视觉检测

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型结构
编辑
一个典型的机器视觉系统包括以下三大块:
照明
照明是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。光源可分为可见光和不可见光。常用的几种可见光源是白炽灯、日光灯、水银灯和钠光灯。可见光的缺点是光能不能保持稳定。如何使光能在一定的程度上保持稳定,是实用化过程中急需要解决的问题。另一方面,环境光有可能影响图像的质量,所以可采用加防护屏的方法来减少环境光的影响。照明系统按其照射方法可分为:背向照明、前向照明、结构光和频闪光照明等。其中,背向照明是被测物放在光源和摄像机之间,它的优点是能获得高对比度的图像。前向照明是光源和摄像机位于被测物的同侧,这种方式便于安装。结构光照明是将光栅或线光源等投射到被测物上,根据它们产生的畸变,解调出被测物的三维信息。频闪光照明是将高频率的光脉冲照射到物体上,摄像机拍摄要求与光源同步。
应用案例
编辑
在布匹的生产过程中,像布匹质量检测这种有高度重复性和智能性的工作只能靠人工检测来完成,在现代化流水线后面常常可看到很多的检测工人来执行这道工序,给企业增加巨大的人工成本和管理成本的同时,却仍然不能保证100 %的检验合格率(即“零缺陷”)。对布匹质量的检测是重复性劳动,容易出错且效率低。
FL = 4.8毫米x 305毫米/ 64毫米
FL = 1464毫米/ 64毫米
FL =按23毫米镜头的要求
FL = 0.19” x 12” / 2.5”
FL = 2.28” / 2.5”
FL = 0.912” x 25.4毫米/inch
FL =按23毫米镜头的要求
注:勿将工作距离与物体到像的距离混淆。工作距离是从工业镜头前部到被观察物体之间的距离。而物体到像的距离是CCD传感器到物体之间的距离。计算要求的工业镜头焦距时,必须使用工作距离
·工作距离(WD) -摄像机镜头与被观察物体或区域之间的距离。
· CCD -摄像机成像传感器装置的尺寸。
·这些因素必须采取一致的方式对待。如果在测量物体的宽度,则需要使用水平方向的CCD规格,等等。如果以英寸为单位进行测量,则以英尺进行计算,最后再转换为毫米。
参考如下例子:有一台1/3” C型安装的CDD摄像机(水平方向为4.8毫米)。物体到镜头前部的距离为12”(305毫米)。视野或物体的尺寸为2.5”(64毫米)。换算系数为1” = 25.4毫米(经过圆整)。
1简介
2典型结构
▪照明
▪镜头
▪相机
3图像采集
4机器选型
5应用案例
6应用现状
7发展历史
8工作原理
9结构组成
▪图像部件
▪摄像机
▪照明部件
▪软件工具
10解决过程
11视觉检测的内容
12视觉检测的优势
13视觉检测的应用
14应用案例
简介
编辑
机器视觉检测的特点是提高生产的柔性和自动化程度。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。
镜头
FOV(Field of Vision)=所需分辨率*亚象素*相机尺寸/PRTM(零件测量公差比)
镜头选择应注意:
①焦距②目标高度③影像高度④放大倍数⑤影像至目标的距离⑥中心点/节点⑦畸变
视觉检测中如何确定镜头的焦距
为特定的应用场合选择合适的工业镜头时必须考虑以下因素:
·视野-被成像区域的大小。
鲁棒性:另一个测试好光源的方法是看光源是否对部件的位置敏感度最小。当光源放置在摄像头视野的不同区域或不同角度时,结果图像应该不会随之变化。方向性很强的光源,增大了对高亮区域的镜面反射发生的可能性,这不利于后面的特征提取。
好的光源需要能够使你需要寻找的特征非常明显,除了是摄像头能够拍摄到部件外,好的光源应该能够产生最大的对比度、亮度足够且对部件的位置变化不敏感。光源选择好了,剩下来的工作就容易多了。具体的光源选取方法还在于试验的实践经验。
