高中数学新课导入设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学新课导入设计
会泽县茚旺高级中学杨顺武
教学是一门艺术,而新课导入是教学的重要环节,良好的开端是成功的一半。怎么导入新课,是整个教学设计中必须特别注意的。一个好的新课导入应适当的将新、旧知识联系起来,起到承上启下的作用.一个好的新课导入,更应能启迪学生想象力,引发学生学习兴趣,激励学生探索新知,让学生积极主动地投入新课学习。在教学中,我们从实际出发精心安排的新课导入,可以为新课创设教学意境,使学生迅速进入角色,按课程标准的要求进行学习、研究;可以为新课的教学需要激起学生的探索欲望,从而形成良好的学习习惯;可以为新课突出重点、突破难点、埋设教学措施的引线,成为新课启发教学的先导。本文谈一谈在高中数学新课导入教学中的几种常用方法并对这些方法适用内容
做出分析。
第一学习高中数学新课导入常用方法
1.复习导入法:在讲新知识之前,先简要复习学过的相关知识,然后从复习旧知识的基础上提出新问题。教师在讲授新课时常用复习导入法。这种方法不但符合学生的认知规律,而且为学生学习新知识提供了必要的铺垫。教师在导入过程中往往从学生以前学过的知识出发,抓住新旧知识的某些联系,在复习旧知识的同时将问题的条件稍加改变就顺理成章的引出了新问题。这种导入非常自然,使学生感受到新知识就是旧知识的引申和拓展。这样不但使学生复习巩固旧知
识,而且可把新知识由浅到深、由简单到复杂、由低层次到高层次地建立在旧知识的基础上,从而有利于用知识的联系来启发学生的思维,促进学生对新知识的理解和掌握,消除学生对新知识的恐惧和陌生心理,及时准确地掌握新旧知识的联系,达到“温故而知新”的效果。
例如:讲三角函数中的半角公式时,可以复习回忆二倍角公式培养学生逆向思维让学生明白2x是x的两倍,而x是2x的一半,并导入新课半角公式;将映射概念时,可以先复习函数的概念,提问能否把数集扩展到任意集合,从而引出映射的概念。
2.直接导入法:讲课前先把本课要完成的教学目标说清楚,以争取学生的配合。有时我们谈话、写文章习惯开门见山,这样主体突出、论点鲜明。当一些新授的数学知识难以借助旧知识导入时,可以以开门见山地点出课题,这样做,教学重点突出,能使学生很快地把注意力集中在教学内容最本质、最重要的问题研究之上。
例如,在讲《函数的值域》的内容时,可这样导入:“在函数的三要素即函数的定义域、对应法则、值域中,我们已经学习了如何求函数的定义域和解析式,这节课我们就来学习如何求函数的值域”,这样导入,直截了当,促使学生迅速地把精力集中到新知识的探索追求中。
3.悬念导入法:在讲新知识之前,有意设置一些问题悬念,引起学生对课堂教学的兴趣,这样能使学生带着问题学习新知识,对于学习的目的更加清晰;也使学生感觉到新的知识是非常有用的。
例如:“等比数列前n项和”知识的教学,可利用学生已有的对珠穆朗玛峰高度的认识,引导学生从“折纸”这种常见的活动出发,让学生体会一张薄薄的纸片只需对折不多的次数,其厚度就会大幅增长,那么教师指出“有一种纸板的厚度是1mm,只需将其对折23次其厚度就可超过珠穆朗玛峰高度”的论断,使学生心理形成强烈的反差,形成悬念,激起学生强烈的求知欲望。运用这种方法需要注意,悬念的设置要从学生的“最近发展区”出发,恰当适度。不悬,难以引发学生的兴趣;太悬,学生百思不得其解,都会降低学生的积极性。只有不思不解,思而可解才能使学生兴趣高涨,自始至终围绕问题,步步深入领会问题本质,收到更好的教学效果。
