∠ABC=45°,AB=DC,∴∠BAE=∠FED=90°,∠ADE=∠ABC=45°,∴AE=DE,∵CE=AF,∴AB=EF,△FDE和△BEA中,DE=AE∠FED=∠BAE EF=AB,∴△FDE≌△BEA(SAS),∴DF=BE;(2)在Rt△ADE中,AE=DE,AD=由勾股定理得:DE=3,在Rt△FDE中,DE=3,DF=∴EF=5,由(1)知,AB=EF=5,BE=DF∴四边形ADEB的周长为:AD+DE+BE+AB=35=【点评】本题主要考查了平行四边形的性质,全等三角形的判定和性质,勾股定理,证得AB=EF,DE=AE,是解决问题的关键.【变式2-6】(2022春•济南期中)如图,将▱ABCD的边BC延长到点E,使BE=CD,连接AE交CD 于点F.(1)求证:AE平分∠BAD;(2)已知BC=CE=3,EF=4,FG⊥AB,求FG的长.【分析】(1)利用平行四边形的性质得AB=CD,AD∥BE,再证明∠BAE=∠E得到AB=BE,然后利用等边对等角等知识证得结论即可;(2)根据平行四边形的性质得到AD=BC,AD∥BE,求得∠D=∠DCE,∠DAF=∠FEC,根据全等三角形的性质得到AF=EF=4,根据勾股定理得到BF=到结论.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AB=CD,AD∥BE,∴∠DAE=∠E,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠E,∴AB=BE,∴∠BAE=∠E,∴∠BAE=∠DAE,∴AE平分∠BAD;(2)解:由BE=CD,AB=CD,∴△ABE为等腰三角形,∴AB=BE=6,∵四边形ABCD为平行四边形,∴AD=BC,AD∥BE,∴∠D=∠DCE,∠DAF=∠FEC,∵BC =CE =3,∴AD =CE ,∴△ADF ≌△ECF (ASA ),∴AF =EF =4,∴BF ⊥AE ,∵AB =BE =6,∴BF==∵S △ABF =12AB •FG =12AF •BF ,∴FG =故FG【点评】本题考查了平行四边形的性质,全等三角形的判定和性质,等腰三角形的判定和性质,勾股定理,熟练掌握平行四边形的性质是解题的关键.【例题3】如图,平行四边形ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A.CE=AF B.BE=DF C.∠DAF=∠BCE D.AF∥CE 【分析】由平行四边形的性质或全等三角形的性质进行逐一判断即可.【解答】解:若CE=AF,则无法判断OE=OE,故A选项符合题意;如图,连接AC,∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵BE=DF,∴EO=FO,∴四边形AECF是平行四边形,故选项B不符合题意;∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,AD∥BC,∴∠ADF=∠CBE,在△ADF和△CBE中,∠ADF=∠CBEAD=BC,∠DAF=∠BCE∴△ADF≌△CBE(ASA),∴BE=DF,∴EO=FO,∴四边形AECF是平行四边形,故选项C不符合题意;∵AF∥CE,∴∠AFB=∠CED,∴∠AFD=∠CEB,在△ADF和△CBE中,∠ADF=∠CBE∠AFD=∠CEB,AD=BC∴△ADF≌△CBE(AAS),∴BE=DF,∴EO=FO,∴四边形AECF是平行四边形,故选项D不符合题意;故选:A.【点评】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,掌握平行四边形的判定方法是解题的关键.【变式3-1】在下列条件中,能够判定一个四边形是平行四边形的有( )①一组对边平行,另一组对边相等②一组对边平行,一条对角线平分另一条对角线③一组对边平行,一组对角相等④一组对角相等,一条对角线平分另一条对角线A.1个B.2个C.3个D.4个【分析】根据平行四边形的判定方法以及全等三角形的判定方法一一判断即可.【解答】解:①错误.这个四边形有可能是等腰梯形;②正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形;③错误.不满足三角形全等的条件,无法证明相等的一组对边平行;④正确.可以利用三角形全等证明平行的一组对边相等且平行.故是平行四边形.故选:B.【点评】本题考查平行四边形的判定、全等三角形的判定和性质等知识,解题的关键是记住全等三角形的判定方法以及平行四边形的判定方法,属于中考常考题型.【变式3-2】下列条件能判定四边形ABCD是平行四边形的是( )A.∠A=∠B,∠C=∠D B.AB=AD,BC=CDC.AB=CD,AD=BC D.AB∥CD,AD=BC【分析】根据平行四边形的判定方法分别对各个选项进行判断即可.【解答】解:A、由∠A=∠B,∠C=∠D,不能判定四边形ABCD是平行四边形,故本选项不符合题意;B、由AB=AD,BC=CD,不能判定四边形ABCD是平行四边形,故本选项不符合题意;C、由AB=CD,AD=BC,能判定四边形ABCD是平行四边形,故本选项符合题意;D、由AB∥CD,AD=BC,不能判定四边形ABCD是平行四边形,故本选项不符合题意;故选:C.【点评】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.【变式3-3】四边形ABCD中,对角线AC,BD交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB∥CD,∠BAD=∠BCD;③AO=CO,BO=DO;④AB∥CD,AD=BC.一定能判定四边形ABCD 是平行四边形的条件有( )A.1组B.2组C.3组D.4组【分析】根据平行四边形的5个判断定理:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形,即可作出判断.【解答】解:①根据平行四边形的判定定理:两组对边分别平行的四边形是平行四边形,可知①能判断这个四边形是平行四边形;②根据平行四边形的判定定理:一组对边平行,一组对角相等的四边形可得是平行四边形,可知②能判断这个四边形是平行四边形;③根据平行四边形的判定定理:两条对角线互相平分的四边形是平行四边形,可知③能判断这个四边形是平行四边形;④根据平行四边形的判定定理:一组对边平行,一组对边相等的四边形不一定是平行四边形,还可能是等腰梯形,可知④不能判断这个四边形是平行四边形;故给出下列四组条件中,①②③能判断这个四边形是平行四边形.故选:C.【点评】此题主要考查了平行四边形的判定定理,解题关键是准确无误的掌握平行四边形的判定定理.【变式3-4】如图,在△ABC中,D,F分别是AB,AC上的点,且DF∥BC.点E是射线DF上一点,若再添加下列其中一个条件后,不能判定四边形DBCE为平行四边形的是( )A.∠ADE=∠E B.∠B=∠E C.DE=BC D.BD=CE【分析】由平行四边形的判定分别对各个选项进行判断即可.【解答】解:A、∵∠ADE=∠E,∴AB∥CE,又∵DF∥BC,∴四边形DBCE为平行四边形;故选项A不符合题意;B、∵DF∥BC,∴∠ADE=∠B,∵∠B=∠E,∴∠ADE=∠E,∴AB∥CE,∴四边形DBCE为平行四边形;故选项B不符合题意;C、∵DF∥BC,∴DE∥BC,又∵DE=BC,∴四边形DBCE为平行四边形;故选项C不符合题意;D、由DF∥BC,BD=CE,不能判定四边形DBCE为平行四边形;故选项D符合题意;故选:D.【点评】本题考查了平行四边形的判定、平行线的判定与性质等知识;熟练掌握平行四边形的判定是解题的关键.【变式3-5】如图,在△ABC中,点D,E分别是AB,BC边的中点,点F在DE的延长线上.添加一个条件,使得四边形ADFC为平行四边形,则这个条件可以是( )A .∠B =∠F B .DE =EFC .AC =CFD .AD =CF【分析】利用三角形中位线定理得到DE ∥AC ,DE =12AC ,结合平行四边形的判定定理对各个选项进行判断即可.【解答】解:∵D ,E 分别是AB ,BC 的中点,∴DE 是△ABC 的中位线,∴DE ∥AC ,DE =12AC ,A 、当∠B =∠F ,不能判定AD ∥CF ,即不能判定四边形ADFC 为平行四边形,故本选项不符合题意;B 、∵DE =EF ,∴DE =12DF ,∴AC =DF ,∵AC ∥DF ,∴四边形ADFC 为平行四边形,故本选项符合题意;C 、根据AC =CF ,不能判定AC =DF ,即不能判定四边形ADFC 为平行四边形,故本选项不符合题意;D 、∵AD =CF ,AD =BD ,∴BD =CF ,由BD =CF ,∠BED =∠CEF ,BE =CE ,不能判定△BED ≌△CEF ,不能判定CF ∥AB ,即不能判定四边形ADFC 为平行四边形,故本选项不符合题意;故选:B .【点评】本题考查了平行四边形的判定、三角形的中位线定理以及平行线的判定等知识;熟练掌握平行四边形的判定和三角形中位线定理是解题的关键.【变式3-6】如图,在▱ABCD 中,E ,F 分别是边AD ,BC 上的点,连接AF ,CE ,只需添加一个条件即可证明四边形AFCE 是平行四边形,这个条件可以是 (写出一个即可).【分析】根据▱ABCD的性质得到AD∥BC,然后由“对边相等且平行的四边形是平行四边形”添加条件即可.【解答】解:如图,在▱ABCD中,AD∥BC,则AE∥FC.当添加AE=FC时,根据“对边相等且平行的四边形是平行四边形”可以判定四边形AFCE是平行四边形,故答案是:AE=FC(答案不唯一).【点评】此题考查了平行四边形的性质与判定.解题过程中注意平行四边形的判定与平行四边形的性质的综合运用.【变式3-7】平行四边形ABCD中,E、F是对角线BD上不同的两点,写出一个能使四边形AECF一定为平行四边形的条件 .(用题目中的已知字母表示)【分析】在平行四边形ABCD中,OA=OC,OB=OD,要使四边形AECF为平行四边,只需证明OE=OF.【解答】解:连接AC交BD于点O,如图:在平行四边形ABCD中,OA=OC,OB=OD,∵AE∥CF,∴∠OAE=∠OCF,∵∠AOE=∠COF,AO=CO,∴△AOE≌COF(ASA),∴OE=OF,∴四边形AECF为平行四边形;故答案为:AE∥CF.【点评】本题考查了平行四边形的判定与性质、全等三角形的判定与性质等知识,熟练掌握平行四边形的性质,证明OE=OF是解题的关键.【例题4】(2021•江华县一模)如图,△ABC 为等边三角形,D 、F 分别为BC 、AB 上的点,且CD =BF ,以AD 为边作等边△ADE .(1)求证:△ACD ≌△CBF ;(2)点D 在线段BC 上何处时,四边形CDEF 是平行四边形且∠DEF =30°.【分析】(1)在△ACD 和△CBF 中,根据已知条件有两边和一夹角对应相等,可根据边角边来证明全等.(2)当∠DEF =30°,即为∠DCF =30°,在△BCF 中,∠CFB =90°,即F 为AB 的中点,又因为△ACD ≌△CBF ,所以点D 为BC 的中点.【解答】证明:(1)由△ABC 为等边三角形,AC =BC ,∠FBC =∠DCA ,在△ACD 和△CBF 中,AC =BC ∠DCA =∠FBC CD =BF,所以△ACD ≌△CBF (SAS );(2)当D 在线段BC 上的中点时,四边形CDEF 为平行四边形,且角DEF =30度按上述条件作图,连接BE,在△AEB和△ADC中,AB=AC,∠EAB+∠BAD=∠DAC+∠BAD=60°,即∠EAB=∠DAC,AE=AD,∴△AEB≌△ADC(SAS),又∵△ACD≌△CBF,∴△AEB≌△ADC≌△CFB,∴EB=FB,∠EBA=∠ABC=60°,∴△EFB为正三角形,∴EF=FB=CD,∠EFB=60°,又∵∠ABC=60°,∴∠EFB=∠ABC=60°,∴EF∥BC,而CD在BC上,∴EF平行且相等于CD,∴四边形CDEF为平行四边形,∵D在线段BC上的中点,∴F在线段AB上的中点,∴∠FCD=12×60°=30°则∠DEF=∠FCD=30°.【点评】本题考查了平行四边形的判定和三角形全等的知识,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.【变式4-1】如图,点B、C、E、F在同一直线上,BE=CF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)四边形ABED是平行四边形.【分析】(1)根据BC=EF求出BC=EF,根据垂直定义得出∠ACB=∠DFE=90°,再根据全等三角形的判定定理SAS推出即可;(2)根据全等三角形的性质得出AB=DE,∠ABC=∠DEF,根据平行线的判定得出AB∥DE,再根据平行四边形的判定定理推出即可.【解答】证明:(1)∵BE=CF,∴BE﹣CE=CF﹣CE,即BC=EF,又∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°,在△ABC和△DEF中,AC=DF∠ACB=∠F,BC=EF∴△ABC≌△DEF(SAS);(2)由(1)知△ABC≌△DEF,∴AB=DE,∠ABC=∠DEF,∴AB∥DE,∴四边形ABED是平行四边形.【点评】本题考查了全等三角形的判定定理和性质定理,平行线的判定,平行四边形的判定等知识点,能熟记有一组对边平行且相等的四边形是平行四边形是解此题的关键.【变式4-2】如图所示,△ABC中,D是BC边上中点,AE是∠BAC的平分线,CE⊥AE,EF∥BC交AB于点F,求证:四边形BDEF是平行四边形.【分析】延长CE交AB于M,证两三角形全等,推出E为CM中点,根据三角形中位线推出DE∥AB,根据平行四边形的判定推出即可.【解答】证明:延长CE交AB于M,∵AE⊥CE,∴∠AEC=∠AEM=90°,∵AE是∠BAC的平分线,∴∠MAE=∠CAE,在△MAE和△CAE中,∠AEM=∠AECAE=AE,∠MAE=∠CAE∴△MAE≌△CAE(ASA),∴CE=EM,∵D为BC中点,∴DE∥AB,∵EF∥BC,∴四边形BDEF是平行四边形.【点评】本题考查了全等三角形的性质和判定,三角形的中位线,平行四边形的判定的应用,注意:有两组对边分别平行的四边形是平行四边形.【变式4-3】(2021秋•海阳市期末)如图,在△ABC中,AD是BC边的中线,F是AC上一点,且满足2AF=CF,连接BF与AD相交于点E.若G为线段BF上一动点,试分析当点G在何位置时,四边形AFDG为平行四边形?【分析】证DG是△BCF的中位线,得DG∥CF,2DG=CF,则DG∥AF,再证DG=AF,即可得出四边形AFDG为平行四边形.【解答】解:点G为线段BF的中点时,四边形AFDG为平行四边形,理由如下:∵AD是BC边的中线,∴BD=CD,∵点G为线段BF的中点,∴DG是△BCF的中位线,∴DG∥CF,2DG=CF,∴DG∥AF,∵2AF=CF,∴DG=AF,∴四边形AFDG为平行四边形.【点评】本题考查了平行四边形的判定以及三角形中位线定理等知识,熟练掌握平行四边形的判定,证明DG为△BCF的中位线是解题的关键.【变式4-4】(2022春•顺义区校级月考)如图,四边形ABCD中,BD垂直平分AC,垂足为点F、E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC.(1)求证:四边形ABDE是平行四边形;(2)如果DA平分∠BDE,AB=3,AD=4,求AC的长.【分析】(1)分别证明AB∥ED,AE∥BD,得出结论;(2)利用勾股定理求出BH AF,即可得出结论.【解答】(1)证明:∵∠ADE=∠BAD,∴AB∥ED,∵AE⊥AC,∴∠EAC=90°,∵BD垂直平分AC,∴∠BFA=90°,∴∠EAC=∠BFA,∴AE∥BD,∴四边形ABDE是平行四边形,(2)解:∵DA平分∠BDE,∴∠ADE=∠ADB,∵∠ADE=∠BAD,∴∠ADB=∠BAD,∴BA=BD,∵AB=3,∴BD=3过B作BH⊥AD,∴AH=HD=12AD=2,∴BH=∵BD垂直平分AC,则AF=FC,∵S△ABD =12DA⋅BH=12DB⋅AF,∴AF =DA⋅BH DB∴AC 【点评】本题考查平行四边形的判定以及利用勾股定理解直角三角形,利用等积法求高是解决问题的关键.【变式4-5】(2021春•西安期末)如图,在△AFC 中,∠FAC =45°,FE ⊥AC 于点E ,在EF 上取一点B ,连接AB 、BC ,使得AB =FC ,过点A 作AD ⊥AF ,且AD =BC ,连接CD ,求证:四边形ABCD 是平行四边形.【分析】证Rt △AEB ≌Rt △FEC (HL ),得BE =CE ,则∠CBE =∠BCE =45°,再证出∠BCE =∠CAD ,得BC ∥AD ,即可证出四边形ABCD 是平行四边形;【解答】证明:∵FE ⊥AC ,∴∠FEA =∠FEC =90°,∵∠FAC =45°,∴△AEF 是等腰直角三角形,∴AE =EF ,∠AFE =∠FAE =45°,在Rt △AEB 和Rt △FEC 中,AB =FC AE =FE ,∴Rt △AEB ≌Rt △FEC (HL ),∴BE =CE ,∴∠CBE =∠BCE =45°,∵AD ⊥AF ,∴∠FAD =90°,∴∠CAD =90°﹣45°=45°,∴∠BCE=∠CAD,∴BC∥AD,又∵BC=AD,∴四边形ABCD是平行四边形.【点评】本题考查了平行四边形的判定、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;熟练掌握平行四边形的判定,证明Rt△AEB≌Rt△FEC是解题的关键.【变式4-6】(2022春•礼泉县期末)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)求证:△AEF≌△BAC;(2)四边形ADFE是平行四边形吗?请说明理由.【分析】(1)由含30°角的直角三角形的性质得AB=2BC,再由等边三角形的性质得AB=AE,AB=2AF,则AF=BC,由HL即可得出结论;(2)由等边三角形的性质得∠DAC=60°,AC=AD,再证EF∥AD,然后由全等三角形的性质得EF=AC,则EF=AD,即可得出结论.【解答】(1)证明:∵Rt△ABC中,∠BAC=30°,∴AB=2BC,∵△ABE是等边三角形,EF⊥AB,∴AB=AE,AB=2AF,∴AF=BC,在Rt△AFE和Rt△BCA中,AE=BAAF=BC,∴Rt△AEF≌Rt△BAC(HL);(2)解:四边形ADFE是平行四边形,理由如下:∵△ACD是等边三角形,∴∠DAC =60°,AC =AD ,∴∠DAB =∠DAC +∠BAC =90°,∴AD ⊥AB ,又∵EF ⊥AB ,∴EF ∥AD ,由(1)得:△AEF ≌△BAC ,∴EF =AC ,∴EF =AD ,∴四边形ADFE 是平行四边形.【点评】本题考查了平行四边形的判定、全等三角形的判定与性质、等边三角形的性质、平行线的判定等知识;熟练掌握平行四边形的判定,证明Rt △AEF ≌Rt △BAC 是解题的关键.【例题5】如图,在▱ABCD 中,要在对角线BD 上找两点E 、F ,使A 、E 、C 、F 四点构成平行四边形,现有①,②,③,④四种方案,①只需要满足BE =DF ;②只需要满足AE ⊥BD ,CF ⊥BD ;③只需要满足AE ,CF 分别平分∠BAD ,∠BCD ,④只需要满足AE =CF .则对四种方案判断正确的是( )A .①②③B .①③④C .①②④D .②③④【分析】只要证明△ABE ≌△CDF ,即可解决问题.【解答】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∠BAD =∠BCD ,∴∠ABE =∠CDF ,①在△ABE 和△CDF 中,AB =CD ∠ABE =∠CDF BE =DF,。
平行四边形判定经典题型
平行四边形判定经典题型一、平行四边形的概念及性质平行四边形是指在平面内,有两组对边分别平行的四边形。
它具有以下性质:1.对边平行且相等;2.对角线互相平分;3.邻角互补,对角相等;4.任意两边之和大于第三边。
二、平行四边形判定的经典题型1.两组对边分别平行的四边形:根据平行四边形的定义,若四边形ABCD 中,AB平行于CD,AD平行于BC,则四边形ABCD为平行四边形。
2.两组对边分别相等的四边形:若四边形ABCD中,AB=CD,AD=BC,则四边形ABCD为平行四边形。
3.对角线互相平分的四边形:若四边形ABCD中,对角线AC与BD互相平分,则四边形ABCD为平行四边形。
4.一组对边平行且相等的四边形:若四边形ABCD中,AB平行于CD且AB=CD,则四边形ABCD为平行四边形。
三、解题技巧与方法1.利用平行线性质:若四边形ABCD中,AB平行于CD,则∠B+∠C=180°,同理,∠A+∠D=180°。
由此可得,四边形ABCD的内角和为360°。
2.利用相似三角形:若四边形ABCD中,△ABC∽△ADC,则AB/AD=BC/CD。
根据相似比,可得到对应边的长度关系,进而判断四边形是否为平行四边形。
3.利用向量运算:若四边形ABCD中,向量AB=向量CD,向量AD=向量BC,则四边形ABCD为平行四边形。
四、实战演练与解析1.例题1:判断四边形ABCD是否为平行四边形。
已知:AB平行于CD,AD=BC,求证:四边形ABCD为平行四边形。
解析:根据平行四边形的判定方法2,四边形ABCD为平行四边形。
2.例题2:判断四边形EFGH是否为平行四边形。
已知:EF=GH,∠E=∠H,求证:四边形EFGH为平行四边形。
解析:根据平行四边形的判定方法1,四边形EFGH为平行四边形。
3.例题3:求解平行四边形ACBD的面积。
已知:平行四边形ACBD中,AB=4,BC=6,AC=8,求面积。
平行四边形的性质与判定习题课公开课获奖课件百校联赛一等奖课件
当堂测试
4、如图所示,已知在四边形ABCD中,AB=CD,AD=BC,点E 在BC上,点F在AD上,AF=CE,EF与对角线BD相交于点O,试 阐明O是BD旳中点.
