高中数学新课导入方法

合集下载

高中数学新教材必修一说课稿

高中数学新教材必修一说课稿

高中数学新教材必修一说课稿高中数学新教材必修一说课稿(通用5篇)作为一无名无私奉献的教育工作者,通常需要用到说课稿来辅助教学,编写说课稿是提高业务素质的有效途径。

那么优秀的说课稿是什么样的呢?以下是本店铺为大家收集的高中数学新教材必修一说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。

高中数学新教材必修一说课稿 1尊敬的各位评委、老师们:大家好!今天我说课的内容是《函数的概念》,选自人教版高中数学必修一第一章第二节。

下面介绍我对本节课的设计和构思,请您多提宝贵意见。

我的说课有以下六个部分:一、背景分析1、学习任务分析本节课是必修1第1章第2节的内容,是函数这一章的起始课,它上承集合,下引性质,与方程、不等式、数列、三角函数、解析几何、导数等内容联系密切,是学好后继知识的基础和工具,所以本节课在数学教学中的地位和作用是至关重要的。

2、学情分析学生在初中已经学习了函数的概念,初步具备了学习函数概念的基本能力,但函数的概念从初中的变量学说到高中阶段的对应说很抽象,不易理解。

另外,通过对集合的学习,学生基本适应了有效教学的课堂模式,初步具备了小组合作、自主探究的学习能力。

基于以上的分析,我认为本节课的教学重点为:函数的概念以及构成函数的三要素;教学难点为:函数概念的形成及理解。

二、教学目标设计根据《课程标准》对本节课的学习要求,结合本班学生的情况,故而确立本节课的教学目标。

1、知识与技能(方面)通过丰富的实例,让学生①了解函数是非空数集到非空数集的一个对应;②了解构成函数的三要素;③理解函数概念的本质;④理解f(X)与f(a)(a为常数)的区别与联系;⑤会求一些简单函数的定义域。

2、过程与方法(方面)在教学过程中,结合生活中的实例,通过师生互动、生生互动培养学生分析推理、归纳总结和表达问题的能力,在函数概念的构建过程中体会类比、归纳、猜想等数学思想方法。

3、情感、态度与价值观(方面)让学生充分体验函数概念的形成过程,参与函数定义域的求解过程以及函数的求值过程,使学生感受到数学的抽象美与简洁美。

高中数学单元教学实践(3篇)

高中数学单元教学实践(3篇)

第1篇一、引言数学是一门基础学科,对于培养学生的逻辑思维能力、抽象思维能力以及解决实际问题的能力具有重要意义。

高中数学作为学生数学学习的最后一个阶段,具有承上启下的作用。

为了提高高中数学教学质量,本文将结合教学实践,探讨如何进行高中数学单元教学。

二、单元教学设计1. 确定教学目标在开展单元教学之前,首先要明确教学目标。

教学目标应包括知识目标、能力目标和情感目标。

知识目标是指学生需要掌握的数学概念、公式、定理等;能力目标是指学生在学习过程中需要培养的思维能力、创新能力等;情感目标是指学生在学习过程中需要培养的自主学习、合作学习等品质。

2. 选择合适的教学内容教学内容的选择应遵循以下原则:(1)与学生生活实际相结合,提高学生的学习兴趣;(2)注重基础知识的传授,为学生后续学习打下坚实基础;(3)关注学科发展动态,引导学生了解数学的前沿知识。

3. 制定教学计划根据教学目标,制定详细的教学计划。

教学计划应包括以下内容:(1)课时安排:根据教学内容和教学目标,合理安排课时;(2)教学方法:采用多种教学方法,如讲授法、讨论法、探究法等;(3)教学评价:采用多种评价方式,如课堂提问、作业批改、单元测试等。

4. 实施教学(1)导入新课:通过创设情境、提问等方式,激发学生的学习兴趣,导入新课;(2)讲授新课:采用板书、多媒体等多种手段,讲解数学概念、公式、定理等;(3)课堂练习:通过课堂练习,巩固学生对知识的掌握,提高学生的运算能力;(4)讨论与探究:引导学生进行讨论与探究,培养学生的合作学习能力和创新能力;(5)课堂小结:总结本节课的学习内容,强调重点和难点。

