塔设备机械设计讲解
第八章-塔设备的机械设计
Fi hi
i 1
对于等直径、等壁厚塔器的底截面 地震弯矩为:
M
00 E
16 35
1m0
gH
(N mm)
风载荷
风对塔体的作用之一是造成风弯矩,在迎风面的塔壁 和裙座体壁引起拉应力,背风面一侧引起压应力;作 用之二是气流在风的背向引起周期性旋涡,即卡曼涡 街,导致塔体在垂直于风的方向产生周期振动,这种 情况仅仅出现在H/D较大,风速较大时比较明显,一般 不予以考虑。
M
ii max
/
0.785Di2
S
e
2
式中M
ii max
maxM M
ii W
ii E
Me
25%M
ii W
M e
稳定条件:
组合轴向压应 力要满足:
ii m a x压
[ ]cr
KB
minK[ ]t
式中K——载荷组合系数,取K=1.2; B——见书p172。
4 塔体拉应力验算
依前述,假设一有效壁厚Se3。 计算σ1,σ2,σ3,并进行组合,满足如下强度条件:
m0 m01 m02 m03 m04 m05 ma me
(8-1)
塔设备在水压试验时的最大质量
mmax m01 m02 m03 m04 mw ma me (8-2)
塔设备在吊装时的最小质量
mmin m01 0.2m02 m03 m04 ma me (8-3)
地震载荷
(5)水压试验验算。
8.2 裙座设计
四个部分: 1.座体---承受并传
递塔体载荷。 2.基础环---将载荷
传递到基础上。 3.螺栓座---固定塔
于基础上。 4.管孔---人孔、排
气孔、引出管孔。
课程设计讲座—塔设备的设计(PPT 34页)
1 2 3
4
5
1 2
3 4 5
6
7 8
9
6 7 8 9
1 0 1 1
1 0 1 1
1 2
1 2 1 3
图 4 . 1 板 式 塔 机械设图 4 计. 2 与填 料 表塔 面科学研究室
2) 塔的基本结构
1、塔体:筒节、封头、联接法兰等
2、内件:塔板或填料及支承装置
3、支座:裙式支座 4、附件:人孔、手孔、接管、液 体和 气体的分配装置、塔外的扶梯、平台、 保温层等
P G
Ⅰ-Ⅰ Ⅱ-Ⅱ Ⅲ-Ⅲ
2020年3月24日星期二
机械设计与表面科学研究室
1)按内压设计壁厚
tn
P Di
2 t
P
C
2)各危险截面的强度校核
(见前页)
3)水压试验时的验算
(各截面)
4)基础环设计
2020年3月24日星期二
机械设计与表面科学研究室
4、标准零部件的选择
1)保温圈 2)封头 3)各接管 4)法兰 5)补强圈
2020年3月24日星期二
机械设计与表面科学研究室
4)图纸全部采用绘图仪输出,图纸的大小 为A1,每组学生可免费到计算机中心输出 一张图纸(实验二楼或实验十楼)。
2020年3月24日星期二
机械设计与表面科学研究室
5)成绩评定:
每位学生在指定时间内将所设计的图纸和设 计计算书交到指导教师处,指导教师根据设 计计算和图纸问题对学生进行提问,原则上 每组三个问题(其中新技术为必答题),教 师根据学生回答的问题和设计计算质量给予 成绩。
2020年3月24日星期二
机械设计与表面科学研究室
6)我们的设计教室
第六章-塔设备的机械设计PPT参考课件
二、 液体再分布器
当液体流经填料层时,液体有流向器壁造 成“壁流”的倾向,使液体分布不均,降低了 填料塔的效率,严重时可使塔中心的填料不能 润湿而成“干锥”。因此在结构上宜采取措施, 使液体流经一段距离后再行分布,以便在整个 高度内的填料都得到均匀喷淋。
在液体再分配器中,分配锥是最简单的,如 图6-25(a)所示,沿壁流下的液体用分配锥再将 它导至中央。
截面大致相等; (3)槽板扁钢条之间的距离约为填料外径的60%~80
%; (4)栅板可以制成整块的或分块的。
32
33
34
第四节 塔体与裙座的机械设计
一 塔体厚度的计算 自支承式塔设备一般都很高,且承受多种载