O
∵AB=CD, AD=BC
∴四边形ABCD是平行四边形
A
B
对角线相互平分旳四边形是平形四边形
∵ OA=OC, OD=OB
∴四边形ABCD是平行四边形
一组对边平行且相等旳四边形是平形四边形
∵ AB∥CD, AB=CD
∴四边形ABCD是平行四边形
两组对角分别相等旳四边形是平形四边形
∵∠DAB= ∠DCB, ∠ABC= ∠ADC ∴四边形ABCD是平行四边形
E
D
B
F
C
16
基础题组
变 式二
已知如图BE、CF分别是□ABCD内角∠ABC与
∠ADC旳角平分线。
A
求证:BE=DF。
E
D
B
F
C
17
能力题组
变 式一
A
E
B
已知:E、F是平行四边形ABCD对角线 AC上旳两点,而且AF=CE。
求证: ∠EBF=∠EDF
证明: 连接对角线BD,交AC于点O
OF
C
D ∵四边形ABCD是平行四边形
3. □ABCD旳对角线交于O,AC=10cm,BD=4cm,△OAB旳周长
为11cm,则CD= 4c.m
图1
图2
4.如图1,已知□ABCD中,AB=4,BC=6,BC边上旳
第03讲 平行四边形的性质和判定(知识解读+达标检测)(解析版)
第03讲平行四边形的性质和判定【题型1 根据平行四边形的性质求边长】【题型2根据平行四边形的性质求角度】【题型3根据平行四边形的性质求周长】【题型4 平行四边形的判定】【题型5 平行四边形的判定与全三角形综合】【题型6 平行四边形的性质与判定综合】考点1:平行四边形的性质1.边的性质:两组对边分别平行且相等,如下图:AD∥BC,AD=BC,AB∥CD,AB=CD;2.角的性质:两组对角分别相等,如图:∠A=∠C,∠B=∠D3.对角线的性质:对角线互相平分。
如图:AO=CO,BO=DO【题型1 根据平行四边形的性质求边长】【典例1】(2023秋•龙口市期末)如图,平行四边形ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=8,AC=12,则BD的长是( )A.16B.18C.20D.22【答案】C【解答】解:∵四边形ABCD是平行四边形,AC=12,∴OB=OD,OA=OC=AC=6,∵AB⊥AC,由勾股定理得:OB===10,∴BD=2OB=20.故选:C.【变1-1】(2023春•历下区校级期中)如图,在平行四边形ABCD中,∠A的平分线AE交CD于E,AB=8,BC=6,则EC等于( )A.1B.1.5C.2D.3【答案】C【解答】解:∵四边形ABCD为平行四边形,∴CD=AB=8,AD=BC=6.CD∥AB,∵∠DAB的平分线AE交CD于E,∴∠DAE=∠BAE,∵CD∥AB,∴∠AED=∠BAE,∴∠DAE=∠AED.∴ED=AD=6,∴EC=CD﹣ED=8﹣6=2.故选:C.【变式1-2】(2022秋•牟平区期末)如图,在平行四边形ABCD中,∠ABC的平分线交AD 于点E,∠BCD的平分线交AD于点F,若AB=4,AD=5,则EF的长度( )A.1B.2C.3D.4【答案】C【解答】解:∵平行四边形ABCD,∴∠DFC=∠FCB,又CF平分∠BCD,∴∠DCF=∠FCB,∴∠DFC=∠DCF,∴DF=DC,同理可证:AE=AB,∵AB=4,AD=BC=5,∴2AB﹣BC=AE+FD﹣BC=EF=3.故选:C.【变式1-3】(2022秋•安化县期末)如图,F是平行四边形ABCD对角线BE上的点,若BF:FD=1:3,AD=12,则EC的长为( )A.6B.7C.8D.9【答案】C【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=12,∵BF:FD=1:3,∴EB:AD=BF:FD,∴EB:12=1:3,∴EB=4,∴EC=BC﹣EB=12﹣4=8.故选:C.【题型2根据平行四边形的性质求角度】【典例2】(2023春•环翠区期末)如图,将一副三角板在平行四边形ABCD中作如下摆放,设∠1=30°,那么∠2=( )A.55°B.60°C.65°D.75°【答案】D【解答】解:延长EH交AB于N,∵△EFH是等腰直角三角形,∴∠FHE=45°,∴∠NHB=∠FHE=45°,∵∠1=30°,∴∠HNB=180°﹣∠1﹣∠NHB=105°,∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2+∠HNB=180°,∴∠2=75°,故选:D.【变式2-1】(2023秋•二道区校级期末)如图,在▭ABCD中,∠A+∠C=80°,则∠D=( )A.80°B.40°C.70°D.140°【答案】D【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,AB∥CD,∴∠A+∠D=180°,∵∠A+∠C=80°,∴∠A=∠C=40°,∴∠D=180°﹣∠A=140°,故选:D.【变式2-2】(2023春•北安市校级期中)如图,平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=155°,则∠A的度数为( )A.155°B.130°C.125°D.110°【答案】B【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵∠ABC的平分线交AD于E,∠BED=155°,∴∠ABE=∠CBE=∠AEB=180°﹣∠BED=25°,∴∠A=180°﹣∠ABE﹣∠AEB=130°.故选:B.【变式2-3】(2023•巴东县模拟)四边形ABCD是平行四边形,∠ABC=70°,BE平分∠ABC交AD于点E,DF∥BE交BC于点F,则∠CDF的度数为( )A.55°B.50°C.40°D.35°【答案】D【解答】解:∵∠ABC=70°,BE平分∠ABC,∴∠CBE=∠ABC=35°,∵四边形ABCD是平行四边形,∴∠ADC=∠ABC=70°,AD∥BC,∴∠AEB=∠CBE=35°,∵DF∥BE,∴∠EDF=∠AEB=35°,∴∠CDF=∠ADC﹣∠EDF=70°﹣35°=35°,故选:D.【题型3根据平行四边形的性质求周长】【典例3】(2023春•光明区校级期中)如图,在平行四边形ABCD中,AE平分∠BAD交BC于E,BE=4,EC=3,则平行四边形ABCD的周长为( )cm.A.11B.18C.20D.22【答案】D【解答】解:∵四边形ABCD是平行四边形,∴AD与BC平行,AD=BC,AB=CD,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BA=BE=4,∵BC=BE+EC=4+3=7=AD,∴平行四边形ABCD的周长为2×(7+4)=22(cm),故选:D.【变式3-1】(2023春•东港区校级期中)在平行四边形ABCD中,∠A的角平分线把边BC 分成长度为4和5的两条线段,则平行四边形ABCD的周长为( )A.13或14B.26或28C.13D.无法确定【答案】B【解答】解:设∠A的平分线交BC于点E,∵四边形ABCD是平行四边形,∴BC∥AD,∴∠BEA=∠DAE,∵∠BAE=∠DAE,∴∠BEA=∠BAE,∴AB=EB,当EB=5,EC=4时,如图1,则AB=EB=5,BC=EB+EC=9,∴2AB+2BC=2×5+2×9=28;当EB=4,EC=5时,如图2,则AB=EB=4,BC=EB+EC=9,∴2AB+2BC=2×4+2×9=26,∴平行四边形ABCD的周长为26或28,故选:B.【变式3-2】(2023春•沙坪坝区期中)如图,在▱ABCD中,对角线AC、BD交于点O,周长为18,过点O作OE⊥AC交AD于点E,连结CE,则△CDE的周长为( )A.18B.9C.6D.3【答案】B【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC,∵▱ABCD周长为18,∴AD+CD=9,∵OE⊥AC,OA=OC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+AE+DE=AD+CD=9.故选:B.【变式3-3】(2023秋•南关区校级期末)如图,在▱ABCD中,AD=10,对角线AC与BD 相交于点O,AC+BD=24,则△BOC的周长为 22 .【答案】22.【解答】解:∵四边形ABCD是平行四边形,∴AO=OC=AC,BO=OD=BD,AD=BC=10,∵AC+BD=24,∴OC+BO=12,∴△BOC的周长=OC+OB+BC=12+10=22.故答案为:22考点2:平行四边形的判定1.与边有关的判定:(1)两组对边分别平行的四边形是平行四边形(2)两组对边分别相等的四边形是平行四边形2.与角有关的判定:两组对角分别相等的四边形是平行四边形3.与对角线有关的判定:对角线互相平分的四边形是平行四边形【题型4 平行四边形的判定】【典例4】(2023秋•朝阳区校级期末)如图,四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )A.AB∥DC,AD∥BC B.AB∥DC,AD=BCC.AO=CO,BO=DO D.AB=DC,AD=BC【答案】B【解答】解:A、AB∥DC,AD∥BC可利用两组对边分别平行的四边形是平行四边形判定这个四边形是平行四边形,故此选项不合题意;B、AB∥DC,AD=BC不能判定这个四边形是平行四边形,故此选项符合题意;C、AO=CO,BO=DO可利用对角线互相平分的四边形是平行四边形判定这个四边形是平行四边形,故此选项不合题意;D、AB=DC,AD=BC可利用两组对边分别相等的四边形是平行四边形判定这个四边形是平行四边形,故此选项不合题意;故选:B.【变式4-1】(2022秋•泰山区期末)下列条件中,能判定四边形是平行四边形的是( )A.一组对边相等,另一组对边平行B.一组对边平行,一组对角互补C.一组对角相等,一组邻角互补D.一组对角互补,另一组对角相等【答案】C【解答】解:A、一组对边相等,另一组对边平行,也有可能是等腰梯形B、一组对边平行,一组对角互补,也有可能是等腰梯形C、一组对角相等,一组邻角互补可得到两组对角分别相等,所以是平行四边形D、一组对角互补,另一组对角相等,可能是含两个直角的一般四边形.故选:C.【变式4-2】(2023春•台山市校级期中)在四边形ABCD中,AB∥DC,要使四边形ABCD 成为平行四边形,还需添加的条件是( )A.∠A+∠C=180°B.∠B+∠D=180°C.∠A+∠D=180°D.∠A+∠B=180°【答案】D【解答】解:选项A,B中的两对角是对角关系,不能推出AD∥BC,选项C只能推出AB∥DC,选项D中两角是同旁内角,∵∠A+∠B=180°,∴AD∥BC,又∵AB∥DC,∴四边形ABCD为平行四边形,故选:D.【变式4-3】(2023•中牟县校级开学)小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( )A.①②B.①④C.②④D.②③【答案】C【解答】解:∵只有②④两块碎玻璃的角的两边互相平行,且中间部分相连,角的两边的延长线的交点就是平行四边形的另两个顶点,∴带②④两块碎玻璃,就可以确定原来平行四边形玻璃的大小,能在商店配到一块与原来相同的平行四边形玻璃,故选:C.【题型5 平行四边形的判定与全三角形综合】【典例5】(2022秋•周村区期末)已知,如图,在▱ABCD中,点E、F分别在AD、BC上,且∠BAF=∠DCE.求证:(1)△ABF≌△CDE.(2)四边形AECF是平行四边形.【答案】(1)见解析过程;(2)见解析过程.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,AD=BC,在△ABF和△CDE中,,∴△ABF≌△CDE(ASA);(2)∵△ABF≌△CDE,∴AF=CE,BF=DE,∴AE=CF,∴四边形AECF是平行四边形.【变式5-1】(2023春•惠城区期末)如图,在▱ABCD中,点E,F在对角线BD上,且BE =DF.求证:(1)AE=CF;(2)四边形AECF是平行四边形.【答案】(1)见解答;(2)见解答.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠ABE=∠CDF.在△ABE和△CDF中,,∴△ABE≌△DCF(SAS).∴AE=CF.(2)∵△ABE≌△DCF,∴∠AEB=∠CFD,∴∠AEF=∠CFE,∴AE∥CF,∵AE=CF,∴四边形AECF是平行四边形.【变式5-2】(2023春•鱼台县期中)如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F.求证:(1)AE=CF;(2)四边形AECF是平行四边形.【答案】见试题解答内容【解答】证明:(1)∵四边形ABCD是平行四边形.∴AD∥BC,AD=BC.∴∠ADE=∠CBF.∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°.∵在△ADE与△CBF中,∴△ADE≌△CBF(AAS),∴AE=CF.(2)∵AE⊥BD,CF⊥BD,∴∠AEF=∠CFE=90°.∴AE∥CF.又∵AE=CF,∴四边形AECF是平行四边形.【变式5-3】(2023•新疆模拟)如图,在▱ABCD中,点E,F在对角线BD上,且BF=DE.证明:(1)△ABE≌△CDF;(2)四边形AECF是平行四边形.【答案】(1)见解答;(2)见解答.【解答】证明:(1)∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∵BF=DE,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)由(1)可知,△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴180°﹣∠AEB=180°﹣∠CFD,即∠AEF=∠CFE,∴AE∥CF,∵AE=CF,AE∥CF,∴四边形AECF是平行四边形.【题型6 平行四边形的性质与判定综合】【典例6】(2023春•温州月考)如图,在▱ABCD中,点E在AB上,点F在CD上,且AE =CF.(1)求证:四边形DEBF是平行四边形;(2)若DE为∠ADC的角平分线,且AD=6,EB=4,求▱ABCD的周长.【答案】(1)见解析;(2)32.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴DF∥BE,∵AE=CF,∴BE=DF,∴四边形DEBF是平行四边形;(2)解:∵DE为∠ADC的角平分线,∴∠ADE=∠CDE,∵CD∥AB,∴∠AED=∠CDE,∴∠ADE=∠AED,∴AE=AD=6,∵BE=4,∴AB=AE+BE=10,∴▱ABCD的周长=2(AD+AB)=2(6+10)=32.【变式6-1】(2023春•成都期末)如图,在▱ABCD中,点E,F在对角线AC上,且AF=CE,连接BE,DE,BF,DF.(1)求证:四边形BEDF是平行四边形;(2)若∠BAC=80°,AB=AF,DC=DF,求∠EBF的度数.【答案】(1)证明过程见解答;(2)30°.【解答】(1)证明:在▱ABCD中,AB=CD,AB∥CD,∴∠BAF=∠DCE,在△ABF和△CDE中,,∴△ABF≌△CDE(SAS),∴BF=DE,∠DEF=∠BFA,∴ED∥BF,∴四边形BEDF是平行四边形;(2)解:∵四边形BEDF是平行四边形,∴BE=DF,∵AB=DC=DF,∴AB=BE,∴∠BEA=∠BAC=80°,∴∠ABE=180°﹣2×80°=20°,∵AB=AF,∴∠ABF=∠AFB=(180°﹣80°)=50°,∴∠EBF=∠ABF﹣∠ABE=50°﹣20°=30°.【变式6-2】(2023秋•锦江区校级期末)如图,点E、F是平行四边形ABCD对角线AC上两点,BE∥DF.(1)求证:四边形BEDF是平行四边形;(2)若AC=8,BC=6,∠ACB=30°,求平行四边形ABCD的面积.【答案】(1)证明见解答过程;(2)24.【解答】(1)证明:平行四边形ABCD中,AD∥BC,AD=BC,∴∠ACB=∠CAD,又∵BE∥DF,∴∠BEC=∠DFA,在△BEC和△DFA中,,∴△BEC≌△DFA(AAS),∴BE=DF,又BE∥DF,∴四边形BEDF是平行四边形;(2)解:过A点作AG⊥BC,交CB的延长线于G,在Rt△AGC中,AC=8,∠ACB=30°,∴AG=4,∵BC=6,∴平行四边形ABCD的面积=BC•AG=4×6=24.【变式6-3】(2023春•和县校级期末)如图,BD是四边形ABCD的对角线,∠ADB=∠CBD,AD=BC,过点A作AE∥BD交C的延长于E.(1)求证:四边形ABDE是平行四边形;(2)过点E作EF⊥BC交BC的延长线于点F,连接DF,若,求DF的长.【答案】(1)见解析;(2)2.【解答】(1)证明:∵∠ADB=∠CBD,∴AD∥BC,∴∠ADE=∠BCD.∵AD=BC,∴四边形ABCD是平行四边形,∴AB∥CE,AB=CD,∵AE∥BD,∴∠EAD=∠BDA,∴∠EAD=∠DBC,在△EAD和△DBC中,,∴△EAD≌△DBC(ASA),∴DE=CD,∵AB=DE.∴四边形ABDE是平行四边形;(2)∵DE=CD=AB,∴FD是CE的中线,∵EF⊥BC,∴DF=CE==2.考点3:三角形的中位线三角形中位线:在△ABC 中,D,E 分别是A C,AC 的中点,连接DE.像DE 这样,连接三角形_两边中点的线段叫做三角形的中位线.B中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的二分之一。
专题04 平行四边形的性质与判定(解析版)八年级数学下册期末综合复习专题提优训练(人教版)