三、教学实践案例分析1. 案例背景某高中数学教师在进行“函数与导数”单元教学时,发现学生在学习过程中对导数的概念理解不透彻,运用导数解决实际问题的能力较弱。

2. 教学策略(1)导入新课:教师通过展示生活中的实例,引导学生思考函数的变化趋势,进而引出导数的概念;(2)讲授新课:采用多媒体课件,结合实例,讲解导数的定义、求导法则等;(3)课堂练习:设计一系列与实际生活相关的题目,让学生运用导数解决问题;(4)讨论与探究:组织学生分组讨论,探讨导数在实际问题中的应用,培养学生的合作学习能力和创新能力;(5)课堂小结:教师总结本节课的学习内容,强调导数的概念和应用,布置课后作业。

如何有效进行高中数学的新课导入

如何有效进行高中数学的新课导入

艺术大观Art Panorama266如何有效进行高中数学的新课导入邢艳英 赵国辉( 吉林省长春市农安县实验中学,吉林 长春 130000)摘要:新课程改革对高中数学课堂教学的有效性提出要求,而在教学过程中,新课导入是重要且必需的环节。

有效的新课导入能够在短时间内激发学生的学习兴趣,调动其学习积极性与主动性,还能够增强师生间的互动交流,从而提高课堂教学的效果。

但在以往的数学教学课堂中,许多教师不重视新课导入,没有制定有效的策略进行新课导入,导致学生学习不够主动,注意力也无法集中,对后续教学产生了较大的影响。

因此,本文从利用游戏进行新课导入、借助设疑进行新课导入、联系实际进行新课导入三个方面入手,阐述教师应该采取怎样有效地策略成功导入新课,使学生快速进入学习状态,推动后续教学的进行。

关键词:高中数学;新课导入;有效策略高中数学学习对学生的逻辑与思维提出了很高的要求,所以对学生来说,高中数学学习有着较大的难度,若教师的课堂教学导入不成功,容易让学生产生厌烦的心理,对于学生的深入学习以及教师的讲解都有着负面影响。

因此,教师要精心备课,设计出有效的、有吸引力的新课导入,不仅能够提高学生的数学学习兴趣,激发其求知欲,营造出良好的学习氛围,还能够将学生分散的注意力转移到数学课堂中,使其快速进入新课学习的状态,从而有效提高高中数学课堂教学的效率和质量。

一、利用游戏进行新课导入对于学生来说,在学习压力不断增加的大环境下,游戏能够带来身心的放松,从而使其感到快乐以及心情的舒畅。

而兴趣是人从事各项活动的重要动力,能够显著提高活动效能。

教师若能通过游戏的形式进行新课导入,学生就会有浓烈的学习兴趣,能够以一种愉悦的心情以及积极地学习态度进入到数学学习中[1]。

例如,进行“指数函数”内容教学前,在新课导入阶段,为了快速吸引学生,提高其学习兴趣,教师可以提出一个问题:理论上我可以通过连续折叠一张纸,使其厚度达到珠峰的厚度,你们猜这个厚度是怎么达到的?教师可以引导学生来做一个小游戏:将一张纸连续对折,看看学生最多能够对折几次?并引导他们得出折叠次数x与层数y是否存在某一个函数关系?这让学生产生强烈的好奇,迫切想要知道次数与层数存在的规律:折叠1次,2层;折叠2次,4层;折叠3次,8层......看到学生的学习欲望被勾起,教师便可以告诉学生:“想要知道为折叠次数与层数的关系,也就是本节课要学习的新内容‘指数函数’的内容,学完就能明白其中的奥秘,并且学完以后大家都能拥有这个‘超能力’。

高中数学教案教学设计范文(5篇)

高中数学教案教学设计范文(5篇)

高中数学教案教学设计范文(5篇)【篇1】高中数学教案教学设计一、教学目标知识与技能:理解任意角的概念(包括正角、负角、零角)与区间角的概念。

过程与方法:会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。

情感态度与价值观:1、提高学生的推理能力;2、培养学生应用意识。

二、教学重点、难点:教学重点:任意角概念的理解;区间角的集合的书写。

教学难点:终边相同角的集合的表示;区间角的集合的书写。

三、教学过程(一)导入新课1、回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角。

②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

(二)教学新课1、角的有关概念:①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

②角的名称:注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;⑵零角的终边与始边重合,如果α是零角α =0°;⑶角的概念经过推广后,已包括正角、负角和零角。