4.设疑导入法:根据课堂教学内容,精心设计有关的问题向学生提出,创设矛盾,设置悬念,引起学生急欲求知的好奇心和求知欲,使学生的求知欲由潜伏状态转入活跃状态,调动学生思维的积极性和主动性,诱导学生由疑到思,由思到知。
例如:讲“余弦定理”时,可如下设置:我们都熟悉直角三角形的三边满足勾股定理:,那么非直角三角形的三边关系怎样呢?锐角三角形的三边是否有?钝角三角形中钝角的对边是否满足关系?假
若有以上关系,那么x=?教师从这个具有吸引力和启发性的“设疑”导入了对余弦定理的推证。运用此法必须做到:一是巧妙设疑。要针对教材的关键、重点、难点,从新的角度巧妙设问。所设疑点要达到合适的难度,营造一种“心求通而未得通,口欲言而不能言”的情景;二是以疑激思,善问善导。设疑质疑只是设疑导入法的第一步,更重
要的是要以此激发学生的思维,使学生的思维活跃起来,因此,教师要掌握一些设问的技巧与方法,并善于引导,使学生学会思考和解决问题。
需要说明的是:悬念导入法与设疑导入法有相通之处,但又不完全相同。前者重在“疑”的同时更要“悬”;后者重在“疑”。
5. 比较导入法
所谓比较,就是根据新旧知识的联系点、相同点,有针对性的选择某个知识点进行类比,将“已知”和“未知”自然的连接起来,从而导入新课。有的可同类相比,有的可正反相比。这种比较有利于学生明白前后知识的联系与区别,而教师引导学生比较知识的各个侧面,揭示了教学的重点和难点,对前后联系密切的知识教学具有温故知新的特殊作用。运用这种方法一定要注意类比的贴切、恰当,两种知识之间有很强的可类比性,才能使学生同中求异、异中求同,深刻理解并掌握知识。
例如“圆锥曲线”一章的学习,学习“椭圆”知识可用学生已有的“圆的知识”类比导入,而后续知识双曲线与抛物线的学习则可用已有的椭圆知识类比导入。
6.趣题导入法:兴趣是最好的老师,兴趣是学习的源泉。瑞士教育心理学家皮亚杰说过“所有智力方面的工作都要依赖兴趣,兴趣是能量的调节者,它能支配内在动力,促成目标的实现”,所以以用趣味性导入新课,旨在激趣,激发学生学习的兴趣,调动学生学习的积极性。
例如:在讲授《等比数列的前n项和公式》时,对学生说:同学们,如果有一个商人愿意在一个月(按30天算)内每天给你们2000元,但在这个月内,你们必须:第一天给这个商人1分钱,第二天给他2分钱,第三天给他4分钱……即后一天的钱数是前一天的2倍,你们愿不愿意?此问题一出立即引起学生的极大兴趣,这么“诱人”的条件到底有没有陷阱?只有算出“收支”对比,才能回答愿与不愿。“支”就是一个等比数列的前n项和的问题,如何求出这个等比数列的前n项和呢?这就需要我们探索出等比数列的求和方法及求
和公式了。通过这个例子不但使学生产生求知的热情及浓厚的兴趣,而且对引出等比数列的前n项和公式起到自然导入的作用。
7.史话导入法:通过数学史知识的介绍,特别是通过我国古代数学伟大成就的介绍,激发学生的学习热情和爱国主义热情。
例如:在讲授新课《棱柱、棱锥和棱台的体积和表面积》时先向学生介绍古代的中国数学,中国数学在南北朝时期达到新的高峰,这个时期的代表人物是刘微、祖冲之和祖冲之的儿子祖暅,刘微为《九章算术》作注,祖冲之斧子在这个基础上编写了很多著作,其中祖冲之精确计算了圆周率,提出约率和密率,是世界数学史上的重大成就,祖冲之还与他的儿子祖暅一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现