2020-2021学年八年级数学下册期末综合复习专题提优训练(人教版)专题04平行四边形的性质与判定【典型例题】1.如图,E、F是▱ABCD的对角线AC上的两点,且BE▱AC,DF▱AC,连接BE、ED、DF、FB.(1)求证:四边形BEDF为平行四边形;(2)若BE=4,EF=2,求BD的长.【答案】(1)证明见解析;(2).【分析】(1)连接BD交AC于O,由平行四边形的性质得出OA=OC,OB=OD,AB▱CD,AB=CD,由平行线的性质得出▱BAE=▱DCF,证明▱ABE▱▱CDF得出AE=CF,得出OE=OF,即可得出结论;(2)由(1)得:OE=OF=12EF=1,由勾股定理得出OB【详解】(1)证明:连接BD交AC于O,▱四边形ABCD是平行四边形,▱OA=OC,OB=OD,AB▱CD,AB=CD,▱▱BAE=▱DCF,▱BE▱AC,DF▱AC,▱▱AEB=▱CFD=90°,在▱ABE和▱CDF中,BAE DCFAEB CFDAB CD∠=∠⎧⎪∠=∠⎨⎪=⎩,▱▱ABE▱▱CDF(AAS),▱AE=CF,▱OE=OF,又▱OB=OD,▱四边形BEDF为平行四边形;(2)解:由(1)得:OE=OF=12EF=1,▱BE▱AC,▱▱BEO=90°,▱OB▱BD=2OB=.【点睛】此题主要考查了平行四边形的判定与性质,全等三角形的判定与性质、勾股定理等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.【专题训练】一、选择题1.如图,在四边形ABCD中,对角线AC和BD相交于点O,下列条件不能判断四边形ABCD是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.OA=OC,OB=OD D.AB∥DC,AD=BC【答案】D【分析】根据平行四边形的定义,平行四边形的判定定理两个角度思考判断即可.【详解】解:▱AB▱DC,AD▱BC,▱四边形ABCD是平行四边形,故选项A不符合题意;▱AB=DC,AD=BC,▱四边形ABCD是平行四边形,故选项B不符合题意;▱OA=OC,OB=OD,▱四边形ABCD是平行四边形,故选项C不符合题意;▱AB▱DC,AD=BC,▱四边形ABCD不一定是平行四边形,也可能是等腰梯形,故选项D符合题意,故选:D.【点睛】本题考查了平行四边形的判定,熟练平行四边形的定义法,判定定理法是解题的关键.2.如图,平行四边形ABCD中,BC=2AB,CE▱AB于E,F为AD的中点,若▱AEF=56°,则▱B=()A.56°B.60°C.64°D.68°【答案】D【分析】取BC的中点G,连接EG、FG,如图,先根据直角三角形斜边上的中线性质得到EG=BG=CG,则▱B=▱GEB,则EG=AB=CD,所以▱EFG=▱FEG,接着证明FG▱AB得到▱AEF=▱EFG=56°,然后计算出▱GEB,从而得到▱B的度数.【详解】解:取BC 的中点G ,连接EG 、FG ,▱四边形ABCD 为平行四边形,▱AB =CD ,AB ▱CD ,▱CE ▱AB ,▱▱CEB =90°,▱EG =BG =CG ,▱▱B =▱GEB ,▱BC =2AB ,▱EG =AB =CD ,▱▱EFG =▱FEG ,▱F 点为AD 的中点,G 为BC 的中点,▱FG ▱AB ,▱▱AEF =▱EFG =56°,▱▱FEG =56°,▱▱GEB =180°-56°-56°=68°,▱▱B =68°.故选:D .【点睛】本题考查了平行四边形的性质:平行四边形的对边相等.平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的性质.3.如图,平行四边形ABCD 中,对角线AG ,BD 相交于点O ,10AC =,6BD =,AD BD ⊥.在边AB 上取一点E ,使AE AO =,则AEO △的面积为( )A B C D 【答案】D【分析】先过O 作OF AB ⊥于F ,过D 作DG AB ⊥于G ,依据勾股定理求得AD 和AB 的长,再根据面积法即可得出DG 的长,进而得到OF 的长,再根据三角形面积公式即可得到AEO ∆的面积.【详解】解:如图所示,过O 作OF AB ⊥于F ,过D 作DG AB ⊥于G ,平行四边形ABCD 中,10AC =,6BD =,5AO ∴=,3DO =,又AD BD ⊥,Rt AOD ∴△中,4AD =,Rt ABD ∴中,AB =1122AD BD AB DG ⨯=⨯,AD BD DG AB ⨯∴= //DG OF ,BO DO =,12OF DG ∴=又5AE AO ==,11522AOE S AE OF ∆∴=⨯=⨯, 故选:D .此题考查了平行四边形的性质与勾股定理的运用,三角形的中位线的性质.依据平行四边形的性质得到O 是对角线的中点是解决问题的关键.4.如图,在▱ABCD 中,CD =10,▱ABC 的平分线交AD 于点E ,过点A 作AF ▱BE ,垂足为点F ,若AF =6,则BE 的长为( )A .8B .10C .16D .18【答案】C【分析】 由四边形ABCD 是平行四边形,结合▱ABC 的平分线交AD 于点E ,证明,AB AE = 再利用等腰三角形的性质可得:BE =2BF ,再由勾股定理求解,BF 即可得到答案.【详解】▱四边形ABCD 是平行四边形,▱AD ▱BC ,▱▱AEB =▱CBE ,▱▱ABC 的平分线交AD 于点E ,▱▱ABE =▱CBE ,▱▱ABE =▱AEB ,▱AB =AE ,▱AF ▱BE ,▱BE =2BF ,▱CD =10,▱AB =10,▱AF =6,▱BF ==8,▱BE =2BF =16,【点睛】本题考查的是平行四边形的性质,等腰三角形的判定与性质,勾股定理的应用,掌握以上知识是解题的关键.5.如图,在等边▱ABC中,BC=8cm,射线AG//BC,点E从点A出发沿射线AG以1cm/s的速度运动,点F从点B出发沿射线BC以3cm/s的速度运动.设运动时间为t(s),当t=()s时,以A、C、E、F为顶点的四边形是平行四边形.A.1或2B.2C.2或3D.2或4【答案】D【分析】分别从当点F在C的左侧时与当点F在C的右侧时去分析,由当AE=CF时,以A、C、E、F为顶点四边形是平行四边形,可得方程,解方程即可求得答案.【详解】解:当点F在C的左侧时,根据题意得:AE=tcm,BF=3tcm,则CF=BC﹣BF=(8﹣3t)cm,▱AG▱BC,▱当AE=CF时,四边形AECF是平行四边形,即t=8﹣3t,解得:t=2;当点F在C的右侧时,根据题意得:AE=tcm,BF=3tcm,则CF=BF﹣BC=(3t﹣8)cm,▱AG▱BC,▱当AE=CF时,四边形AEFC是平行四边形,即t=3t﹣8,解得:t=4;综上可得:当t =2或4s 时,以A 、C 、E 、F 为顶点四边形是平行四边形,故选:D .【点睛】本题考查的是平行四边形的判定与性质,几何动态问题,掌握数学分类思想,平行四边形的性质解决问题是解题的关键.二、填空题6.如图,在平行四边形ABCD 中,DB =DC ,▱C =70°,AE ▱BD 于E ,则▱DAE =_____度.【答案】20【分析】由DB =DC ,▱C =70°可以得到▱DBC =▱C =70°,又由AD ▱BC 推出▱ADB =▱DBC =▱C =70°,而▱AED =90°,由此可以求出▱DAE .【详解】解:▱DB =DC ,▱C =70°,▱▱DBC =▱C =70°,▱四边形ABCD 是平行四边形,AE ▱BD ,▱AD ▱BC , ▱AED =90°,▱▱ADB =▱DBC =▱C =70°,▱▱DAE =90°﹣70°=20°.故答案为:20.【点睛】本题考查了平行四边形的性质,解决本题的关键是利用三角形内角和定理,等边对等角等知识得到和所求角有关的角的度数.7.▱ABCD 的周长是30,AC 、BD 相交于点O ,▱OBC 的周长比▱OAB 的周长大3,则BC =_____.【答案】9【分析】如图:由四边形ABCD 是平行四边形,可得AB CD =,BC AD =,OA OC =,OB OD =;又由OBC ∆的周长比OAB ∆的周长大3,可得3BC AB -=,又因为ABCD 的周长是30,所以15AB BC +=;解方程组即可求得.【详解】 解:四边形ABCD 是平行四边形,AB CD ∴=,BC AD =,OA OC =,OB OD =;又OBC ∆的周长比OAB ∆的周长大3,()3BC OB OC AB OA OB ∴++-++=3BC AB ∴-=①,又ABCD 的周长是30,15AB BC ∴+=②,由①+②得:218BC =9BC ∴=.故答案为:9.【点睛】此题考查了平行四边形的性质:平行四边形的对边相等,对角线互相平分.解题时要注意利用方程思想与数形结合思想求解.8.如图,▱ABCD 的对角线AC 与BD 交于点O ,BD ▱AD ,AB =10,AD =6,则AC 的长为_____.【答案】【分析】利用勾股定理得出BD 的长,再由平行四边形的性质求出DO ,结合勾股定理即可得出答案.【详解】▱BD ▱AD ,AB =10,AD =6.▱BD 8=.▱四边形ABCD 是平行四边形.▱DO =12BD =4. AC =2AO . ▱▱ADO 是直角三角形.▱AO ==▱AC =故答案为:【点睛】此题主要考查了平行四边形的性质以及勾股定理,正确得出DO 的长是解题关键. 9.如图,在平行四边形ABCD 中,CE 平分▱BCD 交AB 于点E 连接ED ,若EA =3,EB =5,ED =4,CE = ________ .【答案】【分析】根据平行四边形的性质和角平分线的定义可得5AD BC EB ,根据勾股定理的逆定理可得90AED ∠=︒,再根据平行四边形的性质可得8CD AB ==,90EDC ∠=︒,根据勾股定理可求CE 的长.【详解】解:CE 平分BCD ∠,BCE DCE ∴∠=∠,四边形ABCD 是平行四边形,AB CD ∴=,AD BC =,//AB CD ,BEC DCE ,BEC BCE ∴∠=∠,5BC BE ,5AD ∴=,3EA ,4ED =,在AED ∆中,222345+=,即222EA ED AD , 90AED ∴∠=︒,358CD AB ,90EDC ∠=︒,在Rt EDC 中,22224845CEED DC .故答案是:【点睛】 本题主要考查了平行四边形的性质和角平分线的性质,勾股定理的逆定理,勾股定理,熟悉相关性质是解题的关键.10.已知点A (3,0)、B (﹣1,0)、C (2,3),以A 、B 、C 为顶点画平行四边形,则第四个顶点D 的坐标是_____.【答案】(﹣2,3)或(0,﹣3)或(6,3)【分析】首先画出坐标系,再分别以AC 、AB 、BC 为对角线通过线段平移作出平行四边形,进而可得D 点坐标.【详解】解:如图,以BC 为对角线,将AB 向上平移3个单位,再向左平移1个单位,B 点对应的位置为(﹣2,3)就是第四个顶点D 1;以AB 为对角线,将BC 向下平移3个单位,再向右平移1个单位,B 点对应的位置为(0,﹣3)就是第四个顶点D 2;以AC 为对角线,将AB 向上平移3个单位,再向右平移4个单位,C 点对应的位置为(6,3)就是第四个顶点D 3;▱第四个顶点D 的坐标为:(﹣2,3)或(0,﹣3)或(6,3),故答案为:(﹣2,3)或(0,﹣3)或(6,3).【点睛】本题考查图形与坐标,平行四边形的判定与性质,平移的性质,掌握平行四边形的判定与性质,平移的性质是解题关键.三、解答题11.如图,平行四边形ABCD 的对角线AC 、BD 相交于点O 、E 、F 是AC 上的两点,且BF ▱DE . (1)求证:▱BFO ▱▱DEO ;(2)求证:四边形BFDE 是平行四边形.【答案】(1)见解析;(2)见解析【分析】(1)根据四边形ABCD 是平行四边形,可得OB =OD ,根据BF ▱DE ,可得▱OFB =▱OED ,进而可以证明▱BFO ▱▱DEO ;(2)结合(1)根据对角线互相平分的四边形是平行四边形,即可证明四边形BFDE 是平行四边形.【详解】解:(1)证明:▱四边形ABCD 是平行四边形,▱OB =OD ,▱BF ▱DE ,▱▱OFB =▱OED ,在▱BFO 和▱DEO 中,OFB OED FOB EOD OB OD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ▱▱BFO ▱▱DEO (AAS );(2)证明:▱▱BFO ▱▱DEO ,又OB=OD,▱四边形BFDE是平行四边形.【点睛】本题考查的是全等三角形的判定与性质,平行四边形的判定与性质,掌握利用合适的方法判定平行四边形是解题的关键.12.如图,平行四边形ABCD中,点E在BC上,且AE=EC,试分别在下列两个图中按要求使用无刻度直尺画图.(保留作图痕迹)(1)在图1中,画出▱DAE的平分线;(2)在图2中,画出▱AEC的平分线.【答案】(1)见解析;(2)见解析.【分析】(1)连接AC,再由平行线的性质及等腰三角形的性质可知AC是▱DAE的平分线;(2)连接AC,BD,交于点O,连接EO,由平行线的性质及等腰三角形的性质可知EO平分▱AEC的平分线.【详解】(1)如图所示,连接AC,则AC平分▱DAE;(2)如图所示,连接AC,BD,交于点O,连接EO,则EO平分▱AEC.本题主要考察了等腰三角形的性质,平行四边形的性质,作图-角的平分线等知识点,理解并记住它们是解题关键.13.如图,已知平行四边形ABCD中,BD是它的一条对角线,过A、C两点作AE▱BD,CF▱BD,垂足分别为E、F,延长AE、CF分别交CD、AB于点M、N.(1)求证:四边形CMAN是平行四边形;(2)已知DE=8,FN=6,求BN的长.【答案】(1)见解析;(2)10【分析】(1)欲证明四边形AMCN是平行四边形,只要证明CM▱AN,AM▱CN即可;(2)首先证明▱ADE▱▱CBF,推出DE=BF=8,在Rt▱BFN中,根据勾股定理即可解决问题.【详解】(1)证明:▱AE▱BD,CF▱BD,▱AM▱CN,▱四边形ABCD是平行四边形,▱CM▱AN,▱四边形CMAN是平行四边形;(2)解:▱四边形ABCD是平行四边形,▱AD▱BC,AD=BC,▱▱ADE=▱CBF,▱AE▱BD,CF▱BD,▱▱AED=▱CFB=90°,在▱ADE与▱CBF中,ADE CBF AED CFB AD BC ∠∠⎧⎪∠∠⎨⎪⎩===,▱▱ADE ▱▱CBF (AAS );▱DE =BF =8,▱FN =6,▱10BN ==.【点睛】本题考查了平行四边形的判定和性质、勾股定理、全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.14.如图1,在▱ABCD 中,▱D =45°,E 为BC 上一点,连接AC ,AE .(1)若▱ABCD 中BC 边上的高为2,求AB 的长.(2)若AB =AE =4,求BE 的长.【答案】(1)(2)2.【分析】(1)如图,过A 作AH BC ⊥于H ,再根据平行四边形的性质可得:45B D ∠=∠=︒,最后根据勾股定理计算即可;(2)先根据平行四边形的性质可得:45B D ∠=∠=︒,然后解Rt AHB ∆和Rt AHE ∆ 即可求出BE 的长.【详解】解:(1)如图,过A 作AH BC ⊥于H ,在▱ABCD 中,45D B ∠=∠=︒,AH BC ⊥,ABCD 中BC 边上的高为2,90AHB ∴∠=︒,2AH =又45B ∠=︒2∴==BH AH ,AB ∴=(2)在ABCD 中,45D B ∠=∠=︒,AB =,AH BH ∴==4AE =,2EH ∴=,2BE BH EH ∴=-=.【点睛】本题考查了平行四边形的性质,勾股定理,等腰直角三角形的判定和性质,正确的作出辅助线解题的关键. 15.如图,在▱ABC 中,过点C 作CD //AB ,E 是AC 的中点,连接DE 并延长,交AB 于点F ,连接AD ,CF .(1)求证:四边形AFCD 是平行四边形;(2)若AB =6,▱BAC =60°,▱DCB =135°,求AC 的长.【答案】(1)见解析;(2)6.【分析】(1)由E 是AC 的中点知AE =CE ,由AB //CD 知▱AFE =▱CDE ,据此根据“AAS ”即可证▱AEF ▱▱CED ,从而得AF =CD ,结合AB //CD 即可得证;(2) 过C 作CM ▱AB 于M ,先证明▱BCM 是等腰直角三角形,得到BM =CM ,再由含30°角的直角三角形的性质解得AC =2AM ,BM =CM ,最后根据AM +BM =AB ,解题即可.【详解】(1)证明:▱E 是AC 的中点,▱AE =CE ,▱CD //AB ,▱▱AFE =▱CDE ,在▱AEF 和▱CED 中,AFE CDE AEF CED AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,▱▱AEF ▱▱CED (AAS ),▱AF =CD ,又▱CD //AB ,即AF //CD ,▱四边形AFCD 是平行四边形;(2)解:过C 作CM ▱AB 于M ,如图所示:则▱CMB =▱CMA =90°,▱CD //AB ,▱▱B +▱DCB =180°,▱▱B =180°﹣135°=45°,▱▱BCM 是等腰直角三角形,▱BM =CM ,▱▱BAC =60°,▱▱ACM =30°,▱AC =2AM ,BM =CM,▱AM +BM =AB ,▱AM+ =6,解得:AM =33,▱AC =2AM =66.【点睛】本题考查全等三角形的判定与性质、平行四边形的判定与性质、含30°角的直角三角形等知识,是重要考点,难度较易,掌握相关知识是解题关键.16.如图,在ABC ∆中,D 为AB 中点,过点D 作//DF BC 交AC 于点E ,且DE EF =,连接AF ,CF ,CD .(1)求证:四边形ADCF 为平行四边形;(2)若45ACD ∠=︒,30EDC ∠=︒,4BC =,求CE 的长.【答案】(1)见解析;(2【分析】(1)根据三角形中位线定理和平行四边形的判定定理即可得到结论;(2)根据三角形中位线定理和解直角三角形即可得到结论.【详解】解:(1)证明:D 为AB 中点,AD BD ∴=,//DF BC ,▱点E 为AC 的中点,AE CE ∴=,DE EF =,∴四边形ADCF 为平行四边形;(2)AD BD =,AE CE =,114222DE BC ∴==⨯=, 过E 作EH CD ⊥于H ,90EHD EHC ∴∠=∠=︒,30EDC ∠=︒,112EH DE ∴==, 45ECD ∠=︒,CE ∴==.【点睛】本题考查了平行四边形的判定,三角形的中位线定理,解直角三角形,正确的作出辅助线构造直角三角形是解题的关键.17.如图,在四边形ABCD 中,AD //BC ,对角线AC 、BD 交于点O ,且AO =OC ,过点O 作EF ▱BD ,交AD 于E ,交BC 于点F .(1)求证:四边形ABCD 为平行四边形;(2)连接BE ,若▱BAD =100°,▱DBF =2▱ABE ,求▱ABE 的度数.【答案】(1)见解析(2)16°【分析】(1)根据已知条件证明▱ADO ▱▱CBO 即可求解;(2)先证明▱AEO ▱▱CFO ,得到EO =FO ,根据三线合一得到BD 平分▱EBC ,再根据平行线的性质及角度的关系即可求解.