4.在流水线上,对布匹进行检测,有实时性的要求。
由于上述原因,图像识别处理时应采取相应的算法,提取杂质的特征,进行模式识别,实现智能分析。
Color检测
一般而言,从彩色CCD相机中获取的图像都是RGB图像。也就是说每一个像素都由红(R)绿(G)篮(B)三个成分组成,来表示RGB色彩空间中的一个点。问题在于这些色差不同于人眼的感觉。即使很小的噪声也会改变颜色空间中的位置。所以无论我们人眼感觉有多么的近似,在颜色空间中也不尽相同。基于上述原因,我们需要将RGB像素转换成为另一种颜色空间CIELAB。目的就是使我们人眼的感觉尽可能的与颜色空间中的色差相近。
相机
按照不同标准可分为:标准分辨率数字相机和模拟相机等。要根据不同的实际应用场合选不同分辨率相机:线扫描CCD和面阵CCD;单色相机和彩色相机。
图像采集
编辑
图像采集卡只是完整的机器视觉系统的一个部件,但是它扮演一个非常重要的角色。图像采集卡直接决定了摄像头的接口:黑白、彩色、模拟、数字等等。
比较典型的是PCI或AGP兼容的捕获卡,可以将图像迅速地传送到计算机存储器进行处理。有些采集卡有内置的多路开关。例如,可以连接8个不同的摄像机,然后告诉采集卡采用那一个相机抓拍到的信息。有些采集卡有内置的数字输入以触发采集卡进行捕捉,当采集卡抓拍图像时数字输出口就触发闸门。
流水线进行自动化的改造,使布匹生产流水线变成快速、实时、准确、高效的流水线。在流水线上,所有布匹的颜色、及数量都要进行自动确认(以下简称“布匹检测”)。采用机器视觉的自动识别技术完成以前由人工来完成的工作。在大批量的布匹检测中,用人工检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。
光源选型基本要素:
对比度:对比度对机器视觉来说非常重要。机器视觉应用的照明的最重要的任务就是使需要被观察的特征与需要被忽略的图像特征之间产生最大的对比度,从而易于特征的区分。对比度定义为在特征与其周围的区域之间有足够的灰度量区别。好的照明应该能够保证需要检测的特征突出于其他背景。
亮度:当选择两种光源的时候,最佳的选择是选择更亮的那个。当光源不够亮时,可能有三种不好的情况会出现。第一,相机的信噪比不够;由于光源的亮度不够,图像的对比度必然不够,在图像上出现噪声的可能性也随即增大。其次,光源的亮度不够,必然要加大光圈,从而减小了景深。另外,当光源的亮度不够的时候,自然光等随机光对系统的影响会最大。
视觉检测
视觉检测就是用机器代替人眼来做测量和判断。视觉检测是指通过机器视觉产品(即图像摄取装置,分CMOS和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。是用于生产、装配或包装的有价值的机制。它在检测缺陷和防止缺陷产品被配送到消费者的功能方面具有不可估量的价值。
结果处理和控制
应用程序把返回的结果存入数据库或用户指定的位置,并根据结果控制机械部分做相应的运动。
根据识别的结果,存入数据库进行信息管理。以后可以随时对信息进行检索查询,管理者可以获知某段时间内流水线的忙闲,为下一步的工作作出安排;可以获知内布匹的质量情况等等。
应用现状
编辑
在国外,机器视觉的应用普及主要体现在半导体及电子行业,其中大概40%-50%都集中在半导体行业。具体如PCB印刷电路:各类生产印刷电路板组装技术、设备;单、双面、多层线路板,覆铜板及所需的材料及辅料;辅助设施以及耗材、油墨、药水药剂、配件;电子封装技术与设备;丝网印刷设备及丝网周边材料等。SMT表面贴装:SMT工艺与设备、焊接设备、测试仪器、返修设备及各种辅助工具及配件、SMT材料、贴片剂、胶粘剂、焊剂、焊料及防氧化油、焊膏、清洗剂等;再流焊机、波峰焊机及自动化生产线设备。电子生产加工设备:电子元件制造设备、半导体及集成电路制造设备、元器件成型设备、电子工模具。机器视觉系统还在质量检测的各个方面已经得到了广泛的应用,并且其产品在应用中占据着举足轻重的地位。除此之外,机器视觉还用于其他各个领域。