荷的作用。塔体除应满足强度条件外,还需满 足稳定条件。 1.按计算压力计算塔体及封头厚度 按第4章“内压薄壁圆筒与封头的强度设计” 的有关规定,计算塔体及封头的有效厚度S。 和S<a,
第六章 塔设备的机械设计
第一节 概述
塔设备可划分为板式塔和填料塔 塔设备的机械设计要求做到: ①选材立足国内; ②结构安全可靠,满足工艺要求; ③制造、安装、使用、检修方便。
1
第二节 板式塔
2
3
4
填料塔和填料
5
6
一、 总体结构
1.塔体与裙座结构 这是所有塔设备的基本工作结构和支撑结构。 2.塔盘结构 这是塔设备完成化工过程和操作的主要结构部分。它包括塔盘板、
9
10
降液管的结构有弓形和圆形两类
图6-3 一般圆形降液管
图6-4 带有滋流堰的圆形降液管
பைடு நூலகம்
图6-5弓形降液管结构
图6-6弓形降液管的液封槽
11
2.分块式塔盘
塔器设备设计教学课件PPT
一、塔体壁厚的计算
2.塔体承受的各种载荷的计算
–⑶ 风载荷计算
–两相邻计算截面间的风载荷为:
▪ p0=K1K20q0f0l0De0×10-6 N ▪ p1=K1K21q0f1l1De1×10-6 N
li 1 2
pi2
li
li 1
li 2 2
一、塔体壁厚的计算
2.塔体承受的各种载荷的计算
– ⑷ 偏心载荷计算 – 塔设备在顶部悬挂的分离器、热交换器、冷凝器等附属设
备对塔体产生偏心载荷。偏心载荷所引起的弯矩为:
Me meg e
–式中:e-偏心重物的重心至塔设备中心线的距离,mm。
一、塔体壁厚的计算
n
M I - I E
Fk hk - h
h-计算截面距地面高度
i 1
等直径、等壁厚的设备任意截面I-I的地震弯矩
MI-I E
8Cz1m0g
175H 2.5
10H 3.5
- 14H 2.5 h
4h 3.5
底部截面的地震弯矩
M0E-0
16 35
Cz1m0gH
【注】当H/Di>5时,设备为柔性结构,须考虑高振型影响,在进 行稳定或其他验算时,取地震弯矩值应为上列计算值的1.25倍。
1.按设计压力计算塔体及封头壁厚
– 按内(外)压容器及封头的有关规定,计算塔体及封头的 有效厚度δe和δeH。
一、塔体壁厚的计算
2.塔体承受的各种载荷的计算
① 工作介质 压力
② 重量载荷
③ 风载荷
④ 地震载荷
⑤ 偏心载荷 力学模型:底 部固定支撑的 悬臂梁。
第17章 塔设备的机械设计PPT课件
第17章 塔设备的机械设计
.29.
14.11.2020
❖ 座底为危险截面时
a) 操作时底截面处的最大组合压应力应满足下列强度和稳定 性的要求:
ma x0.7M 8m 0 D 0 i2 a 5 sxes m D 0 ig ses Bts 取其中
b) 水压试验时底截面处的最大组合压应力应满足下列强度和 稳定性的要求:
D e iD o i 2 s iK 3 K 4 d 0 2 ps m
❖当笼式扶梯与进出口管布置成90°,取下列二者中的较大者:
D eiD o2siK 3K 4 mm D eiD o2siK 4do2ps mm
第17章 塔设备的机械设计
.17.
14.11.2020
则任意截面I-I的风弯矩为:
ma x M Wm 1sm 1a x m A 0 1 s1m g B
t s
取其中小者
b) 水压试验时底截面处的最大组合压应力应满足下列强度和 稳定性的要求:
ma x0.3M W w 1 s1m M em A 1 m s1m agx 0 B.8s 取其中
第17章 塔设备的机械设计
.31.
M w i i p il 2 i p i 1 li li 2 1 p i 2 li li 1 li2 2 ...N .m ..
对于塔,可能的危险截面有: 裙座人孔处,塔底封头焊缝连接处, 不等直径塔变截面处,等截面塔变 壁厚处,以及裙座底截面处等。计 算时可比较以选择危险截面来计算 风弯矩
MP
第17章 塔设备的机械设计
二、裙座设计:
由:1)座体 2)基础环 3)螺栓座 4)管孔
等组成。
.27.
