离子液体综述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离子液体
离子液体是指全部由离子组成的液体,如高温下的KCI, KOH呈液体状态,此时它们就是离子液体。在室温或室温附近温度下呈液态的由离子构成的物质,称为室温离子液体、室温熔融盐、有机离子液体等,目前尚无统一的名称,但倾向于简称离子液体。在离子化合物中,阴阳离子之间的作用力为库仑力,其大小与阴阳离子的电荷数量及半径有关,离子半径越大,它们之间的作用力越小,这种离子化合物的熔点就越低。
某些离子化合物的阴阳离子体积很大,结构松散,导致它们之间的作用力较低,以至于熔点接近室温。
种类
离子液体是指在室温或接近室温下呈现液态的、完全由阴阳离子所组成的盐,也称为低温熔融盐。离子液体作为离子化合物,其熔点较低的主要原因是因其结构中某些取代基的不对称性使离子不能规则地堆积成晶体所致。它一般由有机阳离子和无机阴离子组成,常见的阳离子有季铵盐离子、季鏻盐离子、咪唑盐离子和吡咯盐离子等,阴离子有卤素离子、四氟硼酸根离子、六氟磷酸根离子等。
目前所研究的离子液体中,阳离子主要以咪唑阳离子为主,阴离子主要以卤素离子和其它无机酸离子(如四氟硼酸根等)为主。但近几年来又合成了一系列新型的离子液体,例如在阳离子方面,Shreeve领导的研究小组合成了一些新型阳离子的离子液体如下所示:
在阴离子方面,Yoshida研究小组也合成了一些新型阴离子的离子液体。
由于离子液体本身所具有的许多传统溶剂所无法比拟的优点及其作为绿色溶剂应用于有机及高分子物质的合成,因而受到越来越多的化学工作者的关注。离子液体的制备
离子液体种类繁多,改变阳离子、阴离子的不同组合,可以设计合成出不同的离子液体。离子液体的合成大体上有两种基本方法:直接合成法和两步合成法。直接合成法
通过酸碱中和反应或季胺化反应等一步合成离子液体,操作经济简便,没有
副产物,产品易纯化。Hlrao等酸碱中和法合成出了一系列不同阳离子的四氟硼酸盐离子液体。另外,通过季胺化反应也可以一步制备出多种离子液体,如卤化1-烷基3-甲基咪唑盐,卤化吡啶盐等。
两步合成法
直接法难以得到目标离子液体,必须使用两步合成法。两步法制备离子液体的应用很多。常用的四氟硼酸盐和六氟磷酸盐类离子液体的制备通常采用两步法。首先,通过季胺化反应制备出含目标阳离子的卤盐;然后用目标阴离子臵换出卤素离子或加入Lewis酸来得到目标离子液体。在第二步反应中,使用金属盐MY(常用的是AgY),HY或NH4Y时,产生Ag盐沉淀或胺盐、HX气体容易被除去,加入强质子酸HY,反应要求在低温搅拌条件下进行,然后多次水洗至中性,用有机溶剂提取离子液体,最后真空除去有机溶剂得到纯净的离子液体。特别注意的是,在用目标阴离子Y交换X-(卤素)阴离子的过程中,必须尽可可能地使反应进行完全,确保没有x.阴离子留在目标离子液体中,因为离子液体的纯度对于其应用和物理化学特性的表征至关重要。高纯度二元离子液体的合成通常是在离子交换器中利用离子交换树脂通过阴离子交换来制备。另外,直接将Lewis 酸(MY)与卤盐结合,可制备[阳离子][MnXny+l]型离子液体,如氯铝酸盐离子液体的制备就是利用这个方法,如离子液体的性质中所述,离子液体的酸性可以根据需要进行调节。
由于离子液体的可设计性,所以根据需要定向的设计功能化离子液体是我们实验研究的方向。
应用
由于离子液体所具有的独特性能,目前它被广泛应用于化学研究的各个领域中。离子液体作为反应的溶剂已被应用到多种类型反应中。
1.1.4.1 氢化反应
将离子液体应用于氢化反应已有大量的报道,反应中应用离子液体替代普通