【详解】(1)▱AD//BC,▱▱OAE=▱OCF,又AO=OC,▱AOD=▱COB,▱▱ADO▱▱CBO▱AD=CB故四边形ABCD为平行四边形;(2)如图,▱AD//BC,▱▱OAE=▱OCF,又AO=OC,▱AOE=▱COF,▱▱AEO▱▱CFO▱OE=OF又EF▱BD,▱BD平分▱EBC,▱▱DBF=▱DBE▱▱BAD=100°,AD//BC,▱▱ABC=80°▱▱DBF=2▱ABE,▱▱DBF=▱DBE=2▱ABE▱▱ABC=▱DBF+▱DBE+▱ABE=5▱ABE=80°▱▱ABE=16°.【点睛】此题主要考查平行四边形的判定与性质,解题的关键是熟知平行四边形的判定定理及三线合一的性质应用.18.如图1,在平面直角坐标系xOy中,直线l2:y=﹣x与x轴交于点B,与直线l1:y+b交于点C,C点到x轴的距离CD为l1交x轴于点A.(1)求直线l1的函数表达式;(2)如图2,y 轴上的两个动点E 、F (E 点在F 点上方)满足线段EF 的长为CE 、AF ,当线段CE +EF +AF 有最小值时,求出此时点F 的坐标以及CE +EF +AF 的最小值;(3)如图3,将ACB △绕点B 逆时针方向旋转60°,得到BGH ,使点A 与点H 对应,点C 与点G 对应,将BGH 沿着直线BC 平移,点M 为直线AC 上的动点,是否存在以C 、O 、M 、G 、为顶点的平行四边形,若存在,请求出M 的坐标;若不存在,说明理由.【答案】(1)y =+;(2)CE +EF +AF (3)存在,11,44M ⎛- ⎝⎭或21,4M ⎛- ⎝⎭或3.4M ⎛ ⎝⎭理由见解析 【分析】(1)由题意得:点C 的纵坐标为C 在直线l 2:y =﹣3x +3上,当y =x =-1,则点C (-1,,从而可得答案;(2)作点A 关于y 轴的对称点A (3, 0),过点A 作x 轴的垂线并取A E ''=EC 交y 于点E ,在E 下方取EF F 是所求点,即可求解;(3) 先证明90,ACB ∠=︒ 再求解60,30,CAB ABC ∠=︒∠=︒ 过点G 作GN ▱x 轴于点N ,过点K 作KQ x ⊥轴点,Q 可得(1,,G -- 设,KQ n = 则2,,BK n BQ == 如图,当BGH 沿BC 方向平移时,确定()1,,G n --- 设(,M x + 结合形平行四边形的对角线互相平分,中点坐标公式列方程求解即可得到答案.【详解】解:(1) 由题意得:点C 的纵坐标为C 在直线l 2:y x 上,当y =x =-1,则点C (-1,,C 在直线1l 的解析式为y b =+上,b =b ∴= ,故直线1l 的表达式为:y =+;(2)直线2l 的表达式为: y =﹣3x , 当y =0时,x =5,则点B (5, 0),直线1l :y +x 轴交于点A (-3, 0),作点A 关y 轴的对称点A '(3, 0),过点A '作x 轴的垂线并取A E ''=连接EC 交y 于点E ,而 EF由//,,A E AE A E AE ''''= ∴ 四边形A E EF ''是平行四边形,,AF A F E E ''∴==AF EF CE A E E E CE CE ''''∴++=++=,此时:AF EF CE ++最小,则点F 是所求点,()(3,0,,A E '(,C -CE '∴==CE +EF +AF 的最小值=FE +CE(3)()()(3,0,5,0,,A B C --∴ AB =8,BC = AC =4,222AC BC AB ∴+=90,ACB ∴∠=︒如图,取AB 的中点,J 则()1,0,J 4,JA JC AC ===ACJ ∴为等边三角形,60,30,CAB ABC ∠=︒∠=︒60,CBG BC BG ∠=︒==30,ABG ∴∠=︒过点G 作GN ▱x 轴于点N ,过点K 作KQ x ⊥轴点,Q6,651,GN BN ON ∴====-=(1,,G ∴--设,KQ n =则2,,BK n BQ == 如图,当BGH 沿BC 方向平移时,则()1,,G n --设(,M x +四边形MGOC 为平行四边形, ∴ 由平行四边形的对角线互相平分可得:2x n⎧=-⎪+= 解得:11,4x =-+=11,,44M ⎛∴- ⎝⎭如图,同理()1,,G n --设(,M x +同理可得:214x =-+=21,,4M ⎛∴- ⎝⎭如图,同理()1,,G n -- 设(,M x +同理可得:34x =+=3.4M ⎛∴ ⎝⎭综上:114M ⎛- ⎝⎭或 21,4M ⎛- ⎝⎭或3.4M ⎛ ⎝⎭ 【点睛】本题考查一次函数解析式,线段和最短问题,锐角三角函数,平行四边形的判定与性质,分类讨论思想是难点.。
平行四边形的性质及判定测试题
平行四边形的性质及判定测试题班级_______学号_______姓名_______成绩_______一、填空:(每空4分,共52分)1、平行四边形的周长为36cm ,相邻两边的比为1:2,则它的两邻边长分别是____________2、在平行四边形ABCD 中,已知AB 、BC 、CD 三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是 。
3、如图,在平行四边形ABCD 中,GH EF AB GH AD EF 、,//,//相交于点O ,则图中共有________个平行四边形.4、平行四边形ABCD 中,∠A =45°,BC =2 ,则AB 与CD 之间的距离是 ;若AB =3,四边形ABCD 的面积是 , ΔABD 的面积是 .5、在平行四边形ABCD 中,ABC BC AB ∠==,3,1与BCD ∠的平分线分别交AD 于E 、F ,则EF 的长为_____.6、平行四边形的两个邻角的平分线相交所成的角是_________°7、若□ABCD 与□ABEF 有公共边AB ,那么四边形DCEF 是________8、在四边形ABCD 中,AC 是对角线,若BAC DCA BCA DAC ∠=∠∠=∠,,且︒=∠62D ,则____=∠B .9、在△ABC 中,AB=6cm ,AC=8cm ,BC=10cm ,D 、E 、F 分别是各边中点,则△DEF 的周长= ,△DEF 的面积是 .10、A,B,C,D 在同一个平面内,从①CD AB //② AB=CD ③AD BC //④BC=AD 这四个条件中任意选两个,能使四边形ABCD 是平行四边形的选法有_____种二、解答题:(共48分)1、已知如图,O 为平行四边形ABCD 的对角线AC 的中点,EF 经过点O ,且与AB 交于E ,与CD 交于F 。
求证:四边形AECF 是平行四边形。
2、已知:如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,M 、N 分别是OA 、OC 的中点,求证:BM ∥DN ,且BM=DN 。
专题02 平行四边形的定义、性质、判定(解析版)
专题02 平行四边形的定义、性质、判定【考点导航】目录【典型例题】 (1)【考点一 利用平行四边形的性质求解】 (1)【考点二 利用平行四边形的性质证明】 (3)【考点三 判断能否构成平行四边形】 (5)【考点四 添一个条件成为平行四边形】 (7)【考点五 证明四边形是平行四边形】 (8)【考点六 平行四边形中的折叠问题】 (10)【考点七 利用平行四边形的性质与判定求解】 (12)【过关检测】 (16)【典型例题】【考点一 利用平行四边形的性质求解】例题:(2022春·广东江门·八年级校联考期中)在平行四边形ABCD 中,130A Ð=°,则C Ð=( )A .130°B .50°C .30°D .120°【答案】A【分析】根据平行四边形的性质即可进行解答.【详解】解:如图:∵四边形ABCD 是平行四边形,∴130A C Ð=Ð=°,故选:A .【点睛】本题主要考查了平行四边形的性质,解题的关键是掌握平行四边形对角相等.【变式训练】1.(2022春·广东江门·八年级江门市第二中学校考阶段练习)如图,在ABCD Y 中,8AD =,5AB =,DF 平分ADC Ð交边BC 于点F ,则BF =( )A .2B .2.5C .3D .3.5【答案】C 【分析】根据等腰三角形的性质,可得5CF CD AB ===,即可求解.【详解】解:在ABCD Y 中,5CD AB ==,8AD BC ==,AD BC∥∴ADF CFD Ð=Ð,又∵DF 平分ADCÐ∴ADF CDF Ð=Ð,∴CDF DFC Ð=Ð,∴5CF CD ==,∴3BF BC CF =-=,故选:C【点睛】此题考查了平行四边形的性质,等腰三角形的判定,解题的关键是熟练掌握等腰三角形的判定定理.2.(2022秋·吉林长春·九年级统考期末)如图,在平行四边形ABCD 中,AC BC ^,E 为AB 的中点,若2CE =,则CD 的长为( )A .2B .3C .4D .5【答案】C 【分析】根据平行四边形的性质可得AB CD =,再由直角三角形的性质可得24AB CE ==,即可求解.【详解】解:∵四边形ABCD 是平行四边形,∴AB CD =,∵AC BC ^,E 为AB 的中点,2CE =,∴24AB CE ==,∴4CD =.故选:C【点睛】本题主要考查了平行四边形的性质,直角三角形的性质,熟练掌握直角三角形斜边中线等于斜边的一半是解题的关键.【考点二 利用平行四边形的性质证明】例题:(2022春·广东江门·八年级江门市怡福中学校考阶段练习)在平行四边形ABCD 中BE 平分ABC Ð,DF 平分ADC Ð,证明:AE CF =.【答案】证明见解析【分析】先根据平行四边形的性质得到AB CD AD BC =,∥,再根据角平分线的定义和平行线的性质证明ABE AEB Ð=Ð,得到AB AE =,同理可证CD CF =,由此即可证明AE CF =.【详解】证明:∵四边形ABCD 是平行四边形,∴AB CD AD BC =,∥,∴AEB CBE Ð=Ð,∵BE 平分ABC Ð,∴ABE CBE Ð=Ð,∴ABE AEB Ð=Ð,∴AB AE =,同理可证CD CF =,∴AE CF =.【点睛】本题主要考查了平行四边形的性质,等腰三角形的性质与判定,角平分线的定义,熟知平行四边形对边平行且相等是解题的关键.【变式训练】1.(2022春·辽宁丹东·八年级校考期末)如图,在平行四边形ABCD 中,点E ,F 分别在AD ,BC 上,且AE CF =,EF ,BD 相交于点O ,求证:OE OF =.【答案】证明见解析【分析】只需要利用ASA 证明ODE OBF △≌△即可证明结论.【详解】证明:∵四边形ABCD 是平行四边形,(1)求证:ADE FCE △≌△;(2)求证:AE 平分DAB Ð;(3)若60DAB Ð=°,4AB =,求Y 【答案】(1)见解析;【考点三 判断能否构成平行四边形】例题:(2022春·甘肃酒泉·八年级统考期末)能判定四边形ABCD 是平行四边形的是( )A . AB CD P ,AD BC =B .A B Ð=Ð,CD Ð=Ð C . AB CD =,AD BC =D . AB AD =,CB CD =【答案】C 【分析】根据平行四边形的判定定理(①有两组对边分别平行的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对角分别相等的四边形是平行四边形,④有一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形)进行判断即可.【详解】解:A 、AB CD P ,AD BC =,不能判定四边形ABCD 为平行四边形;B 、A B Ð=Ð,CD Ð=Ð,不能判定四边形ABCD 为平行四边形;C 、AB CD =,AD BC =,能判定四边形ABCD 为平行四边形;D 、AB AD =,CB CD =,不能判定四边形ABCD 为平行四边形;故选:C .【点睛】此题主要考查了平行四边形的判定,正确掌握平行四边形的判定方法是解题关键.【变式训练】1.(2022秋·山东烟台·八年级统考期末)如图,四边形ABCD 的对角线交于点O ,下列哪组条件能判断四边形ABCD 是平行四边形( )A .OA OC =,AC BD=B .OB OA =,OD OC =C .AB CD ∥,AD BC=D .180ABC BAD Ð+Ð=°,BCD BADÐ=Ð【答案】D 【分析】由平行四边形的判定方法分别对各个选项进行判断即可.【详解】解:A 、由OA OC =,AC BD =,不能判定四边形ABCD 是平行四边形,故该选项不符合题意;B 、由OB OA =,OD OC =,不能判定四边形ABCD 是平行四边形,故该选项不符合题意;C 、由AB CD ∥,AD BC =,不能判定四边形ABCD 是平行四边形,故该选项不符合题意;D 、∵180ABC BAD Ð+Ð=°,∴AD BC ∥,∵BCD BAD Ð=Ð,∴180ABC BCD Ð+Ð=°,∴AB CD ∥,∴四边形ABCD 是平行四边形,故该选项符合题意;故选:D .【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.2.(2022春·广东江门·八年级校考期中)如图,下列四组条件中,不能判定四边形ABCD 是平行四边形的是( )A .AB CD =,AD BC=B .AB CD P ,AD BC ∥C .AB CD P ,AD BC=D .AD BC ∥,AD BC=【答案】C 【分析】根据平行四边形的判定定理判断即可.【详解】解:A .∵AB CD AD BC ==,,∴四边形ABCD 是平行四边形(两组对边分别相等的四边形是平行四边形),故该选项不符合题意;B .∵AB DC AD BC ∥,∥,∴四边形ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形),故该选项不符合题意;C .由AB DC P ,AD BC =不能判定四边形ABCD 是平行四边形,故该选项符合题意;D .∵AB DC P ,AB DC =,∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形),故该选项不符合题意;故选:C .【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定定理是解题的关键.【考点四 添一个条件成为平行四边形】例题:(2022春·江苏淮安·八年级校考阶段练习)已知:如图,AB ∥CD ,线段AC 和BD 交于点O ,要使四边形ABCD 是平行四边形,还需要增加的一个条件是:_____(填一个即可).【答案】AD ∥CB (答案不惟一).【分析】根据平行四边形的定义:两组对边分别平行的四边形是平行四边形,可得答案.【详解】解:根据两组对边分别平行的四边形是平行四边形,可增加的条件可以是:AD ∥CB ,故答案为:AD ∥CB (答案不惟一).【点睛】此题主要考查了平行四边形的判定,解决本题的关键是熟练掌握平行四边形的判定.【变式训练】1.(2021春·宁夏吴忠·八年级校考期中)如图,平行四边形ABCD 中,点E 、F 分别在BC 、AD 上,要使四边形BEDF 是平行四边形,还需要增加的一个条件是_______________.【答案】ED BF=【分析】由平行四边形的性质可得到ED BF ∥,要证明四边形BEDF 是平行四边形,只需要ED BF =即可.【详解】添加ED BF =,∵四边形ABCD 是平行四边形,∴ED BF ∥,∵ED BF =,∴四边形BEDF 是平行四边形,故答案为:ED BF =.【点睛】本题主要考查了平行四边形的判定,掌握平行四边形的判定方法是解题的关键.2.(2022春·河南许昌·八年级许昌市第一中学校考期中)如图,在平行四边形ABCD 中,BD 是对角线,E ,F 是对角线上的两点,要使四边形AFCE 是平行四边形,还需添加一个条件(只需添加一个)是__________.【答案】BF =DE (答案不唯一)【分析】连接对角线AC ,利用对角线互相平分的四边形是平行四边形进行求解即可.【详解】解:添加的条件为BF =DE ,理由如下:证明:连接AC 交BD 于点O ,如图所示:∵四边形ABCD 为平行四边形,∴AO =CO ,BO =DO ,∵BF =DE ,∴BO -BF =DO -DE ,即OF =OE ,四边形AFCE 为平行四边形,故答案为:BF =DE (答案不唯一).【点睛】题目主要考查平行四边形的判定和性质,熟练掌握平行四边形的判定定理是解题关键.【考点五 证明四边形是平行四边形】例题:(2021春·江苏无锡·九年级校考阶段练习)如图,在ABCD Y 中,,AE BD CF BD ^^,垂足分别为E F 、,四边形AECF 是平行四边形吗?为什么?【答案】是,理由见解析【分析】由于AE CF 、都垂直于BD ,首先可以确定的是AE CF P ;然后再通过证()AAS ABE CDF ≌△△,来得出AE CF =即可.【详解】答:四边形AECF 是平行四边形.证明:∵,AE BD CF BD ^^,∴AE CF P ,90AEBCFD Ð=Ð=°,∵四边形ABCD 是平行四边形,∴AB CD ABE CDE =Ð=Ð,,在ABE V 和CDF V 中,90ABE CDF AEB CFD AB CD Ð=ÐìïÐ=Ð=°íï=î∴()AAS ABE CDF ≌△△,∴AE CF =,Q AE CF P ,∴四边形AECF 是平行四边形.【点睛】本题考查平行四边形以及全等三角形的判定和性质,平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系,熟练掌握性质定理和判定定理是解题的关键.【变式训练】1.(2022春·陕西渭南·八年级统考期中)如图、在ABCD Y 中,已知点E 和点F 分别在AD 和BC 上,且AE CF =,连接CE 和AF ,试说明四边形AFCE 是平行四边形.【答案】见解析【分析】根据四边形ABCD 是平行四边形,可得AD BC ∥,又因为AE CF =,根据有一组对边平行且相等的四边形是平行四边形,即可证得结论.【详解】∵四边形ABCD 是平行四边形,∴AD BC ∥,又∵AE CF =,∴四边形AFCE 是平行四边形.【点睛】本题考查了平行四边形的性质与判定.掌握有一组对边平行且相等的四边形是平行四边形是解此题的关键.2.(2022秋·陕西西安·九年级统考期中)如图,已知在四边形BCDE 中,CD BE ∥,点F 是DE 的中点,连接CF 交BE 于点A ,且点E 是AB 的中点,求证:四边形BCDE 是平行四边形.【答案】见解析【分析】先证明(ASA)CDF AEF V V ≌,得CD AE =,再证CD BE =,即可得出结论.