14.11.2020
第17章 塔设备的机械设计
塔设备设计说明书
塔设备设计说明书塔设备设计说明书概述塔设备的设计和选型是建⽴在对循环吸收⼯段、精制⼯段流程的模拟、优化的基础上。
在满⾜⼯艺要求的条件下,考虑设备的固定投资费⽤和操作费⽤,进⾏进⼀步模拟计算、设计和选型。
设计主要包括⼯艺参数设计、基本参数设计和机械设计。
⼯艺参数设计对该塔的⽣产能⼒、分离效果、物料和能量等操作参数作了设计;基本参数设计部分完成了塔设备的选型、填料的选型和参数设计塔板负荷性能校核等内容的设计;机械⼯程设计部分设计内容为塔设备的材质壁厚、封头、开⼝和⽀座地基等,同时对塔的机械性能做了校核。
我们完成了对全⼚2 座塔设备的⼯艺参数设计、基本参数设计和机械设计,并选取其中最有代表性的⼆氧化碳吸收塔给出了详细的计算和选型说明。
详细的设备装配图见⼯艺设计施⼯图。
烟道⽓吸收塔设计说明书第1 部分概要烟道⽓吸收塔是吸收的关键设备之⼀,其作⽤是贫液吸收烟道⽓中的⼆氧化碳,从⽽达到使⼆氧化碳从烟道⽓中分离的⽬的。
塔的吸收能⼒直接影响到⼆氧化碳的回收率。
吸收塔的设计应符合⼀下塔设备的基本要求:1⽣产能⼒⼤,即⽓液处理量⼤;2分离效率⾼,即⽓液相能充分接触;3 适应能⼒及操作弹性⼤,即对各种物料性质的适应性强并且在负荷波动时能维持操作稳定,保持较⾼的分离效率;4流体流动阻⼒⼩,即⽓相通过每层塔板或单位⾼度填料层的压降⼩;5 结构简单可靠,材料耗⽤量少,制造安装容易,以降低设备投资;设计说明书包括⼯艺参数设计、基本结构设计和机械⼯程设计三部分。
⼯艺参数设计对该塔的⽣产能⼒、吸收效果、物料和能量等操作参数作了设计;基本参数设计部分完成了塔设备的选型、填料的选型和参数设计、塔板负荷性能校核等内容的设计;机械⼯程设计部分设计内容为塔设备的材质壁厚、封头、开⼝和⽀座地基等,同时对塔的机械性能做了校核。
第2 部分⼯艺参数设计2.1 ⽣产能⼒项⽬年产⼗万吨⼆氧化碳,根据物料横算,⽓体进料量为7119.88kg/h ,液体进料量为294619kg/h ,塔顶物流量为54990.8kg/h ,塔底物流量为309748Kg/h 。
塔设备机械设计
第五章 塔设备设计 9
课程设计 5.3.3 自振周期 将塔设备看成是顶端自由,底端刚性固定,质量沿高 度连续分布的悬臂梁。 其基本震型的自振周期T1按式(5-4)计算:
T1 90 .33 H mo H 10 3 E e Di
(s)
如校核不能满足条件时,须重新设定有 效厚度,重复上述计算,直至满足要求。
第五章 塔设备设计 20
课程设计
5.3.9 塔设备压力试验时的应力校核 5.3.9.1 圆筒应力 对选定的各计算截面按式(5-33)、式 (5-34)、式(5-35)和式(5-36)进行各项应力 计算: 试验压力引起的周向应力:
第五章 塔设备设计 7
5.3.1 塔设备的载荷分析 塔设备在操作时主要承受以下几种载荷作 用: 1、操作压力 2、质量载荷 3、地震载荷 4、风载荷 5、偏心载荷 (各种载荷示意图及符号见图5-3)
第五章 塔设备设计 8
课程设计
(塔设备设计计算常用符号及说明见表5-3)
课程设计
5.3.2 质量载荷 塔设备的操作质量mo(Kg) mo=mo1+mo2+mo3+mo4+mo5+ma+me 塔设备的最大质量mmax mmax =mo1+mo2+mo3+mo4+mw+ma+me 塔设备的最小质量mmin mmin =mo1+0.2mo2+mo3+mo4+ma+me
5.4.1 板式塔的总体结构 其总体结构可以分为五大部分: ①塔体与裙座 ②塔盘结构 ③除沫装置 ④设备接管 ⑤塔附件(扶梯、平台、吊柱、保温圈)
第八章 塔设备的机械设计(化工技术)PPT课件
14
① 水平地震力 直径、壁厚沿高度变化
的单个圆筒形直立设备可 视为多质点体系。
在高度hk处的集中载荷mk
引起的基本振型水平地震力 为:
F 1k11km kgN
15
② 垂直地震力 地震烈度为8或9度区
的塔器应考虑上下两个方 向垂直地震力的作用
底截面处:
体的分配装置、塔外扶梯、平台、保温层等
10
3 塔设备机械设计的要求 1)选材 2)结构 3)制造
11
第一节 塔体与裙座的机械设计