⑤练习:请说出角α、β、γ各是多少度?2、象限角的概念:①定义:若将角顶点与原点重合,角的始边与_轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。

例1、如图⑴⑵中的角分别属于第几象限角?【篇2】高中数学教案教学设计一、教材分析1、教材地位和作用:二面角是我们日常生活中经常见到的、很普通的一个空间图形。

“二面角”是人教版《数学》第二册(下B)中9.7的内容。

它是在学生学过两条异面直线所成的角、直线和平面所成角、又要重点研究的一种空间的角,它是为了研究两个平面的垂直而提出的一个概念,也是学生进一步研究多面体的基础。

因此,它起着承上启下的作用。

通过本节课的学习还对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。

2、教学目标:知识目标:(1)正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。

高三数学教案设计(通用8篇)

高三数学教案设计(通用8篇)

高三数学教案设计(通用8篇)高三数学教案设计篇1一、教学目标知识与技能:理解任意角的概念(包括正角、负角、零角)与区间角的概念。

过程与方法:会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。

情感态度与价值观:1、提高学生的推理能力;2、培养学生应用意识。

二、教学重点、难点:教学重点:任意角概念的理解;区间角的集合的书写。

教学难点:终边相同角的集合的表示;区间角的集合的书写。

三、教学过程(一)导入新课回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角。

②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

(二)教学新课1、角的有关概念:①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

②角的名称:注意:⑴在不引起混淆的情况下,“角α”或“∠α”可以简化成“α”;⑵零角的终边与始边重合,如果α是零角α=0°;⑶角的概念经过推广后,已包括正角、负角和零角。