【详解】证明:∵CD BE ∥,∴D AEF Ð=Ð,∵点F 是DE 的中点,∴DF EF =,在CDF V 和AEF △中,D AEF DF EFCFD AFE Ð=Ðìï=íïÐ=Ðî,∴(ASA)CDF AEF V V ≌,∴CD AE =,∵点E 是AB 的中点,∴AE BE =,∴CD BE =,又∵CD BE ∥,∴四边形BCDE 是平行四边形.【点睛】本题考查了平行四边形的判定、全等三角形的判定与性质以及平行线的性质等知识,熟练掌握平行四边形的判定,证明三角形全等是解题的关键.【考点六 平行四边形中的折叠问题】例题:(2022春·四川自贡·八年级校考期中)如图,在平行四边形ABCD中,E是边CD上一点,将△ADE沿AE折叠至△AD E¢处,AD¢与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED¢的度数为______.【答案】36°##36度【分析】由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D¢=∠D=52°,∠EAD¢=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,与三角形内角和定理求出∠AED¢=108°,即可得出∠FED¢的大小.【详解】解:∵四边形ABCD是平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠D¢=∠D=52°,∠EAD¢=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED¢=180°-∠EAD¢-∠D¢=108°,∴∠FED¢=108°-72°=36°;故答案为:36°.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED¢是解决问题的关键.【变式训练】【答案】140°【分析】利用平行四边形的性质得,进而求出1122 BAC BABÐ=Т=´【详解】解:在ABCDY中,AB138BAB\Т=Ð=°,【考点七 利用平行四边形的性质与判定求解】例题:(2022春·北京顺义·八年级校考阶段练习)如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点F E ,为四边形ABCD 外一点,且ADE BAD Ð=Ð,AE AC ^.(1)求证:四边形ABDE是平行四边形;【点睛】本题考查平行四边形的判定以及利用勾股定理解直角三角形,利用等积法求高是解决问题的关∵MNCD是平行四边形,(2)CN =2【分析】(1)证明DE ∥BC ,再证∠DMF =∠2,得DB ∥EC ,则四边形BCED 是平行四边形,即可得出结论;(2)由(1)得:BC =DE =2,EC ∥DB ,再由平行线的性质得∠CNB =∠DBN ,然后证∠CNB =∠CBN ,则可由CN =BC 求解.(1)证明:∵∠A =∠F ,∴DE ∥BC ,∵∠1=∠2,∠1=∠DMF ,∴∠DMF =∠2,∴DB ∥EC ,∴四边形BCED 是平行四边形,(2)解:∵BN 平分∠DBC ,∴∠DBN =∠CBN ,由(1)得:BC =DE =2,EC ∥DB ,∴∠CNB =∠DBN ,∴∠CNB =∠CBN ,∴CN =BC =2.【点睛】本题考查了平行四边形的判定与性质、平行线的判定与性质、等腰三角形的判定等知识,熟练掌握平行线的判定与性质,证明四边形BCED 为平行四边形是解题的关键.【过关检测】一、选择题1.(2022秋·四川成都·九年级成都七中校考期中)若平行四边形ABCD 的两个内角:1:2A B ÐÐ=,则A Ð的度数是( )A .45°B .60°C .90°D .120°【答案】B【分析】根据平行四边形的性质可得到A Ð与B Ð是邻角并且互补,再结合:1:2A B ÐÐ=列方程,即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴180A B Ð+Ð=°,∵:1:2A B ÐÐ=,∴2180A A Ð+Ð=°,解得60A Ð=°,故选B .【点睛】本题考查平行四边形性质,熟知平行四边形邻角互补是解答的关键.2.(2022春·甘肃武威·八年级校联考期末)在四边形ABCD 中,AD BC ∥,分别添加下列条件:①AB CD ∥;AB CD AD BC B D A C ==Ð=ÐÐ=Ð②;③;④;⑤,其中能使四边形ABCD 成为平行四边形的条件有( )A .5个B .4个C .3个D .2个【答案】B【分析】由平行四边形的判定、平行线的判定与性质分别对各个条件进行判断即可.【详解】解:①AD BC ∥Q ,AB CD ∥, \四边形ABCD 是平行四边形;②由AD BC ∥,AB CD =,不能判定四边形ABCD 是平行四边形;③AD BC ∥Q ,AD BC =,\四边形ABCD 是平行四边形;④ AD BC ∥Q ,180A B \Ð+Ð=°,B D Ð=ÐQ ,180A D \Ð+Ð=°,AB CD \∥,\四边形ABCD 是平行四边形;⑤AD BC ∥Q ,180A B \Ð+Ð=°,A C Ð=ÐQ ,180C B \Ð+Ð=°,AB CD \∥,\四边形ABCD 是平行四边形;其中能使四边形ABCD 成为平行四边形的条件有①③④⑤,共4个,故选:B .A.124°B.114【答案】A【分析】根据折叠、平行四边形的性质,三角形的内角和定理,即可求出答案.【详解】解:Ð=Ð,由折叠得,45∵四边形ABCD是平行四边形,P,∴AB CD∴53Ð=Ð,A .4B .5C .6D .7【答案】A 【分析】根据平行四边形的性质可得AFB FBC Ð=Ð,由角平分线可得ABF FBC Ð=Ð,所以AFB ABF Ð=Ð,所以6AF AB ==,同理可得6DE DC ==,则根据4EF AF DE AD =+-=即可求解.【详解】解:∵四边形ABCD 是平行四边形,8AD =,∴AD BC ∥,6DC AB ==.∴AFB FBC Ð=Ð.∵BF 平分ABC Ð,∴ABF FBC Ð=Ð.∴AFB ABF Ð=Ð.∴6AF AB ==.同理可得6DE DC ==.∴6684EF AF DE AD =+-=+-=.故选:A .【点睛】本题主要考查了平行四边形的性质、角平分线的定义,解题的关键是掌握数学模型“角平分线+平行线得到等腰三角形”.5.(2021春·重庆沙坪坝·八年级重庆市第七中学校校考期中)如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,OE AC ^交CD 于点E ,连接AE ,若平行四边形ABCD 的周长为30,则ADE V 的周长为( )A .15B .23C .25D .30【答案】A 【分析】根据平行四边形的性质,得到点O 是AC 中点,根据垂直平分线的性质得到AE CE =,根据四边形周长求出AD CD +,然后转换求解即可.【详解】在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,OA OC =即点O 是AC 中点,OE AC ^,AE CE=平行四边形ABCD 的周长为30,【答案】29【答案】50°##50度【分析】由平行四边形的性质和平行线的判定和性质得出答案即可.【详解】解:∵四边形ABCD ∴70BAE BCD Ð=Ð=°,AD【答案】73或3【分析】分别利用①当BQ=AP【详解】解:设点P,Q运动的时间为∵AD∥BC,(1)现有四个条件:①BE=DF一个序号即可)(2)在(1)的基础上,求证:四边形【答案】(1)①或②或④(填一个即可)添加②,证明AF=CE,可根据一组对边平行且相等的四边形是平行四边形得出结论;添加④,证明AE=CF,AE∥CF,可根据一组对边平行且相等的四边形是平行四边形得出结论;添加③不能得出四边形AECF为平行四边形.故答案为:①或②或④(填一个即可);(2)证明:如图,添加①BE=DF时,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∵BE=DF,∴△ABE≌△CDF(SAS),∴AE=CF,∠AEB=∠CFD,∴∠AEF=∠CFE,∴AE∥CF,∴四边形AECF是平行四边形;添加②AF∥CE时,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADF=∠CBE,∵AF∥CE,∴∠AFE=∠CEF,∴∠AFD=∠CEB,∴△ADF≌△CBE(AAS),∴AF=CE,∵AF∥CE,∴四边形AECF是平行四边形;添加④∠BAE=∠DCF时,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∵∠BAE=∠DCF,∴△ABE≌△CDF(ASA),∴AE=CF,∠AEB=∠CFD,∴∠AEF =∠CFE ,∴AE ∥CF ,∴四边形AECF 是平行四边形.【点睛】本题考查了全等三角形的判定和性质,平行四边形的判定和性质.平行四边形的判定定理:1、一组对边平行且相等的四边形是平行四边形;2、两组对边分别平行的四边形是平行四边形;3、两组对边分别相等的四边形是平行四边形;4、两组对角分别相等的四边形是平行四边形;5、对角线互相平分的四边形是平行四边形.13.(2022秋·吉林长春·八年级长春市第五十二中学校考期中)如图,在ABCD Y 中,AE BD ^,CF BD ^,垂足分别为点E ,点F ,连接AF 、CE .(1)试判断AE 与CF 的关系,并说明理由;(2)若CD CE =,AEF △的面积是22cm ,则ABCD Y 的面积为______.【答案】(1)AE CF =,AE CF ∥,理由见解析;(2)212cm .【分析】(1)求出ABE CDF Ð=Ð,由AE BD ^,CF BD ^可得90AEB CFD Ð=Ð=°,AE CF ∥,证明()AAS ABE CDF ≌V V ,即可得到AE CF =;(2)证明四边形AECF 为平行四边形,ABF △和CED △是等腰三角形,根据等腰三角形的性质可得BE EF =,=EF FD ,求出ABE V 和AFD △的面积是22cm ,进而可得答案.【详解】(1)解:AE CF =,AE CF ∥,理由:∵在ABCD Y 中,AB CD ∥,AB CD =,∴ABE CDF Ð=Ð,∵AE BD ^,CF BD ^,∴90AEB CFD Ð=Ð=°,AE CF ∥,在ABE V 和CDF V 中,ABE CDF AEB CFD AB CD Ð=ÐìïÐ=Ðíï=î,(1)求证:四边形AFCE是平行四边形;(2)若45,60,6Ð=°Ð=°=B FCE AB【答案】(1)见解析(2)623+【分析】(1)先证明四边形AFCE则∠AGB=∠AGE=90°,∵点D的落点为点D′,折痕为EF,∴D'F=DF.∵四边形ABCD为平行四边形,∴AD=BC.又∵AF=EC,(1)求证:四边形ABCD为平行四边形;。
(完整版)平行四边形的性质及判定典型例题
平行四边形的性质及判定 (典型例题)1.平行四边形及其性质例1如图,O 是卜二・ABCD 对角线的交点.△ OBC 的周长为59, BD=38 , AC=24,贝卩AD= __ 若厶OBC 与厶OAB 的周长之差为 15,贝y AB=QABCD 的周长= _____ .AC ,可得BC ,再由平行四边形对边相等知 AD=BC ,由平行四 边形的对角线互相平分,可知△ OBC 与厶OAB 的周长之差就为BC 与AB 之差,可得AB ,进而可得」ABCD 的周长.解 EBCD 中0A 二= OB = OD = |E D (平行四边形的对角线互相平分)•••△ OBC 的周长=0B + 0C +EC分析: 根据平行四边形对角线互相平先 所OC =1=19 + 12 + BC=59••• BC=28—ABCD 中,•BC=AD(平行四边形对边相等)•AD=28△ OBC的周长-△ OAB的周长=(OB + OC + BC)-(OB + OA+AB)=BC-AB=15•AB=13•••二ABCD的周长=AB + BC + CD + AD=2(AB + BC)=2(13 + 28)=82说明:本题条件中的△ OBC占厶OAB的周长之差为15”,用符号语言表示出来后,便容易发现其实质,即BC与AB之差是15 .例2判断题(1) 两条对边平行的四边形叫做平行四边形. ()(2) 平行四边形的两角相等.()(3) 平行四边形的两条对角线相等.()(4) 平行四边形的两条对角线互相平分. ()(5) 两条平行线中,一条直线上任一点到另一条直线的垂线段叫做两条平行线的距离.()(6) 平行四边形的邻角互补.()分析:根据平行四边形的定义和性质判断.解:(1) 错两组对边分别平行的四边形叫做平行四边形”是两组对边,而不是两条对边.如图四边形ABCD,两条对边AD // BC .显然四边形ABCD 不是平行四边形.(2) 错平行四边形的性定理1,“平行四边形的对角相等.”对角是指四边形中设有公共边的两个角,也就是相对的两个角.(3) 错平行四边形的性质定理3,“平行四边形的对角线互相平分.”一般地不相等.(矩形的两条对角线相等).(4) 对根据平行四边形的性质定理 3 可判断是正确的.(5) 错线段图形,而距离是指线段的长度,是正值正确的说法是:两条平行线中,一条直线上任一点到另一条直线的垂线段的长度叫做这两条平行线的距离.(6) 对由定义知道,平行四边形的对边平行,根据平行线的性质可知.平行四边形的邻角互补.例3 .如图1,在二ABCD中,E、F是AC上的两点.且AE=CF .求证:ED // BF .分析:欲址DE // BF,只需/ DEC二/ AFB,转证=/ ABF CDF, 因卜二,ABCD,则有AB丄CD,从而有/ BAC= / CDA .再由AF=CF 得AF=CE .满足了三角形全等的条件.证明:v AE=CFAE+EF二CF+EF••• AF=CE在二ABCD中AB // CD(平行四边形的对边平行)• / BAC= / DCA(两直线平行内错角相等)AB=CD(平行四边形的对边也相等)•••△ ABF刍乂 CDE(SAS)•••/ AFB= / DCE• ED // BF(内错角相等两直线平行)说明:解决平行四边形问题的基本思想是化为三角形问题不处理.例4如图已知在△ ABC中DE // BC // FG,若BD=AF、求证; DE + FG=BC .分析1:要证DE + FG=DC由于它们是平行线,由平行四边形定义和性质.考虑将DE平移列BC上为此,过E(或D)作EH // AB(或DM // AC),得至U DE=BH、只需证HC=FG ,因AF=BD=EH , / CEH=/ A. / AGF = Z C所以△ AFG幻/ EHC .此方法称为截长法.分析2:过C点作CK // AB交DE的延长线于K,只需证FG=EK , 转证△ AFG CKE .过E作EH // AB交于Hv DE // BC•••四边形DBHE是平行四边形(平行四边形定义)••• DB=EHDE=BH(平行四边形对边也相等)又BD=AF• AF=EHv BC // FGAGF= / C(两直线平行同位角相等)同理 / A= / CEH• △ AFG EHC(AAS)••• FG=HC••• BC二BH+HC二DE二FG.过C作CK // AB交DE的延长线于K.v DE // BC•四边形DBCK是平行四边形(平行四边形定义)•CK=BD DK=BC(平行四边形对边相等)又BD=AF•AF=CKv CK // AB• / A= / ECK(两直线平行内错角相等)v BC // FG•••/ AGF二/ AED(两直线平行同位角相等)又/ CEK二/ AED(对顶角相等)•••/ AGF= / CEK•••△ AFG S' CKE(AAS)FG=EKDE+EK=BC• DE+FG=BC例 5 如图I—ABCD 中,/ ABC=3 /A,点 E 在CD 上,CE=1 , EF丄CD交CB延长线于F,若AD=1,求BF的长.u --- ---------- r分析:根据平行四边形对角相等,邻角互补,可得/ C= / F=45°进而由勾股定理求出CF ,再根据平行四边形对边相等,得BF的长.解:在二ABCD 中,AD // BC•••/ A +/ ABC=180 (两直线平行同旁内角互补)vZ ABC=3 / A•••/ A=45 ,Z ABC=135•••Z C= Z A=45 (平行四边形的对角相等)•EF 丄CD•Z F=45°(直角三角形两锐角互余)•EF=CE=1在RtAOEF中,CF = JCE之》EF金=(勾股定理)v AD=BC=1二BF = CF”EC = Q[例6如图1,‘ ■ ABCD中,对角线AC长为10cm , Z CAB=30 , AB长为6cm,求一ABCD的面积.解:过点C作CH丄AB,交AB的延长线于点H .(图2)vZ CAB=30-■.CH 二丄= 1 X10=52 2••• S—ABCD = AB-CH = 6X5=30(cm2)答:二ABCD的面积为30cm2 .说明:由于二=底>高,题设中已知AB的长,须求出与底AB 相应的高,由于本题条件的制约,不便于求出过点D的高,故选择过点C 作高.例7如图,E、F分别在’・ABCD的边CD、BC上,且EF //求证:S△ ACE二S △ ABF分析:运用平行四形的性质,利用三角形全等,将其转化为等底同高的三角形.证明:将EF向两边延长分别交AD、AB的延长线于G、H.二ABCD DE // AB•••/ DEG= / BHF(两直线平行同位角相等)/ GDE= / DAB(同上)AD // BC•••/ DAB= / FBH(同上):丄 GDE= / FBHv DE // BH , DB // EH•四边形BHED是平行四边形V DE二BH(平行四边形对边相等)GDE 刍乂 FBH(ASA)••• S△ GDE=S △ FBH(全等三角形面积相等).GE=FH(全等三角形对应边相等).S△ ACE=S △ AFH(等底同高的三角形面积相等).S △ ADE = S △ ABF说明:平行四边形的面积等于它的底和高的积.即S二二a・ha .a 可以是平行四边形的任何一边,h必须是a边与其对边的距离.即对应的高,为了区别,可以把高记成ha,表明它所对应的底是a.例8如图,在二ABCD中,BE平分/ B交CD于点E, DF 平分/ D交AB于点F,求证BF=DE .分析EF二DE (目标)十BEDP 为口DF"d叫西3 ]1=Z 3 r Z 1=Z 2f t"S亠彩姑皤彩B口ABCD证明:T四边形ABCD是平行四边形二DE // FB,/ ABC= / ADC(平行四边形的对边也平行对角相等)•••/仁/ 3(两直线平行内错角相等)而Z]=^Z ADC,Z2=|ZABC•••/ 2= / 3• DF // BE(同位角相等两条直线平行)•四边形BEDF为平行四边形(平行四边形定义)• BF=DE .