一 塔体厚度的计算 设计应满足强度条件和稳定条件
1 按计算压力计算塔体及封头厚度 2 塔体承受的各种载荷的计算
除工作介质压力外,还承受自重载荷、 风载荷、地震载荷及偏心载荷的作用。
• 3)强度校核条件
ii max
K
t
K-载荷组合系数,取K=1.2
确定塔体厚度 取δe,δei(压),δei(拉)中的较大值,
再加壁厚附加量,考虑制造、运输、安装时 的刚度要求,确定塔体厚度。
28
小结
1 塔体承受的各种载荷:自重载荷、地震载荷、 风载荷、偏心载荷
按多质点悬臂梁来计算 2 塔体的稳定校核 计算出各轴向应力,危险截面最大拉应力满
12
❖1)塔设备自重 载荷的计算
内部 保温
塔体 构建 层质
质量 质量 量
m 0 m 0 m 1 0 m 2 0 m 3 0 m 4 0 m 5 a m e k
平台扶 梯质量
塔内物 附件质量 偏心质量
料质量
13
2)地震载荷计算
发生地震时,塔 设备作为悬臂梁, 在地震载荷作用下 产生弯曲变形。
《塔设备的机械设计》课件
目录
• 塔设备概述 • 塔设备机械设计基础 • 塔设备结构设计 • 塔设备强度计算 • 塔设备制造与安装 • 塔设备设计案例分析
01 塔设备概述
塔设备定义
总结词
塔设备的定义
详细描述
塔设备是一种用于完成传热、传质及化学反应过程的设备,主要由壳体、塔板 、再沸器和冷凝器等部分组成。
塔设备分类
总结词
塔设备的分类
详细描述
塔设备根据其用途、操作原理和结构形式可以分为板式塔、填料塔、空塔等类型 。
塔设备的应用
总结词
塔设备的应用领域
详细描述
塔设备广泛应用于石油、化工、制药、食品、环保等领域,是实现传热、传质及化学反应过程的关键设备之一。
02 塔设备机械设计基础
设计原则
01
02
03
05 塔设备制造与安装
制造工艺
塔设备制造工艺流程
从设计图纸到成品塔设备的整个过程,包括材料采购、加工、焊 接、防腐等环节。
塔设备制造质量标准
根据相关标准和规范,确保塔设备的质量和性能符合要求。
塔设备制造中的注意事项
如材料的选择、焊接质量的控制、防腐措施的落实等,以确保塔设 备的安全性和可靠性。
安装调试
染和资源的浪费。
强度与刚度
强度
塔设备机械设计中应确保设备的 强度足够,能够承受各种工况下 的载荷和应力。
刚度
塔设备机械设计中应确保设备的 刚度足够,能够保证设备的稳定 性和精度。
优化设计
塔设备机械设计中应对设备的强 度和刚度进行优化设计,以实现 设备的轻量化、小型化和高效化 。
稳定性与振动
01
02
裙座宽度应根据塔体直径 、基础宽度等因素来确定 。
塔设备机械设计讲解
第一章绪论1.1塔设备概述塔设备是石油、化工、轻工等各工业生产中仅次与换热设备的常见设备。
在上述各工业生产过程中,常常需要将原料中间产物或粗产品中的各个组成部分(称为组分)分离出来作为产品或作为进一步生产的精制原料,如石油的分离、粗酒精的提纯等。
这些生产过程称为物质分离过程或物质传递过程,有时还伴有传热和化学反应过程。
传质过程是化学工程中一个重要的基本过程,通常采用蒸馏、吸收、萃取。
以及吸附、离子交换、干燥等方法。
相对应的设备又可称为蒸馏塔、吸收塔、萃取塔等。
在塔设备中所进行的工艺过程虽然各不相同,但从传质的必要条件看,都要求在塔内有足够的时间和足够的空间进行接触,同时为提高传质效果,必须使物料的接触尽可能的密切,接触面积尽可能大。
为此常在塔内设置各种结构形式的内件,以把气体和液体物料分散成许多细小的气泡和液滴。
根据塔内的内件的不同,可将塔设备分为填料塔和板式塔。
在板式塔中,塔内装有一定数量的塔盘,气体自塔底向上以鼓泡喷射的形式穿过塔盘上的液层,使两相密切接触,进行传质。
两相的组分浓度沿塔高呈阶梯式变化。
不论是填料塔还是板式塔,从设备设计角度看,其基本结构可以概括为:(1)塔体,包括圆筒、端盖和联接法兰等;(2)内件,指塔盘或填料及其支承装置;(3)支座,一般为裙式支座;(4)附件,包括人孔、进出料接管、各类仪表接管、液体和气体的分配装置,以及塔外的扶梯、平台、保温层等。
塔体是塔设备的外壳。
常见的塔体是由等直径、等壁厚的圆筒及上、下椭圆形封头所组成。
随着装置的大型化,为了节省材料,也有用不等直径、不等壁厚的塔体。