特征提取辨识
一般布匹检测(自动识别)先利用高清晰度、高速摄像镜头拍摄标准图像,在此基础上设定一定标准;然后拍摄被检测的图像,再将两者进行对比。但是在布匹质量检测工程中要复杂一些:
1.图像的内容不是单一的图像,每块被测区域存在的杂质的数量、大小、颜色、位置不一定一致。
2.杂质的形状难以事先确定。
3.由于布匹快速运动对光线产生反射,图像中可能会存在大量的噪声。
2000年,数码相机的发明和普及,使得老式的帧式抓取相机被淘汰,视觉检测的成本大大降低;
2005年,梅特勒-托利多公司推出了世界上首台人机界面良好的视觉检测机。从此,工人在生产线上操作视觉检测设备就像操作电脑一样简单。
今天,欧盟、美国等国家已通过法规明确规定了产品制造商应该进行的视觉检测项目及标准。国内外也有很多厂商设计出了高度智能的视觉检测解决方案。越来越多的企业也开始在自己的生产线上安装视觉检测系统[1]。总之,视觉检测技术和机制已经得到了广泛的推广。
发展历史
编辑
1950年代,图像处理成为机械工业的一个检测项目,视觉检测作为工检测无法实现对导弹等精密工业品的检测,视觉检测机开始出现;
1980年代,机械视觉检测被应用于当时方兴未艾的半导体工业;
1990年代,智能相机的出现使视觉检测技术得到飞速发展,推动了制造业的视觉应用;
视觉检测是计算机学科的一个重要分支,它综合了光学、机械、电子、计算机软硬件等方面的技术,涉及到计算机、图像处理、模式识别、人工智能、信号处理、光机电一体化等多个领域。自起步发展至今,已经有20多年的历史,其功能以及应用范围随着工业自动化的发展逐渐完善和推广,其中特别是目前的数字图像传感器、CMOS和CCD摄像机、DSP、FPGA、ARM等嵌入式技术、图像处理和模式识别等技术的快速发展,大大地推动了机器视觉的发展。简而言之,机器视觉解决方案就是利用机器代替人眼来作各种测量和判断。
Blob检测
根据上面得到的处理图像,根据需求,在纯色背景下检测杂质色斑,并且要计算出色斑的面积,以确定是否在检测范围之内。因此图像处理软件要具有分离目标,检测目标,并且计算出其面积的功能。
Blob分析(Blob Analysis)是对图像中相同像素的连通域进行分析,该连通域称为Blob。经二值化(Binary Thresholding)处理后的图像中色斑可认为是blob。Blob分析工具可以从背景中分离出目标,并可计算出目标的数量、位置、形状、方向和大小,还可以提供相关斑点间的拓扑结构。在处理过程中不是采用单个的像素逐一分析,而是对图形的行进行操作。图像的每一行都用游程长度编码(RLE)来表示相邻的目标范围。这种算法与基于象素的算法相比,大大提高处理速度。
视觉处理器
视觉处理器集采集卡与处理器于一体。以往计算机速度较慢时,采用视觉处理器加快视觉处理任务。由于采集卡可以快速传输图像到存储器,而且计算机也快多了,所以视觉处理器用的较少了。
机器选型
编辑
在机器视觉系统中,获得一张高质量的可处理的图像是至关重要。系统之所以成功,首先要保证图像质量好,特征明显,。一个机器视觉项目之所以失败,大部分情况是由于图像质量不好,特征不明显引起的。要保证好的图像,必须要选择一个合适的光源。
2000年来,零售商和消费者对可导致健康风险或增加零售商成本的不合格产品越来越没有忍耐力。如果视觉检测机制正确执行和管理,就可成为强大的工具用于:
-保护制造商、零售商和消费者的利益,不会出现贴错标签和无法识别过敏原标签的包装
-有助于保护品牌声誉
-遵守行业最佳实践指南和零售商标准
视觉检测效果
研究显示,65%的消费者在购买产品时会参考包装。如果包装贴错标签或标签被损坏,隐藏潜在的有害成分,这会导致产品召回、罚款、甚至是法律诉讼。有调查表明食品行业中55%的召回都是由不正确的标签所导致的,食品过敏原就是一个十分普遍的例子。
相关文档
最新文档