(平行四边形的对边相等)说明:此例也可通过△ ADF CBE来证明,但不如上面的方法简捷.例9如图,CD的Rt△ ABC斜边AB上的高,AE平分/ BAC 交CD于E, EF // AB,交BC于点F,求证CE=BF .分析作EG // BC,交AB于G,易得EG=BF .再由基本图, 可得EG=EC ,从而得出结论.过E点作EG // BC交AB于G点.v EF // AB••• EG=BFv CD为Rt△ ABC斜边AB上的高•/ BAC + / B=90°.Z BAC + / ACD = 90°•/ B= Z ACD•Z ACD=Z EGAv AE 平分Z BAC•Z 1= Z 2又AE=AE•△ AGE ACE(AAS)•CE=EG•CE=BF .说明:(1)在上述证法中,“平移”起着把条件集中的作用.(2)本题也可以设法平移AE .(连F点作FG // AE,交AB于G)例10如图,已知I —ABCD的周长为32cm , AB : BC=5 : 3, AE 丄BC 于E, AF 丄DC 于F,/ EAF=2 / C,求AE 和AF 的长.分析:从化简条件开始①由二ABCD的周长及两邻边的比,不难得到平行四边形的边长.口虹CD 的周长=321 fAB=10AB : BC-5 : 3 p |BC=6②/ EAF=2 / C告诉我们什么?AF i FC1 ZFAE^ZC=180°] oAE 1 EAF-2 Z C j討c=6°这样,立即可以看ADF、△ AEB都是有一个锐角为30°的直角三角形.于是有= = = 3再由勾股定理求出解:——ABCD的周长为32cm即AB+BC+CD+DA=32v AB=CD BC=DA(平行四边形的对边相等)/.AB + BC = - X32 = 16 2又AB : BC=5 : 35+3BC= —X3 = 65+3/ EAF+ / AFC+ / C+ / CEA=360 (四边形内角和等于360°v AE 丄BC / AEC=90AF 丄DC / AFC=90•••/ EAF+ / C=180/ EAF=2 / CT AB // CD(平行四边形的对边平行)•••/ ABE二/ C=60 (两直线平行同位角相等)同理/ ADF=60SRiAABE 中,ZBAE = 30* BE = |AB = 5£—■Al = ja =E^ = 5^3 (cm)在RtAADF中,ZDAF = 30° DF= ^AP = |B C=3■f-j d—iAF - 7A D3 -I>F a = M Ccm)说明:化简条件,化简结论,总之,题目中哪一部分最复杂就从化简那一部分开始,这是一种常用的解题策略,我们把这种解题策略称为:从最复杂的地方开始.它虽简单,却很有效.2 .平行四边形的判定例1填空题(1)如图1,四边形ABCD与四边形BEFC都是平行四边形,则四边形AEFD是—,理由是(2)如图2, D、E分别在△ ABC的边AB、AC上,DE=EF , AE=EC , DE // BC贝卩四边形ADCF是__,理由是__ ,四边形BCFD 是—,理由是—分析:判定一个四边形是平行四边形的方法较多,要从已知条件出发,具体问题具体分析:(1)根据平行四边形的性质可得AD平行且等于BC,BC平行且等于EF,从而得AD平行且等于EF,由判定定理4可得.(2)由AE=EC , DE=EF,由判定定理3可得四边形ADCF是平行四边形,从而得AD // CF即BD // CF,再由条件,可得四边形BCFD是平行四边形.解:(1)平行四边形,一组对边平行且相等的四边形是平行四边形(2)平行四边形,对角线互相平分的四边形是平行四边形,平行四边形,两组对边分别平行的四边形是平行四边形.说明:平行四边形的定义(两组对边分别平行的四边形叫做平行 四边形,既是平行四边形的一个性质,又是平行四边形的一个判定 方法.例 2 女口图,四边形 ABCD 中,AB=CD . / ADB 二 /CBD=90 .求 证:四边形ABCD 是平行四边形.分析:判定一个四边形是平行四边形,有三类五个判定方法, 这三类也是按边、角和对角线分类,具体的五个方法如下表:CIID 从对角钱看一(5 )对角线互相平分 因此必须根据已知条件与图形结构特点,选择判定方法.证法一:v AB=CD . Z ADB= / CBD=90 , BD=DB .••• Rt △ ABD 坐 Rt △ CDB .「( 1)两组对边分别平存C I )从边看 —(2)两组对边分别相等_(3)-组对边平行且相尊 (1)从边看 (II )从角看 (4)两组对角分别相等 的四边形绘平行四边形•••/ ABD= / CDB,/ A= / C.•/ ABD+ / CBD= / CDB+ / ADB即 / ABC= / CDA .•四边形ABCD 是平行四边形(两组对角分别相等的四边形是平行四边形).证法二:vZ ADB= / CBD=90 , AB=CD、BD=DB .•Rt△ ABD 坐Rt△ CDB .•Z ABD=Z CDB.•AB //CD.(内错角相等两直线平行)•四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形).证法三:由证法一知,Rt △ ABD幻Rt △ CDB .••• DA=BC又T AB二CD•四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形)说明:证明一个四边形是平行四边形,往往有多种证题思路,我们必须注意分析,通过比较,选择最简捷的证题思路.本题三种证法中,证法二与证法三比较简捷,本题还可用定义来证明.例3如图,‘「ABCD中,E、G、F、H分别是四条边上的点, 且AE=CF , BG=DH,求证:EF与GH互相平分.分析:只须证明EGFH为平行四边形.证明:连结EG 、GF、FH 、HE.T四边形ABCD是平行四边形•••/ A= / C, AD=CB .T BG=DH•AH=CG又AE=CF•△ AEH CFG(SAS)•HE=GF同理可得EG=FH•四边形EGFH 是平行四边形(两组对边分别相等的四边形是平行四边形)•EF 与GH 互相平分(平行四边形的对角线互相平分).说明:平行四边形的性质,判定的综合运用是解决有关线段和角问题基本方法.例4如图,二ABCD中,AE丄BD于E, CF丄BD于F.求证:四边形AECF是平行四边形.分析:由平行四边形的性质,可得△ ABE CDF••• AE= CF进而可得四边形AECF是平行四边形.证明:口ABCD中,AB屯CD(平行四边形的对边平行,对边相等)•/ ABD= / CDB(两直线平行内错角相等)AE 丄BD、CF 丄BD•AE // CF / AEB= / CFD=90•△ ABE CDF(AAS)•AE=CF•四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形)说明:平行四边形的定义,既是平行四边形的一个性质,又是平行四边形的一个判定方法.例5如图,二ABCD中,E、F分别在AD、BC上,且AE=CF , AF、BE相交于G, CE、DF相交于H求证:EF与GH互相平分分析:欲证EF与GH互相平分,只需四边形EGFH为平行四边形,利用已知条件可知四边形AFCE、四边形EBFD都为平行四边形,所以可得AF // EC , BE // DF,从而四边形GEHF为平行四边形.证明:」ABCD中,AD丄BC(平行四边形对边平行且相等)v AE=CF /. DE=BFT四边形AFCE、四边形BFDE是平行四边形(一组对边平行且相等的四边形是平形四边形)二AF // CE , BE // DF(平行四边形对边平行)•••四边形EGFH是平行四边形(两组对边分别平行的四边形是平行四边形)••• GH与EF互相平分(平行四边形的对角线互相平分)说明:平行四边形问题,并不都是以求证某一个四边形为平行四边形的形式出现的.往往更多的是求证线段的相等、角的相等、直线的平行、线段的互相平分等等.要灵活地根据题中已知条件,以及定义、定理等.先判定某一四边形为平行四边形,然后再应用平行四边形的性质加以证明.例6如图,已知—ABCD中,EF在BD上,且BE=DF ,点G、H 在AD、CB上,且有AG=CH , GH与BD交于点0,求证EG丄HF分析:证EF 、GH 互相平分二GEHF 为平行四边形.证明:连 BG 、DH 、GF 、EHT ABCD 为平行四边形.••• AD 垒 BC又 AG=HC• DG 丄 BH•四边形BGDH 为平行四边形(一组对边平行且相等的四边形是平行四边形)• HO = GO , DO=BO (平行四边形的对角线互相平分) 又 BE=DF•OE=OF•四边形GEHF为平行四边形(对角线互相平分的四边形是平行四边形)••• EG丄HF.(平行四边形的对边平行相等)说明:由于条件BE=DF涉及到对角线BD,所以考虑用对角线互相平分来证明例7如图,——ABCD中,AE丄BD于E, CF丄BD于F, G、H分别为AD、BC的中点,求证:EF和GH互相平分.分析:连结EH , HF、FG、GE,只须证明EHFG为平行四边证法一:连结EH , HF、FG、GEv AE丄BD , G是AD中点.-■.GE=C J D =^AD2/ GED二 / GDE同理可得HF =HB =^EC,Z HFE =Z HEFV四边形ABCD是平行四边形••• AD 岂BC,/ GDE= / HBF••• GE=HF,/ GED= / HFB•GE // HF•四边形GEHF为平行四边形(一组对边平行且相等的四边形是平行四边形)•EF和GH互相平分.(平行四边形对角线互相平分)证法二:容易证明厶ABE CDF• BE=DFT四边形ABCD为平行四边形••• AD 些BCT G、H分别为AD、BC的中点•DG 丄BH•四边形BHDG为平行四边形(一组对边平行且相等的四边形是平行四边形)•BD和GH互相平分(平行四边形对角线互相平分)•OG=OH , OB=OD又BE=DF•OE=OF•EF和GH互相平分.例8如图,已知线段a、b与/ a,求作:—ABCD ,使/ ABC二/ a, AB=a , BC=b ,分析:已知两边与夹角,可先确定△ ABC,根据判定定理2(两组对边分别相等的四边形是平行四边形),再确定点D,从而平行四边形可作出.作法:(1) 作/ EBF二/ a,⑵在BE、BF上分别截取BA=a , BC=b ,⑶分别为A、C为圆心,b, a为半径作弧,两弧交于点D, 二四边形ABCD为所求.*证明:由作法可知AB=CD = aBC=AD=b二四边形ABCD 为平行四边形(两组对边分别相等的四边形为平 行四边形)且/ ABC 二 / a, AB=a , BC=b- ABCD 为所求说明:常见的平行四边形作图有以下几种:(1) 已知两邻边(AB 、BC)和夹角(/ B).(2) 已知一边(BC)和两条对角线(AC , BD).(3) 已知一边(BC)和这条边与两条对角线的夹角 (如/ DBC ,Z ACB).⑷已知一边(CD)和一个内角(/ ABC)以及过这个角的顶点的一条对角线(BD ,且BD > CD)求作平行四边形(如图)完成这些作图的关键点,都在于先作出一个三角形,然后再完成平行四边形的作图,体现了把平行四边形的问题化归为三角形问题的思想方法.。
中考数学总复习《平行四边形的判定与性质》练习题及答案
中考数学总复习《平行四边形的判定与性质》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图在四边形ABCD中AB=CD,对角线AC、BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF、CE,若DE=BF,则下列结论不一定正确的是()A.CF=AE B.OE=OFC.△CDE为直角三角形D.四边形ABCD是平行四边形2.如图四边形ABCD中AB∥CD,∥B=∥D点E为BC延长线上一点,连接AE,AE交CD于点H,∥DCE的平分线交AE于点G.若AB=2AD=10,点H为CD的中点,HE=6,则AC的值为()A.9B.√97C.10D.3 √103.如图在Rt∥ABC中∥ACB=90°,分别以AB、AC为腰向外作等腰直角三角形∥ABD和∥ACE,连结DE,CA的延长线交DE于点F,则与线段AF相等的是()A.AC B.AB C.BC D.AB4.如图在菱形ΑΒCD中∠Α=60∘,AD=8,F是ΑΒ的中点.过点F作FΕ⊥ΑD,垂足为Ε.将ΔΑΕF沿点Α到点Β的方向平移,得到ΔΑ′Ε′F ′.设Ρ、Ρ′分别是ΕF、Ε′F ′的中点,当点Α′与点Β重合时,四边形ΡΡ′CD的面积为()A.28√3B.24√3C.32√3D.32√3−85.下列说法中错误的是()A.平行四边形的对角线互相平分B.对角线互相垂直的四边形是菱形C.菱形的对角线互相垂直D.对角线互相平分的四边形是平行四边形6.如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD7.如图点A是直线l外一点,在l上取两点B,C,分别以A,C为圆心,BC,AB的长为半径作弧,两弧交于点D,分别连接AB,AD,CD,若∥ABC+∥ADC=120°,则∥A的度数是()A.100°B.110°C.120°D.125°8.如图在∥ABC中AB=AC=10,BC=12,点D是BC上一点,DE∥AC,DF∥AB,则∥BED与∥DFC的周长的和为()A.34B.32C.22D.209.如图在平面直角坐标系中点A(1,5),B(4,1),C(m,−m),D(m−3,−m+4),当四边形ABCD 的周长最小时,则m 的值为().A.√2B.32C.2D.310.如图分别在四边形ABCD的各边上取中点E,F,G,H,连接EG,在EG上取一点M,连接HM,过F作FN∥HM,交EG于N,将四边形ABCD中的四边形①和②移动后按图中方式摆放,得到四边形AHM′G′和AF′N′E,延长M′G′,N′F′相交于点K,得到四边形MM′KN′.下列说法中错误的是()A.S四边形MM′KN′=S四边形ABCD B.HM=NFC.四边形MM′KN′是平行四边形D.∠K=∠AHM′11.如图,已知∥ABC与∥CDA关于点O成中心对称,过点O任作直线EF分别交AD,BC于点E,F,则下则结论:①点E和点F,点B和点D是关于中心O的对称点;②直线BD必经过点O;③四边形ABCD 是中心对称图形;④四边形DEOC与四边形BFOA的面积必相等;⑤∥AOE与∥COF成中心对称.其中正确的个数为()A.2B.3C.4D.512.如图P为平行四边形ABCD内一点,过点P分别作AB、AD的平行线交平行四边形于E、F、G、H四点,若S四边形AHPE=3,S四边形PFCG=5,则S∥PBD为()A.0.5B.1C.1.5D.2二、填空题13.如图在平行四边形ABCD中点E,F分别在BC,AD上,请添加一个条件,使四边形AECF是平行四边形(只填一个即可).14.如图在Rt△ABC中AC=2√3,BC=2,点P是斜边AB上任意一点,D是AC的中点,连接PD并延长,使DE=PD.以PE,PC为边构造平行四边形PCQE,则对角线PQ的最小值为.15.如图▱ABCD中∥BAD=120°,E、F分别在CD和BC的延长线上,AE∥BD,EF∥BC,EF=5√3,则AB的长是16.如图在∥ABC中∥ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD= 13BD,连接DM、DN、MN.若AB=6,则DN=.17.若AC=10,BD=8,那么当AO=DO=时,四边形ABCD是平行四边形。
平行四边形性质及判定
平行四边形及其性质(1)1.已知在平行四边形ABCD中,∠B+∠D=200°,则∠A的度数为(C)A.100°B.160°C.80°D.60°2.已知一个平行四边形两邻边的长分别为10和6,那么它的周长为(C)A.16 B.60 C.32 D.303.已知平行四边形ABCD的周长为34 cm,两邻边之差为3 cm,则两邻边长分别为(A)A.10 cm,7 cm B.11 cm,6 cm C.12 cm,5 cm D.18.5 cm,15.5 cm4.如图所示,在平行四边形ABCD中,已知AD=5 cm,AB=3 cm,AE平分∠BAD交BC边于点E,则EC等于(B)A.1 cm B.2 cm C.3 cm D.4 cm5.如图所示,在平行四边形ABCD中,EF∥AD,GH∥CD,EF,GH相交于点O,则图中的平行四边形有(A)A.9个B.8个C.6个D.4个6.平行四边形ABCD与等边△AEF如图放置,如果∠B=45°,则∠BAE的大小是(A) A.75°B.70°C.65°D.60°7.如图所示,已知在平行四边形ABCD中,∠B=50°,依据尺规作图的痕迹,则∠DAE=__80°__.8.如图所示,平行四边形ABCD与DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为__25°_.11.下面图形是用木条钉成的支架,其中不容易变形的是(B)A B C D12.如图所示,在平行四边形ABCD中,延长边CD到点E,使CE=AD,连结BE交AD于点F,图中等腰三角形有(C)A.1个B.2个C.3个D.4个9.如图所示,四边形ABCD是平行四边形,且AB=10,AD=6,AC⊥BC,求AC的长及ABCD的面积.10.如图所示,已知在平行四边形ABCD中,F是BC边的中点,连结DF并延长,交AB的延长线于点E. 求证:AB=BE.13.如图所示,延长平行四边形ABCD的边AD到点F,使DF=DC,延长CB到点E,使BE=BA,分别连结点A,E和C,F.求证:AE=CF.14.在平行四边形ABCD中,点E在AD边上,连结BE,CE,EB平分∠AEC.(1)如图1,判断△BCE的形状,并说明理由;(2)如图2,若∠A=90°,BC=5,AE=1,求线段BE的长.15.如图所示,在平面直角坐标系中,有A(3,4),B(6,0),O(0,0)三点,以A,B,O三点为顶点的平行四边形的另一个顶点D的坐标为(9,4)或(-3,4)或(3,-4).16.如图,在平行四边形ABCD外分别作等腰直角△ABF和等腰直角△ADE,∠F AB=∠EAD=90°,连结AC,EF.求证:AC=EF..2平行四边形及其性质(2)1.平行线之间的距离是指(B)A.从一条直线上一点到另一条直线的垂线段B.从一条直线上一点到另一条直线的垂线段长度C.从一条直线上一点到另一条直线的垂线的长度D.