塔体除应满足工艺条件下的强度要求外,还应校核风力、地震、偏心等载荷作用下的强度和刚度,以及水压试验、吊装、运输、开停车情况下的强度和刚度。
另外对塔体安装的不垂直度和弯曲度也有一定的要求。
支座是塔体的支承并与基础连接的部分,一般采用裙座。
其高度视附属设备(如再沸器、泵等)及管道布置而定。
它承受各种情况下的全塔重量,以及风力、地震等载荷,因此,应有足够的强度和刚度。
板式塔设备机械设计
1 板式塔设备机械设计任务书设计任务及操作条件试进行一蒸馏塔与裙座的机械设计已知条件为:塔体内径mm D i 2000=,塔高m 30,工作压力为MPa 2.1,设计温度为300℃,介质为原油,安装在广州郊区,地震强度为7度,塔内安装55层浮阀塔板,塔体材料选用16MnR ,裙座选用A Q -235。
设计内容(1)根据设计条件选材;(2)按设计压力计算塔体和封头壁厚; (3)塔设备质量载荷计算; (4)风载荷与风弯矩计算; (5)地震载荷与地震弯矩计算; (6)偏心载荷与偏心弯矩计算; (7)各种载荷引起的轴向应力;(8)塔体和裙座危险截面的强度与稳定校核; (9)塔体水压试验和吊装时的应力校核; (10)基础环设计; (11)地脚螺栓计算; (12)板式塔结构设计。
.设计要求:(1)进行塔体和裙座的机械设计计算; (2)进行裙式支座校核计算; (3)进行地脚螺栓座校核计算; (4)绘制装备图(A3图纸)2 塔设备已知条件及分段示意图按设计压力计算塔体和封头厚度塔设备质量载荷计算自振周期计算地震载荷与地震弯距计算风载荷与风弯距计算偏心弯距最大弯距圆筒轴向应力校核和圆筒稳定校核地脚螺栓计算计算结果4 计算结果总汇1 按设计压力计算塔体和封头厚度4 后记本设计的任务是进行一蒸馏塔与裙座的机械设计。
计算量比较大,计算公式繁琐,数据比较大。
在计算过程中遇上一些参数是需要从书本的图或表格中查找出,有些数据还需要结合我们的理论课的书本来查找相关系数。
在设计的过程中,我们都会遇到各种各样的问题,但是大家一起努力工作的同时,对不懂的问题进行讨论之后,把遇到的问题都解决了。
只要把大家的力量聚集起来,就没有解决不了的问题。
这次课程设计让我们感受到,工程类的设计是多么的有特色,数据查找难,计算量大,公式繁琐。
最后感谢老师的指导,组员的帮助,其他舍友以及其他同学的共同努力,让本次课程设计顺利完成。
5 设计图纸见附图6 参考文献[1] 蔡纪宁.张秋翔.化工设备机械基础课程设计指导书.北京:化学工业出版社.2000 .6,63~64[2] 陈国桓.化工机械基础.第二版.北京:化学工业出版社.,169~171[3] 陈国桓.化工机械基础.第二版.北京:化学工业出版社.,125~125[4] 蔡纪宁.张秋翔.化工设备机械基础课程设计指导书.北京:化学工业出版社.2000 .6,85~85[5] 路秀林.王者相主编.化工设备设计全书塔设备.北京:化学工业出版社.2004 .1,324~3277主要符号说明。
塔器设备设计
根据塔器设备的材料和结构特 点,选择合适的焊接方法,如 手工电弧焊、气体保护焊等。
焊接工艺评定
对焊接工艺进行评定和验证, 确保焊接质量符合要求。
焊接操作要点
制定焊接操作规程,规范焊接 工艺参数和操作要求,确保焊 接质量稳定可靠。
焊接质量检测
对焊接质量进行检测和检验, 包括外观检查、无损检测等, 确保焊接质量符合标准要求。
故障诊断与预测
利用智能化技术对塔器设备进行故障诊断和预测,通过分析设备运行数据和历史数据,预 测设备可能出现的故障和问题,提前采取措施进行维护和修复,降低设备故障率。
优化操作
通过智能化技术对塔器设备进行优化操作,提高设备的运行效率和生产效益。例如,利用 人工智能算法对塔器设备的操作参数进行优化调整,实现节能减排、降低能耗和提高产品 质量的目标。
检测与试验操作要点
制定检测与试验操作规程,规范检测 与试验工艺参数和操作要求,确保检 测与试验结果准确可靠。
检测与试验结果评价
对检测与试验结果进行评价和分析, 确定塔器设备的性能和质量是否符合 设计要求和使用安全。
04
塔器设备的设计优化
塔器设备的节能设计
01
节能设计
塔器设备的节能设计旨在降低能耗,提高能源利用效率。例如,采用高