请说出角α、β、γ各是多少度?2、象限角的概念:定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。

高三数学教案设计篇2一、指导思想今年是我省使用新教材的第八年,即进入了新课程标准下高考的第六年。

高三数学教学要以《数学课程标准》为依据,全面贯彻教育方针,积极实施素质教育。

提高学生的学习能力仍是我们的奋斗目标。

近年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新的原则。

高考试题不但坚持了考查全面,比例适当,布局合理的特点,也突出体现了变知识立意为能力立意这一举措。

更加注重考查考生进入高校学习所需的基本素养,这些问题应引起我们在教学中的关注和重视。

二、注意事项1、高度重视基础知识,基本技能和基本方法的复习。

“基础知识,基本技能和基本方法”是高考复习的重点。

高中数学教学中新课导入

高中数学教学中新课导入

浅议高中数学教学中的新课导入新课导入是课堂教学的重要环节,它犹如一场演出的序曲,能够极大地渲染新课教学的气氛,将学生的注意力在短暂的时间里锁定,从而让学生积极开启思维,进入新知探究的情境.新课导入,既是教师必备的一项教学技能,也是教师主导作用的体现.精彩的新课导入能够为学生营造良好的教学情境,集中学生的注意力,激发学习兴趣,唤起学生的求知欲,为良好的教学效果奠定坚实的基础.兴趣是最好的老师,一切卓有成效的工作皆是以兴趣为先决条件,浓厚的兴趣能激发学生的学习积极性,开启学生的智力潜能并使之始终处于活跃的状态.教学中,由于教学内容的差异以及课型结构、教学目标的各不相同,新课导入的方法也没有固定的模式可循,教师只有始终将激发学生的兴趣作为切入点,密切联系学生的学习实际,选取最恰当的导入方法,才能为优化课堂教学,提升教学效益做好铺垫.本文结合自己的教学实践,谈谈高中数学课堂中几种常用的导入方法.一、温故知新,复习导入俗话说:“温故而知新.”数学学科,系统性强,新旧知识之间的联系紧密.在导入新课时利用数学知识之间的联系,通过复习与新知教学有关的旧有知识,来导入新课,可以淡化学生对新知的陌生感,使学生将新知迅速纳入已有的知识体系中,从而让学生消除新知学习的畏惧心理,也有效降低了学生新知学习的难度.这种导入新课的方法要注意以下几个方面:首先要把握新旧知识的联结点,这是建立在教师对教材认真分析和对学生仔细研究的基础之上.其次是巧妙联系,创设机会.复习、训练、提问等等都只是手段,教师一方面要通过有针对性的复习为学生学习新知作好铺垫,更要在复习的过程中通过各种巧妙的方式布置难点和疑问,使学生的认知出现困惑,从而产生一探究竟的欲望,从而使学生的思维处于活跃状态,为新知教学创设契机.二、巧设“陷阱”,设疑问难三、设置悬念,激发动机所谓悬念,指的是个体内心深处产生的对某一悬而未决的问题和现象的探究心理.悬念导入中制造悬念的目的有两点:其一是激发探究兴趣,其二是开启学生思维.悬念一般是出乎人们预料的,让人迷惑不解的,它在一定程度上会造成学生心理上的焦虑、渴望和兴奋,让学生产生打破沙锅问到底的欲望,想尽快知道事情的原委,而这种心态正是教学所需要的.一般来讲,数学课堂中的悬念需要教师在深入研读教材和悉心分析学生知识水平的基础上,经过精心创编,巧妙设计而成.另外,悬念设置务必要瞄准学生思维的“最近发展区”,使悬念的度掌握得恰到好处.太过平淡,缺乏悬念,难以激发学生的探究热情;过于悬,学生百思而不得其解,则会损害学生的探究兴趣,打消学生的自信心.唯有经过学生的积极思维,让学生豁然开朗的问题才会使学生兴趣高涨,自始至终地将思维聚集在问题中,不断深入领会本质,收到较好的教学效果.四、分析课题,直接导入这种导入新课的方法是指在新课开始时,教师通过直接板书课题,引导学生探讨题意,从而完成导入.这种方法开门见山,直捷了当,又突出中心或主题,可使学生在短时间里明确思维指向,很快进入对新课主题的探求,因此也是最为常用的一种导入方法,也是其他学科经常采用的导入方法.如在教学“函数的单调性”时,恰逢学生刚刚进行了军训,我这样导入:我们刚刚进行完军训,我请你们班的军训标兵站起来,给大家演示一下我们“拉歌”的时候所用鼓掌的方式.这名同学演示了一下:“123,123,1234567.”老师紧跟着引导:下面按先低到高,再从高到低,然后从低到高分组鼓掌.老师问:有哪名同学把刚才听到的掌声用函数图像画出来?很快有几名同学就很好地表达出来,老师很快导入主题.五、寻求共性,类比导入类比导入法是通过运用已知的数学知识类比未知的数学新知识,以简单的数学现象类比复杂的数学现象,从而使抽象的问题形象化,使复杂的问题简单化,让学生在丰富的联想中,达到调动学生的非智力因素,激发学生的思维活动,优化新课教学的目的.类比导入法运用了对比分析的做法,联系旧知,提示新知.这种方法有利于让学生明确新旧知识的联系与区别,而教师通过引导学生充分比较知识的内在差异,既揭示了新课教学的重点和疑难之处,又对以往的旧有知识起到了复习巩固的效果.当然,采用这种方法一定要注意类比内容选择的恰当,两种知识之间有较强的可比性,切勿胡乱联系,随意类比,否则,会使学生对知识的本质产生疑惑,导致知识的关系错乱.当然,数学课堂中的新课导入方法多种多样,如练习导入、操作导入、故事导入等.在实际教学中,我们要根据数学学科的特点、内容及课的类型选择最佳的导入方法.实际上,各种各样的导入方法并不矛盾,我们在教学中,更可将几种方法巧妙地融合,会使数学教学更加自然、和谐,让数学课堂充满生机与活力,数学课堂的教学效果也一定会更加明显.。

高中数学说课教案(优秀4篇)

高中数学说课教案(优秀4篇)

高中数学说课教案(优秀4篇)高中数学说课教案篇一一、教学目标【知识与技能】在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。

【过程与方法】通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。

【情感态度与价值观】渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。

二、教学重难点【重点】掌握圆的一般方程,以及用待定系数法求圆的一般方程。

【难点】二元二次方程与圆的一()般方程及标准圆方程的关系。

三、教学过程(一)复习旧知,引出课题1、复习圆的标准方程,圆心、半径。

2、提问1:已知圆心为(1,—2)、半径为2的圆的方程是什么?高中数学说课教案篇二教学目标(1)正确理解加法原理与乘法原理的意义,分清它们的条件和结论;(2)能结合树形图来帮助理解加法原理与乘法原理;(3)正确区分加法原理与乘法原理,哪一个原理与分类有关,哪一个原理与分步有关;(4)能应用加法原理与乘法原理解决一些简单的应用问题,提高学生理解和运用两个原理的能力;(5)通过对加法原理与乘法原理的学习,培养学生周密思考、细心分析的良好习惯。