从一条直线上一点到另一条直线上的一点间线段的长度2.如图所示,直线a∥b,另有一条直线l与直线a,b交于点A,B,若将直线l作平移运动,则线段AB 的长度(C)A.变大B.变小C.不变D.变大或变小要看直线l平移的方向第6题图第7题图3.如图所示,在平行四边形ABCD中,若∠A=45°,AD=6,则AB与CD之间的距离为(B)A.6B.3C.2D.34.如图所示,a∥b,AB∥CD,CE⊥b,FG⊥b,点E,G为垂足,则下列说法中错误的是(D) A.CE∥FG C.A,B两点的距离就是线段AB的长B.CE=FG D.直线a,b间的距离就是线段CD的长5.已知在平行四边形ABCD中,AB=3,AD=2,∠B=150°,则ABCD的面积为(B)A.2 B.3 C.3 3 D.66.如图所示,AB∥CD,AB与CD之间的距离为6,∠BAC=60°,则AC=.7.如图所示,直线AB∥CD,若△ACO的面积为3 cm2,则△BDO的面积为__3__cm2.8.如图,平行四边形ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,平行四边形ABCD 的周长为40,则ABCD的面积为__48__.11.如图所示,已知AB∥CD,∠BAC与∠ACD的平分线交于点O,OE⊥AC交AC于点E,且OE=5 cm.则直线AB与CD之间的距离等于(B)A.5 cm B.10 cm C.20 cm D.5 cm或10 cm12.如图所示,在平面直角坐标系中,四边形OABC是平行四边形,AB=2,OA=2,∠AOC=45°,则B点的坐标是(-3,1).13.如图所示,在平行四边形ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,S△BPG =1,则S AEPH=__4__.9.如图所示,甲船从北岸码头A向南行驶,航速为36 km/h;乙船从南岸码头B向北行驶,航速为27 km/h.两船均于7:15出发,两岸平行,水面宽为18.9 km,求两船距离最近时的时刻.10.如图,a∥b,点A,E,F在直线a上,点B, C,D在直线b上,BC=EF.△ABC与△DEF的面积相等吗?为什么?第10题图第10题答图14.如图,在方格纸中,每个小正方形的边长都是1,ABCD的四个顶点都在小方格的顶点上,按下列要求画一个面积与ABCD面积相等的四边形,使它的顶点均在方格的顶点上.(四边形的边用实线表示,顶点写上规定的字母)(1)在图甲中画一个长方形EFGH.(2)在图乙中画一个各边相等的MNPQ.15.如图1,已知直线m∥n,点A,B在直线n上,点C,P在直线m上.(1)写出图1中面积相等的各对三角形:________________________.(2)如图1,A,B,C为三个顶点,点P在直线m上移动到任一位置时,总有________与△ABC的面积相等.(3)如图2,一个五边形ABCDE,你能否过点E作一条直线交BC(或BC的延长线)于点M,使四边形ABME 的面积等于五边形ABCDE的面积?平行四边形及其性质(3)1.如图所示,在平行四边形ABCD中,AC,BD相交于点O.若AC=6,则线段AO的长是(C) A.1 B.2 C.3 D.6第1题图第2题图第4题图第5题图2.如图所示,平行四边形ABCD的周长是28 cm,△ABC的周长是22 cm,则AC的长是(D)A.14 cm B.12 cm C.10 cm D.8 cm3.平行四边形ABCD的对角线AC,BD交于点O,若BC=5 cm,BD=8 cm,AC=4 cm,则△AOD的周长是(C)A.17 cm B.13 cm C.11 cm D.9 cm4.如图所示,在平行四边形ABCD中,已知∠ADB=90°,AC=10 cm,AD=4 cm,则BD的长为(C) A.4 cm B.5 cm C.6 cm D.8 cm5.如图所示,在平行四边形ABCD中,AC,BD相交于点O,过点O作直线EF分别交AD,BC于点E,F,那么图中全等的三角形共有(C)A.2对B.4对C.6对D.8对6.周长为48 cm的平行四边形ABCD,对角线AC,BD交于O点,△ABO和△ADO的周长相差4 cm,那么这个平行四边形较短的边长为__10__cm.7.如图所示,在平行四边形ABCD中,对角线AC,BD相交于点O,将△AOD平移至△BEC的位置,若AC=6,BD=8,则四边形BECO的周长为__14__.第7题图第8题图第11题图第12题图8.如图,平行四边形ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M.如果△CDM的周长为8,那么ABCD的周长是__16__.11.如图所示,平行四边形ABCD的对角线AC,BD相交于点O,S △AOB=2,则S ABCD=(C)A.4B.6C.8D.1012.如图所示,平行四边形ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为点E,AB=3,AC =2,BD=4,则AE的长为(D)A.32 B.32 C.217 D.221713.如图所示,在Rt△ABC中,∠B=90°,AB=4,BC>AB,点D在BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是__4__.13题图第14题图14.如图所示,在平行四边形ABCD中,AB=6,AD=8,∠B是锐角,将△ACD沿对角线AC折叠,点D落在△ABC所在平面上的点E处.若AE过BC的中点F,则ABCD的面积等于.9.如图所示,在平行四边形ABCD中,O是对角线AC,BD的交点,BE⊥AC,DF⊥AC,垂足分别为点E,F.那么OE与OF是否相等?为什么?10.如图所示,在平行四边形ABCD中,对角线AC与BD相交于点O,过点O作一条直线分别交AB,CD 于点E,F.(1)求证:OE=OF.(2)若AB=6,BC=5,OE=2,求四边形BCFE的周长.15.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB=15 m,AD=12 m,AC⊥BC .求:(1)小路BC,CD,OC的长;(2)绿地的面积;(3)AB,CD之间的距离.16.如图1,已知平行四边形ABCD的对角线AC,BD相交于点O,过点O任作一直线分别交AD,CB的延长线于点E,F,(1)求证:OE=OF. (2)求证:直线EF平分ABCD的面积.(3)利用结论(2)解决如下问题:如图2是一块蛋糕的形状,表面是平行四边形,且内有一个平行四边形的孔.要求沿直线切一刀将它分成面积相等的两块,请你画出刀法的示意图.平行四边形的判定定理(1)1.不能判定一个四边形是平行四边形的条件是(B)A.两组对边分别平行B.一组对边平行另一组对边相等C.一组对边平行且相等D.两组对边分别相等2.如图,AD=BC,要使四边形ABCD是平行四边形,还需补充一个条件,下列选项中错误的是(A) A.∠A+∠D=180°B.AD∥BC C.∠A+∠B=180°D.AB=DC3.点A,B,C,D在同一平面内,从①AB∥CD,②AB=CD,③BC∥AD,④BC=AD四个条件中任意选取两个,能使四边形ABCD是平行四边形的选法有(B)A.3种B.4种C.5种D.6种4.小敏不慎将一块平行四边形玻璃打碎成如图所示的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是(D)A.①②B.①④C.③④D.②③5.在四边形ABCD中,已知AB=CD,若再增加一个条件__AB∥CD_(答案不唯一)__(只填写一个),可得四边形ABCD是平行四边形.6.如图所示,已知△ABC,以点A为圆心、BC长为半径画弧,以点C为圆心、AB长为半径画弧,两弧交于点D,且点A、点D在BC同侧,连结AD,所得的四边形ABCD是__平行四边形__,其依据是__两组对边分别相等的四边形是平行四边形__.9.如图所示,在四边形ABCD中,AD∥BC,且AD>BC,BC=6 cm.点P,Q分别从A,C两点同时出发,点P以1 cm/s的速度由点A向点D运动,点Q以2 cm/s的速度由点C向点B运动.设运动时间为x(s),则当x=__2__时,四边形ABQP是平行四边形.7.如图所示,已知BE∥DF,∠ADF=∠CBE,AF=CE. 求证:四边形DEBF是平行四边形.8.求证:有一组对边平行,和一组对角相等的四边形是平行四边形.(请画出图形,写出已知、求证并证明)10.如图所示,将平行四边形ABCD沿CE折叠,使点D落在BC边上的点F处,点E在AD上.(1)求证:四边形ABFE为平行四边形.(2)若AB=4,BC=6,求四边形ABFE的周长.11.如图所示,在平行四边形ABCD中,分别以AD,BC为边向内作等边△ADE和等边△BCF,连结BE,DF.求证:四边形BEDF是平行四边形.12.如图所示,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.(1)求证:CD=AN.(2)若AC⊥DN,∠CAN=30°,MN=1,求四边形ADCN的面积.13.如图所示,在平行四边形ABCD中,分别以AB,CD为边向外作等边△ABE和等边△CDF,连结BD,EF.求证:EF与BD互相平分.平行四边形的判定定理(2)1.下列条件中,能判断四边形是平行四边形的是(D)A.对角线互相垂直B.对角线相等C.对角线互相垂直且相等D.对角线互相平分2.在四边形ABCD中,O是对角线交点,下列条件中,不能判定四边形ABCD是平行四边形的是(C) A.AD∥BC,AD=BC B.AB=DC,AD=BC C.AB∥DC,AD=BC D.OA=OC,OD=OB 3.如图所示,四边形ABCD的两对角线AC,BD相交于点O,且AD∥BC.则下列条件中,不能判定四边形ABCD是平行四边形的是(D)A.AD=BC B.AB∥CD C.AO=CO D.AB=CD4.如图,在四边形ABCD中,E是BC边的中点,连结DE并延长,交AB的延长线于点F,AB=BF.添加一个条件使四边形ABCD是平行四边形,你认为下面四个条件中可选择的是(A)A.∠F=∠CDF B.CD=BF C.∠A=∠C D.AD=BC5.如图所示,AO=OC,BD=16 cm,则当OB=__8__cm时,四边形ABCD是平行四边形6.在四边形ABCD中,对角线AC与BD交于点O,已知OA=OC,添加①AB=DC,②AB∥DC,③OB=OD中的一个不能判定这个四边形是平行四边形的是__①__(填序号).12.如图所示,在平行四边形ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点.(1)现有四个等式:①∠ADE=∠CBF;②∠ABE=∠CDF;③AE=CF;④DE=BF.当点E,F只能满足上述等式中的__④__(填序号)时,四边形DEBF不一定是平行四边形.(2)请选择(1)中的一个等式作为条件,证明四边形DEBF为平行四边形.7.如图所示,在四边形ABCD中,DC∥AB,点E是BC的中点,连结AE并延长与DC的延长线相交于点F,连结BF,AC.求证:四边形ABFC是平行四边形.8.如图所示,在四边形ABCD中,M是边BC的中点,AM,BD互相平分并交于点O.求证:四边形AMCD是平行四边形.811.如图所示,在△ABC中,点D是AB边上的中点,已知AC=4,BC=6.(1)画出△BCD关于点D的中心对称图形;(2)根据图形说明线段CD长的取值范围.13.如图,在方格纸中,点A,B,P,Q都在格点上.请按要求画出以AB为边的格点四边形.(1)在图甲中画出一个平行四边形ABCD,使得点P为平行四边形ABCD的对称中心;(2)在图乙中画出一个平行四边形ABCD,使得点P,Q都在平行四边形ABCD的对角线上.14.如图所示,在平行四边形ABCD中,AC,BD相交于O点,点E,F分别为BO,DO的中点.(1)求证:OA=OC,OB=OD.(2)求证:四边形AECF是平行四边形.(3)如果E,F点分别在DB和BD的延长线上,且满足BE=DF,上述结论仍然成立吗?请说明理由.4.5三角形的中位线1.如图所示,在平行四边形ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于(C) A.2B.3C.4D.52. 如图所示,在平行四边形ABCD中,对角线AC,BD交于点O,E是CD中点,连结OE.若OE=3 cm,则AD的长为(B)A. 3 cmB. 6 cmC. 9D. 12 cm3.如图所示,点O是AC的中点,将周长为8 cm的平行四边形ABCD沿对角线AC方向平移AO个长度得到平行四边形OB′C′D′,则四边形OECF的周长为(C)A.8 cm B.6 cm C.4 cm D.2 cm4.如图所示,在△ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将△ABC按如图所示的方式折叠,使点A与点D重合,折痕为EF,则△DEF的周长为(D)A.9.5 B.10.5 C.11 D.15.55.如图,在△MBN中,已知BM=6,BN=7,MN=10,点A,C,D分别是MB,NB,MN的中点,则四边形ABCD的周长是__13__.6.如图,在四边形ABCD中,点E,F分别是边AB,AD的中点,若BC=15,CD=9,EF=6,∠AFE=55°,则∠ADC=__145°__.7.如图所示,在四边形ABCD中,对角线AC⊥BD,垂足为点O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的周长为__14__.9.如图所示,在△ABC中,BD,CE是△ABC的中线,BD与CE相交于点O,点F,G分别是BO,CO 的中点,连结AO.若AO=6 cm,BC=8 cm,则四边形DEFG的周长是(A)A. 14 cmB. 18 cmC. 24 cmD. 28 cm10题图10. 如图所示,在△ABC中,D,E分别是BC,AC的中点,BF平分∠ABC,交DE于点F.若BC=6,则DF的长是(B)A. 2B. 3 C.5 D.411.如图所示,在Rt△ABC中,∠BAC=90°,D,E分别是AB,BC的中点,点F在CA的延长线上,∠FDA=∠B,AC=6,AB=8,则四边形AEDF的周长为__16__.8.证明:三角形的一条中位线与第三边上的中线互相平分.已知:如图,DE是△ABC的中位线,AF是△ABC的中线,AF,DE交于点O.求证:OA=OF,OD=OE.12.如图所示,在ABCD中,AB=4,BC=5,∠ABC=60°,对角线AC,BD交于点O,过点O作OE⊥AD 于点E.求OE的长.13.如图,在△ABC中,AD平分∠BAC,AD⊥BD于点D,取BC的中点E,连结DE.(1) 求证:DE∥AC;(2) 若AB=8,AC=12,求DE的长.14.如图所示,在△ABC中,D,E,F分别是AB,BC,CA的中点,AH是高.求证:(1)四边形ADEF是平行四边形;(2)∠DHF=∠DEF.第5章特殊平行四边形5.1矩形(1)1.矩形具有而一般平行四边形不具有的性质是(A)A.对角线相等B.对角相等C.对边相等.对角线互相平分2.如图所示,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为24 cm,则这个矩形的一条较短边为(C)A.12 cm B.8 cm C.6 cm D.5 cm3.若矩形的对角线长为4 cm,一条边长为2 cm,则此矩形的面积为(B)A.8 3 B.4 3 cm2C.2 3 cm2D.8 cm24.如图所示,在矩形ABCD中,对角线AC,BD交于点O,下列说法错误的是(C)A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OC5.如图所示,EF过矩形ABCD对角线的交点O,且分别交AD,BC于点E,F.已知AB=3,BC=4,则图中阴影部分的面积是(A)A.3 B.4 C.6 D.126.如图所示,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,若AB=6 cm,BC=8 cm,则EF的长是__2.5__ cm.7.如图所示,在矩形ABCD中,CE⊥BD,点E为垂足,连结AE.若∠DCE∶∠ECB=3∶1,则∠ACE=__45°__.8.如图所示,将四根木条钉成的长方形木框变形为平行四边形ABC′D′的形状,并使其面积为长方形面积的22(木条宽度忽略不计),则这个平行四边形的最小内角为__45__度.第7题图第8题图9.如图所示,已知矩形ABCD的对角线AC与BD交于点O.(1)求证:∠ACD=∠ABD. (2)若矩形ABCD的面积为120 cm2,周长为46 cm,求AC的长.10.如图所示,BD为矩形ABCD的一条对角线,延长BC至点E,使CE=BD,连结AE,若AB=1,∠AEB =15°,求AD的长度.第10题图第10题答图11.如图所示,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC 的面积分别是S1,S2,则S1,S2的大小关系是(A)A.S1=S2B.S1>S2C.S1<S2D.3S1=2S212.如图所示,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为AB上一动点,且PE⊥AC于点E,PF⊥BC于点F,则线段EF长度的最小值是__2.4__.12题图13题图13.如图所示,在矩形ABCD中,AC,BD相交于点O,AE平分∠BAD交BC于点E.若∠CAE=15°,则∠BOE的度数是__75°__.14.2018·威海矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连结AF,取AF的中点H,连结GH.若BC=EF=2,CD=CE=1,求GH的长.第14题图第14题答图。
平行四边形的性质和判定基础题(含答案)