器重量、提高传热效率、降低能耗。
塔器设备的可靠性设计
可靠性评估
在塔器设备设计阶段进行可靠性评估,预测设备在各种工 况下的性能表现和故障模式,以便及时采取措施提高设备 的可靠性和稳定性。
冗余设计
通过增加备份系统、采用并联结构等方式,提高塔器设备 的可靠性。在设备发生故障时,冗余系统可以迅速投入运 行,确保生产过程的连续性和稳定性。
塔器设备的强度计算
塔设备设计
24
3.7 最大弯矩
塔设备任意计算截面 I-I 处的最大弯矩按下式计算:
I− M maxI I ⎧ MW− I + M e ⎪ = ⎨ I−I I M E + 0.25 MW− I + M e ⎪ ⎩
取其中较大值
塔设备底部截面 0-0 处的最大弯矩按下式计算:
0− 0 M max 0 ⎧ MW− 0 + M e ⎪ = ⎨ 0− 0 0− 0 ⎪ M E + 0.25 MW + M e ⎩
取其中较小值
FVh−h —— 仅在最大弯矩为地震弯矩参与组合时计入。
h− h h 0.3 MW− h + M e m max g ⎧ KB + ≤⎨ Z sm Asm ⎩ 0.9σ s
取其中较小值
Asb ——h-h截面处裙座的截面积,mm2 Z sb ——h-h截面处裙座壳截面系数,mm3
33
3.11 地脚螺栓座(基础环设计)
35
3.11 地脚螺栓座(地脚螺栓)
δ b ,max ——混凝土基础上的最大压力, MPa
0− 0 ⎧ M max m0 ⋅ g ⎪ Z + A ⎪ b b =⎨ 0 0.3 MW− 0 + M e mmax ⋅ g ⎪ + ⎪ Zb Ab ⎩
δ b ,max
取其中较大值
36
3.12 裙座与塔壳焊缝(搭接焊缝)
M
0− 0 W
l3 ⎞ l1 l2 ⎞ ⎛ ⎛ = P1 + P2 ⎜ l1 + ⎟ + P3 ⎜ l1 + l2 + ⎟ + LL 2 2⎠ 2⎠ ⎝ ⎝
23
3.6 偏心弯矩
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论1.1塔设备概述塔设备是石油、化工、轻工等各工业生产中仅次与换热设备的常见设备。
在上述各工业生产过程中,常常需要将原料中间产物或粗产品中的各个组成部分(称为组分)分离出来作为产品或作为进一步生产的精制原料,如石油的分离、粗酒精的提纯等。
这些生产过程称为物质分离过程或物质传递过程,有时还伴有传热和化学反应过程。
传质过程是化学工程中一个重要的基本过程,通常采用蒸馏、吸收、萃取。
以及吸附、离子交换、干燥等方法。
相对应的设备又可称为蒸馏塔、吸收塔、萃取塔等。
在塔设备中所进行的工艺过程虽然各不相同,但从传质的必要条件看,都要求在塔内有足够的时间和足够的空间进行接触,同时为提高传质效果,必须使物料的接触尽可能的密切,接触面积尽可能大。
为此常在塔内设置各种结构形式的内件,以把气体和液体物料分散成许多细小的气泡和液滴。
根据塔内的内件的不同,可将塔设备分为填料塔和板式塔。
在板式塔中,塔内装有一定数量的塔盘,气体自塔底向上以鼓泡喷射的形式穿过塔盘上的液层,使两相密切接触,进行传质。
两相的组分浓度沿塔高呈阶梯式变化。
不论是填料塔还是板式塔,从设备设计角度看,其基本结构可以概括为:(1)塔体,包括圆筒、端盖和联接法兰等;(2)内件,指塔盘或填料及其支承装置;(3)支座,一般为裙式支座;(4)附件,包括人孔、进出料接管、各类仪表接管、液体和气体的分配装置,以及塔外的扶梯、平台、保温层等。
塔体是塔设备的外壳。
常见的塔体是由等直径、等壁厚的圆筒及上、下椭圆形封头所组成。
随着装置的大型化,为了节省材料,也有用不等直径、不等壁厚的塔体。
塔体除应满足工艺条件下的强度要求外,还应校核风力、地震、偏心等载荷作用下的强度和刚度,以及水压试验、吊装、运输、开停车情况下的强度和刚度。
另外对塔体安装的不垂直度和弯曲度也有一定的要求。
支座是塔体的支承并与基础连接的部分,一般采用裙座。
其高度视附属设备(如再沸器、泵等)及管道布置而定。
它承受各种情况下的全塔重量,以及风力、地震等载荷,因此,应有足够的强度和刚度。
塔设备强度计算的主要的内容是塔体和支座的强度和刚度计算。