教学建议一、知识结构二、重点难点分析本节的重点是加法原理与乘法原理,难点是准确区分加法原理与乘法原理。

加法原理、乘法原理本身是容易理解的,甚至是不言自明的。

这两个原理是学习排列组合内容的基础,贯穿整个内容之中,一方面它是推导排列数与组合数的基础;另一方面它的结论与其思想在方法本身又在解题时有许多直接应用。

两个原理回答的,都是完成一件事的所有不同方法种数是多少的问题,其区别在于:运用加法原理的前提条件是,做一件事有n类方案,选择任何一类方案中的任何一种方法都可以完成此事,就是说,完成这件事的各种方法是相互独立的;运用乘法原理的前提条件是,做一件事有n个骤,只要在每个步骤中任取一种方法,并依次完成每一步骤就能完成此事,就是说,完成这件事的各个步骤是相互依存的。

2024春新教材高中数学3.4函数的应用(一)教学设计新人教A版必修第一册

2024春新教材高中数学3.4函数的应用(一)教学设计新人教A版必修第一册
(3)实验法:在教学过程中,教师引导学生利用计算机软件绘制函数图像,观察函数2.教学手段
(1)多媒体设备:教师利用多媒体课件,生动形象地展示函数的性质和图像,激发学生的学习兴趣,提高教学效果。
(2)教学软件:教师运用教学软件,如数学建模软件、函数图像绘制工具等,辅助教学,使学生更好地理解函数的应用。
核心素养目标分析
本节课的核心素养目标主要围绕数学抽象、数学建模、数学运算、直观想象四个方面展开。
首先,通过实际问题引入函数模型,培养学生从复杂问题中抽象出函数关系的能力,即数学抽象素养。学生需要能够识别实际问题中的数量关系,自主构建函数模型,从而培养其抽象思维能力。
其次,通过对实际问题进行数学建模,让学生学会如何用函数来描述现实世界中的变化规律,培养学生的数学建模素养。学生需要能够将现实问题转化为数学问题,运用函数理论知识进行分析,进而提高其解决实际问题的能力。
(3)学生可以利用在线函数图像绘制工具,自主探索函数的性质和变化规律,加深对函数概念的理解。
(4)建议学生学习一些数学软件的使用方法,如MATLAB、Python等,掌握这些软件在函数分析和应用方面的功能,提高自己的实际问题解决能力。
内容逻辑关系
①函数应用的基本概念:
-重点词汇:函数、自变量、因变量、函数值、定义域、值域等。
选择几个典型的函数应用案例进行分析。
详细介绍每个案例的背景、特点和意义,让学生全面了解函数应用的多样性或复杂性。
引导学生思考这些案例对实际生活或学习的影响,以及如何应用函数解决实际问题。
4.学生小组讨论(10分钟)
目标:培养学生的合作能力和解决问题的能力。
过程:
将学生分成若干小组,每组选择一个与函数应用相关的主题进行深入讨论。

高中数学新课导入的有效方法

高中数学新课导入的有效方法

高中数学新课导入的有效方法中图分类号:g63 文献标识码:a 文章编号:1007-0745(2013)01-0055-01摘要:新课导入方法是教师在课堂教学过程中利用各种教学方式,吸引学生的注意力,激发学生的学习动机,帮助学生明确教学目的的教学行为。

有效的新课导入是教师教学成功的一半,在当前新课程标准下对课堂教学的要求不断提高,高中数学课堂的教学过程中教师要根据教学内容以及学生的心理预期做好新课导入工作。

文章主要对高中数学新课导入方法进行了阐述。

关键词:直接导入法类比导入法发现导入法一、数学新课导入的原则1.启发性原则数学教师在新课导入的过程中要坚持启发性原则,就是既要引起学生的注意,让学生进行相应思考,但是又尽量在导入的过程中不能那么直白。