溶剂优点是:反应速率比普通溶剂中快几倍;所用的离子液体和催化剂的混合液可以重复利用。研究表明,在过程中离子液体起到溶剂和催化剂的双重作用。由于离子液体能溶解部分过渡金属,因而目前在氢化反应中运用离子液体研究最多的是用过渡金属配合物作为催化剂的均相反应体系。另外,相对于传统溶剂来说,将离子液体运用于柴油(主要是针对其中含有的芳烃)的氢化反应时具有产品易于分离、易纯化,又不会造成环境污染等优点。
1.1.4.2 傅-克反应
傅-克反应包括傅-克酰基化和傅-克烷基化反应,这两种类型的反应在有机化工中具有举足轻重的地位。比较成熟的催化剂有沸石、固体酸和分子筛等。但是出于绿色合成和成本的考虑,许多化学工作者已改传统溶剂为离子液体进行相关研究。
例如,Seddon等利用离子液体研究了两可亲核试剂吲哚和2-萘酚的烷基化反应,该方法简单、产品易于分离,杂原子上的区域选择性烷基化产率在90%以上,而且溶剂可以回收再利用,显示了离子液体作为烷基化反应的溶剂时所具有的优势。
1972年,Parshall就研究了在四已胺三氯锡酸盐中乙烯的羰基化反应。近些年来,化学工作者在此方面做出了较多的努力。例如我国化学工作者邓友全等在烷烃的羰基化方面作了相关的研究。他们首次报道了几种烷烃在卤化1-烷基吡啶和1-甲基-3-烷基咪唑盐与无水AlCl3组成的超强酸性室温离子液体中与CO 的直接羰基化反应,产物为酮。
1.1.4.3 Heck反应
Heck反应即烯烃和卤代芳烃或芳香酐在催化剂(如金属钯)的作用下,生成芳香烯烃的反应,这在有机合成中是一个重要的碳-碳结合反应。离子液体应用于此类反应中能较好地克服传统反应存在的催化剂流失、所使用的有机溶剂挥发等问题。2000年,Vincenzo等报道了将离子液体应用于Heck反应后,该反应的反应速率很快,而且收率提高到90%以上Seddon等研究小组在三相系统[BMIM(1-丁基-3-甲基咪唑)]PF6/水/己烷中进行了Heck反应的研究,所用的催化剂留在离子液体中,可以循环使用,而产品溶解在有机层内,反应形成的副产物被提取到水相中,容易分离。
1.1.4.4 Diels-Alder反应
Diels-Alder反应是有机化学中的一个重要反应,人们对该反应的注意点不仅是其产率和速率,更重要的是其立体选择性。将离子液体应用于Diels-Alder 反应研究方面,现在已有大量的报道。如Howarth等研究小组报道了在咪唑盐室温离子液体中环戊二烯与烯醛类物质反应进行的情况。研究发现,在离子液体中进行时该反应的立体选择性较好,即得到的内外型产物的比例约在95:5左右。研究都发现,在离子液体中进行的该反应不但反应速度快,反应产率高,反应的立体选择性好,而且离子液体可以回收重新使用。这说明,离子液体在Diels-Alder反应方面比普通溶剂具有更大的优势。
1.1.4.5 在不对称催化反应中的应用
研究表明,将离子液体应用于不对称催化反应,对映体的选择性相对于普通溶剂有很大的提高,而且解决了传统方法中产物不易从体系中分离出来这一难题。将离子液体应用于不对称催化反应中已有大量的报道,如Chen研究组报道了将离子液体应用于不对称烯丙基烷基化反应中;Song研究组则将离子液体应用于不对称环氧化反应中;Wasserschied等最近报道了从“手性池”(chiral pool)衍生的新型手性离子液体的合成和特性,我们相信这些手性离子液体的合成对于研究不对称催化反应尤其在手性药物合成方面将会有重大意义。
1.1.4.6 用于分离提纯技术
由于离子液体具有其独特的理化性能,非常适合于用作分离提纯的溶剂。现在在此方面已有大量的报道,如利用离子液体从发酵液中提取回收丁醇;利用超临界CO2从离子液体中提取非挥发性有机物等等。我国化学工作者邓友全等在此方面也有一定的研究。他们首次将离子液体应用到固-固分离领域中,以[BMIM]PF6作为分离牛黄酸和硫酸钠固体混合物的浸取剂,有效地分离了牛黄酸,回收率高于97%,此方法具有很大的应用价值。
1.1.4.7 用于电化学研究
由于离子液体具有导电性、难挥发、不燃烧、电化学稳定电位窗口比其它电