化工生产对塔设备的基本要求塔设备设计除应满足工艺要求外,尚需考虑下列基本要求:(1)气、液处理量大,接触充分,效率高,流体流动阻力小。
(2)操作弹性大,即当塔的负荷变动大时,塔的操作仍然稳定,效率变化不大,且塔设备能长期稳定运行。
(3)结构简单可靠,制造安装容易,成本低。
(4)不易堵塞,易于操作、调试及检修。
1.2板式塔板式塔具有物料处理量大,重量轻,清理检修方便,操作稳定性好等优点,且便于满足工艺上的特殊要求,如中间加热或或冷却、多段取出不同馏分、“液化气”较大等。
但板式塔的结构复杂,成本较高。
由于板式塔良好的操作的性能和成熟的使用经验,目前在化工生产的塔设备中,占有很大比例,广泛用于蒸馏、吸收等传质过程。
板式塔内部装有塔盘,塔体上有进料口、产品抽出口以及回流口等。
此外,还有很多附属装置,如除沫器、入手孔、支座、扶梯平台等。
一般各层塔盘结构是相同的,只有最高一层、最低一层和进料层的结构和塔盘间距有所不同。
最高一层塔盘和塔顶之间,要有一定的距离,以便能良好的除沫。
有时,在该段上还装有除沫器。
最低一层塔盘到塔顶的距离一般也高于塔盘间距离,因为塔底空间起着贮槽作用,以保证液体有足够的贮存,使塔底液体不致流空。
塔底大多是直接通入从塔外再沸器来的蒸汽,有时则以列管或蛇管将塔底的液体加热汽化。
进料塔盘的间距也比较高。
对于急剧汽化的料液在进料塔底上须装上挡板、衬板或除沫器,此时进料塔盘间距还得更高一些。
此外,开有人孔的塔盘间距也较大,一般为700mm。
为了塔体的保温,在塔体上有时焊有保温材料的支承圈。
为检修方便,有时还在塔顶装有可转动的吊柱。
可见,板式塔与填料塔的区别仅在于内部结构不同。
对于板式塔来说,内部的主要结构是塔盘结构,包括塔板、降液管及受液盘、溢流堰、紧固件和支撑件等。
1.3浮阀塔浮阀塔从五十年代起已大量应用于工业生产用以完成加压、常压、减压下的精馏、吸收、解析等过程。
大型浮阀塔的塔径可达10m,塔高达83m,塔板有数百块之多。
浮阀塔的塔板上,按一定中心距开阀孔,阀孔里装有可以升降的阀片。
浮阀能随着气速的增减在相当宽的气速范围内自由升降,以保持稳定操作。
因此浮阀塔能在较宽的流量范围内保持高效率,其操作弹性比筛板、泡罩和舌形塔盘大得多;由于气液接触状态良好,且蒸汽以水平方向吹入液层,故雾沫夹带较少,塔板效率比泡罩塔高15%左右;由于气流通过浮阀只有一次收缩、扩大及转弯,故单板压力降比泡罩塔低;浮阀形状简单,液面落差小;由于阀盘大多用不锈钢制造,加之浮阀不停的浮动,所以不易积垢堵塞,故操作周期较泡罩塔长,清理也节省时间;另外。
其结构比较简单,安装容易,制造费仅为泡罩塔的60%~80%,(但为筛板塔的120%~130%)。
1.4原油的分馏石油是由超过8000种不同分子大小的碳氢化合物(及少量硫化合物)所组成的混合物。
石油在使用前必须经过加工处理,才能制成适合各种用途的石油产品。
常见的处理方法为分馏法,利用分子大小不同,沸点不同的原理,将石油中的碳氢化合物予以分离,再以化学处理方法提高产品的价值。
工业上先将石油加热至400℃~500℃之间,使其变成蒸气后输进分馏塔。
在分馏塔中,位置愈高,温度愈低。
石油蒸气在上升途中会逐步液化,冷却及凝结成液体馏分。
分子较小、沸点较低的气态馏分则慢慢地沿塔上升,在塔的高层凝结,例如燃料气、液化石油气、轻油、煤油等。
分子较大、沸点较高的液态馏分在塔底凝结,例如柴油、润滑油及蜡等。
在塔底留下的黏滞残余物为沥青及重油,可作为焦化和制取沥青的原料或作为锅炉燃料。
不同馏分在各层收集起来,经过导管输离分馏塔。
这些分馏产物便是石油化学原料,可再制成许多的化学品。
1.5 设计任务和思想1.5.1.设计任务设计课题为浮阀塔,设计包括结构设计和强度设计。
结构设计需要选择适用合理、经济的结构形式,同时满足制造、检修、装配、运输和维修等要求;而强度计算的内容包括浮阀塔的材料,确定壁厚和要结构尺寸,满足强度、刚度和稳定性等要求。
1.5.2 .设计思想尽可能采用先进的技术、国家与行业标准,使生产达到技术先进,经济合理的要求,符合优质、高产、安全、低消耗的原则,具体有如下几点:1) 根据GB150-1998《钢制压力容器》和GB151-1999〈〈管壳式浮阀塔〉〉等国家标准为基础进行设计。