在教学中可以利用实际中的实例,或者是一些实验,然后引入课堂中的新概念和新知识。

例如,教师在新课导入的时候可以讲述一个故事,然后从这个故事中衍伸出数学概念,让学生在听故事的时候进行思考,让他们获得新知识。

2.艺术性原则对于当前的学生来说,他们的个性得到了解放,以往的教学方式已经不能吸引他们的注意力,在新课导入过程中教师的方法是否有新意对新课的开展有很重要的作用,所以教师在新课导入的时候应该坚持艺术性原则,尽量使之有艺术魅力,能激发学生的兴趣,要求教师的新课导入语言要生动形象,而且要学会以情动人,让学生在教学一开始就处于一个良好的氛围中,帮助他们尽快地进入教学活动中。

3.关联性原则要保证在新课导入的成功,教师应该坚持关联性原则,有效把握新旧知识的衔接。

一方面教师在导入的过程中要以旧知识为基础,然后找出旧知识与新知识之间的关联点,从这个关联点中出发,将新旧知识联系起来,自然而然进入新课的教学中。

另外一方面,教师在新课导入的时候应该重视导入语,导入语的使用尽量具体,并且与新课的内容有关系,要尽量避免导入语大而过当,不但不能对教学活动产生积极作用,而且有可能使学生产生厌倦。

高中数学新课导入几种常用方法例谈

高中数学新课导入几种常用方法例谈

高中数学新课导入几种常用方法例谈摘要:良好的开端,等于成功的一半。

一节课上得是否成功,导入新课效果如何是关键。

在高中数学教学中,通过各种形式导入新课,可以激发学生学习兴趣,促进学生智力的发展和陶冶学生的情操。

本文介绍了高中数学新课导入的几种常用方法,供大家参考。

关键词:高中数学新课导入方法高中数学课作为理工科学生必修的基础课,对学生学好其他专业课以及提高自身的能力起着重要的作用。

如何使得这样一门重要课程取得最佳的教学效果,是值得每位老师认真思考的问题。

新颖的引言,巧妙的导语,生动的开头,是使学生迅速进入学习意境的重要手段。

根据学生的心情特征,结合每节课程的内容特点,设计了好的“开头”,使学生一开始便有一个明确的探索目标和正确的思维方向,会取得良好的教学效果。

1、史料故事导入法在讲某些数学概念、定理时,如果先给学生讲一些有关的数学历史背景,往往能够引起学生浓厚的学习兴趣,增强学生学习数学的信心。

而且,数学历史故事中都包含着某种数学思想方法,对培养学生的数学意识、数学观念很有好处。

例如微积分源于解决四大问题:速度、切线、最值、面积(和体积)。

讲定积分的概念时,不妨这样引入:今天我们来学习“一种测定啤酒桶体积的新方法”。

十八世纪的伟大科学家开普勒很喜欢喝啤酒,有一天喝着喝着,突然怀疑起啤酒商的啤酒桶的体积来,想验证一下啤酒桶的体积是否符实,看啤酒商有没有耍什么花招。

经过一番苦苦的思索,终于找到这么“一种测定啤酒桶体积的新方法”。

在此法里,开普勒讨论了多种旋转体的体积,基本思想就是“以直代曲”,即把曲线形看作边数无限多的直线形,用无穷多个同维的无限小元素之和来确定曲边形面积、体积,这是开普勒求积术的核心,后来又经过很多人的努力,逐渐完善了积分知识。

为了恰当准确的运用数学史来引入新课,要求教师平时多积累与教学内容有关的数学史资料,读一读数学史和有关数学家的故事的书籍是很有益的。

2、开门见山导入法我们谈话写文章习惯于“开门见山”,这样主体突出,论点鲜明。

高中数学教案:函数定义域的求法

高中数学教案:函数定义域的求法

函数定义域的求法教学目标:能够正确理解函数定义域的意义和重要性;掌握对数式函数和复合式函数的定义域的求法,培养学生的观察能力和分析解决问题的能力。

重点:掌握对数式函数和复合式函数的定义域的全限制及求法。

难点:会求由几个部分数学式子组成的复合式函数的定义域。

教学方法:启发式教学,讲练结合教学过程(一)新课导入复习:具体函数的定义域时常有的几种情况:(1)若f(x)是整式,则函数的定义域是:(2)若f(x)是分式,则函数的定义域是:(3)如果f(x)是偶次根式,如果f(x)是奇次根式,.(4)如果f(x)为代数式的0次幂 ,(5)如果f(x)是三角函数 y =sinx,y =cosx 定义域均为y =tanx 的定义域为(二)讲解新课:由学生回答他们已学的具体函数定义域的求法引出今天要上的新课另外2种定义域的求法。