平行四边形的性质和判定1..已知平行四边形的周长是100cm , AB :BC =4 : 1,则AB 的长是_____.2.平行四边形ABCD 的周长32, 5AB =3BC ,则对角线AC 的取值范围为_______3.已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长是______.4.在平行四边形ABCD 中,AB =3,BC =5,∠B 的平分线BE 交AD 于点E ,则DE 的长为 .5. 平行四边形ABCD 的周长为22,两条对角线相交于O ,△AOB 的周长比△BOC 的周长大5,则AD 的边长为 .6.在平行四边形ABCD 中,∠A : ∠B =3:2,则∠C =_____ 度,∠D =___度.7.在平行四边形ABCD 中,∠B -∠A =20°,则∠D 的度数是_______8.由等腰三角形底边上任一点(端点除外)作两腰的平行线,则所成的平行四边形的周长等于等腰三角形的( )A .周长B . 一腰的长C .周长的一半D . 两腰的和9.以长为5cm , 4cm , 7cm 的三条线段中的的两条为边,另一条为对角线画平行四边形,可以画出形状不同的平行四边形的个数是( )A. 1 B . 2 C . 3 D . 410.如图,平行四边形ABCD 中,AE =CG , DH =BF ,连结E ,F ,G ,H ,E ,则四边形EFGH 是_____. H G F EDC B A11.如图,平行四边形ABCD 中,E ,F 是对角线AC 上的两点,且AE =CF ,连结B ,F ,D ,E ,B 则四边形BEDF 是___________.GFED C B A12.有公共顶点的两个全等三角形,其中一个三角形绕公共顶点旋转180°后与另一个重合,那么不共点的四个顶点的连线构成__________形.练习题:1. 在平行四边形ABCD 中,∠A +∠C =270°,则∠B =___,∠C =____.2. 平行四边形的周长等于56 cm ,两邻边长的比为3∶1,那么这个平行四边形较长的边长为____.3. 平行四边形的两条对角线把它分成全等三角形的对数是( )A .2B .4C .6D .84. 如图,平行四边形ABCD 中,对角线AC 、BD 交于点O ,过点O 的直线分别交AD 、BC 于E 、F ,则图中的全等三角形共有___对.5. 关于四边形ABCD :①两组对边分别平行②两组对边分别相等③有两组角相等④对角线AC 和BD 相等.以上四个条件中,可以判定四边形ABCD 是平行四边形的有______个平行四边形的性质与判定(四边形性质探索)基础练习试卷简介:全卷共3个选择题,14个填空题,分值100分,测试时间60分钟。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行四边形的性质及判定(典型例题)1.平行四边形及其性质ABCD对角线的交点.△OBC是的周长为59例1 如图,O,BD=38,AC=24,则AD=____若△OBC与△OAB的周长之差为AB=ABCD,则的周长=____.15分析:AC,可得BC,再由平行四边形对边相等知AD=BC,由平行四边形的对角线互相平分,可知△OBC与△OAB的周长之差就为BC,进而可得ABCDAB的周长.AB与之差,可得对角线互相平分)∴△OBC的周长=OB+OC+EC34/ 1=19+12+BC=59∴BC=28ABCD中,∴BC=AD(平行四边形对边相等)∴AD=28△OBC的周长-△OAB的周长=(OB+OC+BC)-(OB+OA+AB)=BC-AB=15∴AB=13∴ABCD的周长=AB+BC+CD+AD=2(AB+BC)=2(13+28)=82说明:本题条件中的“△OBC占△OAB的周长之差为15”,用符34 / 2号语言表示出来后,便容易发现其实质,即BC与AB之差是15.例2 判断题(1)两条对边平行的四边形叫做平行四边形.( )(2)平行四边形的两角相等.( )(3)平行四边形的两条对角线相等.( )(4)平行四边形的两条对角线互相平分.( )(5)两条平行线中,一条直线上任一点到另一条直线的垂线段叫做两条平行线的距离.( )(6)平行四边形的邻角互补.( )分析:根据平行四边形的定义和性质判断.解:(1)错“两组对边分别平行的四边形叫做平行四边形”是两组对边,而不是两条对边.如图四边形ABCD,两条对边AD∥BC.显然四边形34 / 3ABCD不是平行四边形.(2)错平行四边形的性定理1,“平行四边形的对角相等.”对角是指四边形中设有公共边的两个角,也就是相对的两个角.(3)错平行四边形的性质定理3,“平行四边形的对角线互相平分.”一般地不相等.(矩形的两条对角线相等).(4)对根据平行四边形的性质定理3可判断是正确的.(5)错线段图形,而距离是指线段的长度,是正值正确的说法是:两条平行线中,一条直线上任一点到另一条直线的垂线段的长度叫做这两条平行线的距离.(6)对由定义知道,平行四边形的对边平行,根据平行线的性质可知.平行四边形的邻角互补.34/ 4,在ABCD中,E、1F是AC上的两点.且例3 .如图AE=CF.求证:ED∥BF.分析:欲址DE∥BF,只需∠DEC=∠AFB,转证=∠ABF≌△CDF, ABCD,从而有∠BAC=∠CDA.再由AF=CF因ABCD,则有得AF=CE.满足了三角形全等的条件.证明:∵AE=CFAE+EF=CF+EF∴AF=CE在ABCD中AB∥CD(平行四边形的对边平行)∴∠BAC=∠DCA(两直线平行内错角相等)34/ 5AB=CD(平行四边形的对边也相等)∴△ABF≌△CDE(SAS)∴∠AFB=∠DCE∴ED∥BF(内错角相等两直线平行)说明:解决平行四边形问题的基本思想是化为三角形问题不处理.例4 如图已知在△ABC中DE∥BC∥FG,若BD=AF、求证;DE+FG=BC.分析1:要证DE+FG=DC由于它们是平行线,由平行四边形定义和性质.考虑将DE平移列BC上为此,过E(或D)作EH∥AB(或DM ∥AC),得到DE=BH、只需证HC=FG,因AF=BD=EH,∠CEH=∠A.∠AGF=∠C所以△AFG≌∠EHC.此方法称为截长法.分析2:过C点作CK∥AB交DE的延长线于K,只需证FG=EK,34/ 6转证△AFG≌△CKE.证法1:过E作EH∥AB交于H∵DE∥BC∴四边形DBHE是平行四边形(平行四边形定义)∴DB=EHDE=BH(平行四边形对边也相等)又BD=AF∴AF=EH∵BC∥FG∴∠AGF=∠C(两直线平行同位角相等)同理∠A=∠CEH∴△AFG≌△EHC(AAS)34/ 7∴FG=HC∴BC=BH+HC=DE=FG即CE+FG=BD证法2:. 过C作CK∥AB交DE的延长线于K.∵DE∥BC∴四边形DBCK是平行四边形(平行四边形定义) ∴CK=BD DK=BC(平行四边形对边相等)又BD=AF∴AF=CK∵CK∥AB∴∠A=∠ECK(两直线平行内错角相等)34/ 8∵BC∥FG∴∠AGF=∠AED(两直线平行同位角相等)又∠CEK=∠AED(对顶角相等)∴∠AGF=∠CEK∴△AFG≌△CKE(AAS)FG=EKDE+EK=BC∴DE+FG=BC如图ABCD中,∠ABC=3∠A,点E在CD上5 例,CE=1,EF⊥CD 交CB延长线于F,若AD=1,求BF的长.分析:根据平行四边形对角相等,邻角互补,可得∠C=∠F=45°进而由勾股定理求出CF,再根据平行四边形对边相等,得BF的长.34/ 9在ABCD中,AD解:∥BC∴∠A+∠ABC=180°(两直线平行同旁内角互补)∵∠ABC=3∠A∴∠A=45°,∠ABC=135°∴∠C=∠A=45°(平行四边形的对角相等)∴EF⊥CD∴∠F=45°(直角三角形两锐角互余)∴EF=CE=1∵AD=BC=1,ABCD中,对角线AC长为10cm,∠CAB=30°,如图例6 1ABCD的面积.6cm长为AB,求34/ 102) 图.(AB,交AB的延长线于点H解:过点C作CH⊥∵∠CAB=30°5=30(cm2) =6×=AB·CH∴ABCDS.ABCD的面积为30cm2答:由于说明:×底高,题设中已知AB的长,须求出与底AB=的高,故选择相应的高,由于本题条件的制约,不便于求出过点D C作高.过点∥上,且BCEF、的边ABCD、如图,例7 EF分别在CDBD34/ 11求证:S△ACE=S△ABF分析:运用平行四形的性质,利用三角形全等,将其转化为等底同高的三角形.证明:将EF向两边延长分别交AD、AB的延长线于G、H.ABCD DE∥AB∴∠DEG=∠BHF(两直线平行同位角相等)∠GDE=∠DAB(同上)AD∥BC∴∠DAB=∠FBH(同上)∴∠GDE=∠FBH∵DE∥BH,DB∥EH∴四边形BHED是平行四边形∵DE=BH(平行四边形对边相等)34/ 12∴△GDE≌△FBH(ASA)∴S△GDE=S△FBH(全等三角形面积相等)∴GE=FH(全等三角形对应边相等)∴S△ACE=S△AFH(等底同高的三角形面积相等)∴S△ADE=S△ABFS=a·ha即.a说明:平行四边形的面积等于它的底和高的积.可以是平行四边形的任何一边,h必须是a边与其对边的距离.即对应的高,为了区别,可以把高记成ha,表明它所对应的底是a.如图,在ABCD中,BE平分∠B8 例交CD于点E,DF平分∠D交AB于点F,求证BF=DE.34/ 13证明:ABCD是平行四边形∵四边形平行四边形的对边也平行对角相ADC(,∠ABC=∠∴DE∥FB)等)两直线平行内错角相等∠3(∴∠1=2 1=∠∴∠3∠2=∴∠)同位角相等两条直线平行∥BE(DF∴) 平行四边形定义(∴四边形BEDF为平行四边形)平行四边形的对边相等(BF=DE∴.34/ 14说明:此例也可通过△ADF≌△CBE来证明,但不如上面的方法简捷.例9 如图,CD的Rt△ABC斜边AB上的高,AE平分∠BAC交CD 于E,EF∥AB,交BC于点F,求证CE=BF.分析作EG∥BC,交AB于G,易得EG=BF.再由基本图,可得EG=EC,从而得出结论.证明:过E点作EG∥BC交AB于G点.∴∠EGA=∠B34/ 15∵EF∥AB∴EG=BF∵CD为Rt△ABC斜边AB上的高∴∠BAC+∠B=90°.∠BAC+∠ACD=90°∴∠B=∠ACD∴∠ACD=∠EGA∵AE平分∠BAC∴∠1=∠2又AE=AE∴△AGE≌△ACE(AAS)∴CE=EG∴CE=BF.说明:(1)在上述证法中,“平移”起着把条件集中的作用.本题也可(2)以设法平移G)ABAEFGF(AE.连点作∥,交于34/ 16如图,已知ABCD的周长为32cm,AB∶BC=5例10 ∶3,AE⊥BC 于E,AF⊥DC于F,∠EAF=2∠C,求AE和AF的长.分析:从化简条件开始①由ABCD的周长及两邻边的比,不难得到平行四边形的边长.②∠EAF=2∠C告诉我们什么?这样,立即可以看出△ADF、△AEB都是有一个锐角为30°的直角三角形.34/ 17再由勾股定理求出32cm的周长为解:ABCDAB+BC+CD+DA=32即)平行四边形的对边相等∵AB=CD BC=DA(3∶BC=5∶AB又) 360°四边形内角和等于∠C+∠CEA=360°(EAF+∠∠AFC+ AEC=90°⊥BC ∠AE∵∠AFC=90°DC AF⊥∠C=180°∴∠EAF+C ∠∠EAF=2 C=60°∴∠34/ 18∵AB∥CD(平行四边形的对边平行)∴∠ABE=∠C=60°(两直线平行同位角相等)同理∠ADF=60°说明:化简条件,化简结论,总之,题目中哪一部分最复杂就从化简那一部分开始,这是一种常用的解题策略,我们把这种解题策略称为:从最复杂的地方开始.它虽简单,却很有效.2.平行四边形的判定例1 填空题(1)如图1,四边形ABCD与四边形BEFC都是平行四边形,则34 / 19四边形AEFD是__,理由是__(2) 如图2,D、E分别在△ABC的边AB、AC上,DE=EF,AE=EC,DE∥BC则四边形ADCF是__,理由是__,四边形BCFD是__,理由是___分析:判定一个四边形是平行四边形的方法较多,要从已知条件出发,具体问题具体分析:(1)根据平行四边形的性质可得AD平行且等于BC,BC平行且等于EF,从而得AD平行且等于EF,由判定定理4可得.(2)由AE=EC,DE=EF,由判定定理3可得四边形ADCF 是平行四边形,从而得AD∥CF即BD∥CF,再由条件,可得四边形BCFD是平行四边形.解:(1)平行四边形,一组对边平行且相等的四边形是平行四边形(2)平行四边形,对角线互相平分的四边形是平行四边形,平行四边形,两组对边分别平行的四边形是平行四边形.34/ 20说明:平行四边形的定义(两组对边分别平行的四边形叫做平行四边形,既是平行四边形的一个性质,又是平行四边形的一个判定方法.例2 如图,四边形ABCD中,AB=CD.∠ADB=∠CBD=90°.求证:四边形ABCD是平行四边形.分析:判定一个四边形是平行四边形,有三类五个判定方法,这三类也是按边、角和对角线分类,具体的五个方法如下表:因此必须根据已知条件与图形结构特点,选择判定方法.证法一:∵AB=CD.∠ADB=∠CBD=90°,BD=DB.34/ 21∴Rt△ABD≌Rt△CDB.∴∠ABD=∠CDB,∠A=∠C.∴∠ABD+∠CBD=∠CDB+∠ADB即∠ABC=∠CDA.∴四边形ABCD是平行四边形(两组对角分别相等的四边形是平行四边形).证法二:∵∠ADB=∠CBD=90°,AB=CD、BD=DB.∴Rt△ABD≌Rt△CDB.∴∠ABD=∠CDB.∴AB∥CD.(内错角相等两直线平行)∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).证法三:由证法一知,Rt△ABD≌Rt△CDB.34/ 22∴DA=BC又∵AB=CD∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形)说明:证明一个四边形是平行四边形,往往有多种证题思路,我们必须注意分析,通过比较,选择最简捷的证题思路.本题三种证法中,证法二与证法三比较简捷,本题还可用定义来证明.如图,ABCD中,E、G、F例3 、H分别是四条边上的点,且AE=CF,BG=DH,求证:EF与GH互相平分.分析:只须证明EGFH为平行四边形.34/ 23证明:连结EG、GF、FH、HE.∵四边形ABCD是平行四边形∴∠A=∠C,AD=CB.∵BG=DH∴AH=CG又AE=CF∴△AEH≌△CFG(SAS)∴HE=GF同理可得EG=FH∴四边形EGFH是平行四边形(两组对边分别相等的四边形是平行四边形)∴EF与GH互相平分(平行四边形的对角线互相平分).说明:平行四边形的性质,判定的综合运用是解决有关线段和角问题基本方法.34/ 24如图,ABCD中,AE⊥BD于E,例4 CF⊥BD于F.求证:四边形AECF是平行四边形.分析:由平行四边形的性质,可得△ABE≌△CDF∴AE= CF进而可得四边形AECF是平行四边形.ABCD证明:ABCD中,(平行四边形的对边平行,对边相等)∴∠ABD=∠CDB(两直线平行内错角相等)AE⊥BD、CF⊥BD∴AE∥CF∠AEB=∠CFD=90°∴△ABE≌△CDF(AAS)∴AE=CF∴四边形AECF是平行四边形(一组对边平行且相等的四边形是34/ 25平行四边形)说明:平行四边形的定义,既是平行四边形的一个性质,又是平行四边形的一个判定方法.如图,ABCD中,E、F分别在AD、BC例5 上,且AE=CF,AF、BE相交于G,CE、DF相交于H求证:EF与GH互相平分分析:欲证EF与GH互相平分,只需四边形EGFH为平行四边形,利用已知条件可知四边形AFCE、四边形EBFD都为平行四边形,所以可得AF∥EC,BE∥DF,从而四边形GEHF为平行四边形.ADBC(平行四边形对边平行且相等)ABCD证明:中,∵AE=CF∴DE=BF∵四边形AFCE、四边形BFDE是平行四边形(一组对边平行且34/ 26相等的四边形是平形四边形)∴AF∥CE,BE∥DF(平行四边形对边平行)∴四边形EGFH是平行四边形(两组对边分别平行的四边形是平行四边形)∴GH与EF互相平分(平行四边形的对角线互相平分)说明:平行四边形问题,并不都是以求证某一个四边形为平行四边形的形式出现的.往往更多的是求证线段的相等、角的相等、直线的平行、线段的互相平分等等.要灵活地根据题中已知条件,以及定义、定理等.先判定某一四边形为平行四边形,然后再应用平行四边形的性质加以证明.已知ABCD中,EF在BD上,且如图,例6 BE=DF,点G、EG,求证BD交于点O与,上,且有、在HADCBAG=CHGHHF34/ 27 互相平分GEHF为平行四边形.EF、GH 分析:证证明:连BG、DH、GF、EH∵ABCD为平行四边形.ADBC∴又AG=HCDG∴BH∴四边形BGDH为平行四边形(一组对边平行且相等的四边形是平行四边形)∴HO=GO,DO=BO(平行四边形的对角线互相平分)又BE=DF∴OE=OF∴四边形GEHF为平行四边形(对角线互相平分的四边形是平行34 / 28四边形)EGHF.(平行四边形的对边平行相等∴)说明:由于条件BE=DF涉及到对角线BD,所以考虑用对角线互相平分来证明如图,ABCD中,AE⊥BD于E,CF⊥BD于F,例7 G、H分别为AD、BC的中点,求证:EF和GH互相平分.分析:连结EH,HF、FG、GE,只须证明EHFG为平行四边形.证法一:连结EH,HF、FG、GE34/ 29∵AE⊥BD,G是AD中点.∠GED=∠GDE同理可得∵四边形ABCD是平行四边形ADBC,∠GDE=∠∴HBF∴GE=HF,∠GED=∠HFB∴GE∥HF∴四边形GEHF为平行四边形(一组对边平行且相等的四边形是平行四边形)∴EF和GH互相平分.(平行四边形对角线互相平分)证法二:容易证明△ABE≌△CDF∴BE=DF34/ 30∵四边形ABCD为平行四边形ADBC∴∵G、H分别为AD、BC的中点DG∴BH∴四边形BHDG为平行四边形(一组对边平行且相等的四边形是平行四边形)∴BD和GH互相平分(平行四边形对角线互相平分)∴OG=OH,OB=OD又BE=DF∴OE=OF∴EF和GH互相平分.求作:ABCD,使∠b、与∠α,ABC=a如图,例8 已知线段,,∠αAB=aBC=b,34/ 31两,根据判定定理2(分析:已知两边与夹角,可先确定△ABC,从而平行四,再确定点D组对边分别相等的四边形是平行四边形) 边形可作出.作法:,EBF=∠α(1)作∠BC=b,,BE、BF上分别截取BA=a(2)在,为半径作弧,两弧交于点DaC(3)分别为A、为圆心,b,ABCD 为所求.∴四边形证明:*a AB=CD=由作法可知BC=AD=b34/ 32∴四边形ABCD为平行四边形(两组对边分别相等的四边形为平行四边形)且∠ABC=∠α,AB=a,BC=b∴ABCD为所求说明:常见的平行四边形作图有以下几种:(1)已知两邻边(AB、BC)和夹角(∠B).(2)已知一边(BC)和两条对角线(AC,BD).(3)已知一边(BC)和这条边与两条对角线的夹角(如∠DBC,∠ACB).(4)已知一边(CD)和一个内角(∠ABC)以及过这个角的顶点的一条对角线(BD,且BD>CD)求作平行四边形(如图)34/ 33完成这些作图的关键点,都在于先作出一个三角形,然后再完成平行四边形的作图,体现了把平行四边形的问题化归为三角形问题的思想方法.34/ 34。