2)满足工艺和操作要求,所设计出来的流程和设备能保证得到质量稳定的产品,设计的流程与设备需要一定的操作弹性,可方便地进行流量的调节。
3)满足经济上的要求,考虑省热能和电能的消耗,设备投资与运行费用,设计时要全面考虑,力求总费用尽可能低一些。
4)保证生产安全,保证浮阀塔具有一定的刚度和强度。
设计中根据设计压力确定壁厚,再校核其他零件的强度,进行水压试验,容器是否有足够的腐蚀裕度。
第二章浮阀塔的主体结构设计浮阀塔的总体结构如图2-1所示图2-1 浮阀塔的总体结构图浮阀塔由塔体、内件、及支座等部件组成,如图1、图2所示。
塔体由钢板焊接。
为了满足工艺要求及制造安装的需要,在塔体上设有许多的零部件及接管,如液面计、入孔、手孔、进料管、进气管、出料管、回流管、产品抽样管以及安装温度计及压力表的接管等。
为了安装、检修及操作,在塔体上还装有吊柱、平台及扶梯。
为了安装保温材料,在塔底上焊有一定数量的支撑圈。
浮阀塔采用裙座支承。
板式塔内件主要包括塔盘、降液管、受液管、除沫器等。
各层塔盘间距相等。
但是底层塔盘到塔底的距离(塔底空间)一般比塔底空间要高得多,因为它起着贮槽的作用,使塔底液体不致流空。
顶层塔板到塔顶的距离(塔顶空间)也较大,一般取1.2-1.5m,目的是减少塔顶排气中携带的液体量。
为了更好的分离气体中携带的液体以提高产品质量,还在塔顶设置除沫装置。
进料段空间高度取决于进料介质的状态,因为为液相进料,取为与塔板间距相同。
此外,在开入孔处的塔盘间距要考虑人员进入的需要,设为700mm。
裙座高度由工艺配置决定。
第三章材料选择及零部件结构设计3.1 浮阀塔的材料选择塔设备与其他化工设备一样,置于室外,无框架的自支承式塔体,绝大多数是采用钢材制造的。
这是因为钢材具有足够的强度和塑性,制造性能较好,设计制造的经验也较成熟。
本设计的浮阀塔的塔径不大,主要的材料选用钢材。
为了满足腐蚀性介质或低温要求,采用有色金属材料(如钛、铝、铜、银等)或非金属耐腐蚀材料。
浮阀塔的塔盘以及浮阀,由于结构较为复杂,加之安装工艺和使用方面的要求,(如浮阀应能自由浮动),所以以钢材为主,其他材料为辅。
3.2浮阀塔的零部件结构设计3.2.1 浮阀塔盘的结构设计塔盘分为整块式和分块式两种。
当塔径小于900mm时采用整块式塔盘;当塔径大于800mm时,由于人能在塔内安装、拆卸,可采用分块式塔盘;根据本设计的条件,塔径为1600mm,故采用分块式塔盘。
采用分块式塔盘时,为便于安装、检修、清洗,常将塔板分成数块,通过人孔送入塔内,装在焊于塔体内壁的塔盘支撑件上。
此时,塔体为一焊制整体圆筒,不分塔节。
分块式塔盘一般采用自身梁式塔板,他的特点是结构简单,制造方便,由于将塔板冲压折边,使其具有足够的刚性,这样不仅简化了塔盘结构,而且可以节约材料。
为进行塔内清洗和检修,使人能进入各层塔盘,可在塔板接近中央处设置一块内部通道板。
又因在一般情况下,塔体设有两个以上的人孔,人可以从上面或下面进入,故通道板应是上、下均可拆的。
3.2.2裙座的结构设计为了制作方便,裙座一般选用圆筒形。
裙座与塔体的连接采用焊接,焊接接头采用对接型式。
裙座筒体与塔釜封头的外径相等,裙座筒体与塔釜封头的连接焊缝采用全焊透的连续焊,且与塔釜封头外壁圆滑过渡。
3.3浮阀塔其他零部件结构设计3.3.1.降液管及受液盘(1)降液管降液管一般分为圆形和弓形两种,圆形降液管通常在液体负荷或塔径较小时使用,可采用一根或数根圆形或长圆形降液管。
为了增加溢流周边,并提供足够的分离空间,可在降液管前方设置溢流堰,也可将圆形降液管伸出塔盘表面兼做溢流堰,如上图3-1根据本设计的条件,选用圆形降液管。
图3-1 凹形受液盘1-塔壁;2-降液板;3-塔板;4-受液盘;5-支座为防止气体从降液管底部窜入,降液管必须有一定的液封高度'w h 。
降液管底端到下层塔盘受液盘的间距0h 应低于溢流堰高度w h ,通常取0()612w h h mm -=-,本设计取0()10w h h mm -=。
降液管的尺寸,应该使夹带气泡的液流进入降液管后,能分离出气泡,从而仅有清流流往下层塔盘。
(2)受液盘为保证降液管出口处的液封,在塔盘上设置受液盘。
受液盘有平形和凹形两种。