类型六:f(x)是对数式 (2)23(1)1(1)()log ()log x x f x f x --==例:(2) 2231(2)(3)()log ()log 3)()log x x x x f x f x f x ---+===变式训练1:1) 2) 22(2)(3)(2)3()log 2()log x x x x x x f x f x --+--+==提高题:1))总结:如果f(x)是对数式则真数大于零,底数大于零且不等于1类型七:f(x)是复合式()242032(1)232(2)(23)x y x x y x -=--=--例:; (3)y=log总结:如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各部分集合的交集)训练题2:01)()382)1)3)f x x y a y =+-=<<=(具体解题过程看视频)1)()(21)21f x x y =-+=+提高题:)近几年高考和模拟卷题练习3:5、(2020年高职)的定义域为( ) 6、(2021年高职)( )2017()f x =2、(年高职)已知函数 )2018()f x x =3、(年高职)已知函数的定义域为( )12019()23f x x x =--4、(年高职)已知函数ln()+的定义域为( )(,1]A -∞(0,1]B [0,1]C (0,1)D [)(]1,00,1⋃-A []1,1-B (]1,0C (][)+∞⋃-∞-,11,D (]1,0A ()1,0B [)+∞,1C ()+∞,0D [)+∞-,2A (2,)B -+∞[)-2(1,)C ⋃-+∞,-1(2,1)(1,)D --⋃-+∞()+∞,2A [2,)B +∞(,2][3,)C -∞⋃+∞(2,3)(3,)D ⋃+∞x x x f 21)(-=函数的定义域为函数x x x f ln 1)(-=12016()5f x x =-1、(年高职)已知函数的定义域为7、(2018省第三次联考)( )(三)小结:1.函数的定义域(1)函数的定义域是指使函数有意义的自变量的取值范围(2)求定义域的步骤是:①写出使函数式有意义的不等式(组);②解不等式组;③写出函数定义域.(注意用区间或集合的形式写出)2、具体函数的定义域2种情况:(1)如果f(x)是对数式则真数大于零,底数大于零且不等于1.(2)若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合(四)作业(成绩好的再多做上面2个提高题)(31)(2)011)()212)()l o g 23)()4)()(1)x x f x x f x x f x f x x +-=--=+-==-+课后预习作业:求抽象函数的定义域 [][)()[()]()(35)[()]()(2+2)()[()][()]0,30(21)(1,3)1f x f g x f x f x f g x f x f x f x f g x f h x f x f x ---2一、已知函数的定义域,求函数的定义域例1: 已知函数的定义域为[-1,5]求函数的定义域.二、已知函数的定义域,求函数的定义域例: 已知函数的定义域为,求函数的定义域.三、已知函数的定义域,求函数的定义域例3: 已知函数的定义域为,求函数的定义域.(五)思想方法 感悟提高函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质的基础.因此,我们一定要树立函数定义域优先意识.求函数的定义域关键在于列全限制条件和准确求解方程或不等式(组):对于实际问题的定义域一定要使实际问题.5/22A x x x ⎧⎫≤≠⎨⎬⎩⎭且335(,)(,)222B -∞⋃53/22C x x x ⎧⎫≤≠⎨⎬⎩⎭且55(0,)(,)22D ⋃+∞的定义域为已知函数84615)(--=x x x f。

高中数学教学中新课导入的方法

高中数学教学中新课导入的方法

高中数学教学中新课导入的方法作者:顾萍来源:《中学生数理化·教与学》2017年第05期新课导入是高中数学教学中的重要组成部分,也是历来教学研究和实践的重点.在新课改背景下,很多教师也把新课导入作为打开教学困局的金钥匙.心理学研究表明,人们对事物的感知往往是先入为主的,也就是所谓的第一印象.下面结合教学实践中的案例谈谈新课导入的方法.一、新课导入的作用新课导入对于高中数学教学的作用主要体现在:一是为了把学生的精力和注意力焦点聚集在课堂教学上,尽可能降低非智力因素对教学效果的影响.二是让学生能够顺利对之前的知识体系与新知识进行加工整合,调整到有利于当前知识的学习接受上来,从而对学生知识点系统的建构加以控制.新课导入研究的理论基础主要由皮亚杰的认知发展理论,即要形成新的知识乃是通过连续不断来实现构成的结果,并且两种机能一直在认识过程中存在,一种称为同化,还有一种称为顺应.建构主义理论认为,学习知识是学生根据自己以往的习惯和经验建构相关内容的意义的能力.新课导入的意义是,通过学生现有知识的引导,让学生迅速建立起理论知识和现实背景之间的关系,并且补充新的背景知识,激发他们对相关学习内容的探索.二、新课导入的主要方法1.直入主题.这种导入方法是一种最直接和简单的导入方式.这种导入方法的特点在于能够迅速、高效地让学生了解当节课学习的重点和主题,使学生能够调整思维投入到知识点的学习中.这种导入方法适合一些意义明确、简单直接的知识点导入,也可以应用在之前没有接触过的新的知识导入上.例如,在讲“任意角的三角函数的定义”时,教师可以直接导入:初中阶段,通过直角三角形,学习了角的正弦函数、余弦函数、正切函数等,这节课我们来研究三角形中关于任意角的三角函数的问题.这样直截了当地提出本节课的学习主题,能把学生的注意力集中到相关的知识思考上,促使学生迅速投入到新知识的探索中.2.情境演示.利用情境导入新课,是教师常用的一种导入方法.数学在生活中无处不见.通过生活情境,激发学生对数学知识的探索,也是新课标的要求:注重从学生现有实际的生活情境出发,让学生能够将实际问题进行抽象,并与数学模型相联系,从而得到运用和解决.这种结合生活情境讲授知识点,让学生意识到数学知识在现实生活中的应用的方法,激发了学生的学习兴趣,能够建构学生学习数学的主体意识.例如,在讲“对数”时,教师可以提出这样一个问题:一张纸的厚度为0.1mm,但是我们只需要把它对折14次,高度就会超过人体的身高;对折27次以后,就会超过珠穆朗玛峰的高度;对折超过42次以后,就会是从月亮到达地球的高度.同学们,如果要纸的高度与从地球到太阳的距离相等,需要把纸对折多少次呢?学生计算2的14次方、27次方、42次方都可以通过指数运算来解决.但是这个问题的计算式中,x跑到了指数上,问题就变成了是已知幕和底数来求指数,利用之前学习的知识无法解答,学生迫切想知道答案.这种情境导入法的优势在于,可以利用学生学习过的指数运算来引入对数的概念,通过指数和对数的互逆过程消除学生的陌生感.3.学脉探幽.新旧知识联系导入法,通常都用在新旧知识点之间的联系非常紧密时.这样一来,既能复习旧知识,还能在旧知识的基础上有效构建新知识.而学生的思维活动也是从浅至深、从简单到复杂的过程,通过知识的互联关系来开发学生的思维,巩固新知识的学习效果.4.“陷阱”诱惑.学生对所学的知识产生疑问,就会开始自主思考,进而解决问题.在教学过程中,教师可以利用教学内容制造疑团,激发学生的求知欲,使学生产生学习的内在动力,主动体验知识的形成过程.例如,在讲“球冠”时,教师可以设置悬疑:将一个球用两个平行平面截取成直径长度相等的三个部分,这三个部分的面积大小有什么关系呢?大部分学生在思考后可能会判断中间部分面积较大,两头的部分面积较小.这时教师就可以肯定地告诉他们三个部分面积相同,都是球面积的13.通过这个疑问,学生自然想知道为什么视觉上中间大,实质上一样大的问题.这种由现象产生的问题,容易促使学生积极思考.5.其他导入方法.比如,故事导入法.在教学中,教师可以依据教学内容的需要,给学生选讲与教学内容联系紧密的故事片断,增加教学内容的趣味性,吸引学生的注意力.总之,高中数学新课导入的方式多种多样.只有教师在备课时多思考,多钻研,不断发现具备高效性和针对性的导入方法,才能激发学生的学习兴趣,从而提高教学效果.。

高中数学课堂教学中如何由问题导入新课论文

高中数学课堂教学中如何由问题导入新课论文

高中数学课堂教学中如何由问题导入新课摘要:“问题串”教学方式是现阶段高中数学课堂教学采用的主流教学方式,而问题引入新课是“问题串”的开始,通过几个较为成功的课堂引入教学案例的分析,对课堂教学中由问题导入新课作出了一点梳理与总结。

关键词:课堂引入;提出问题;问题导入新课数学的一切概念、公式、定理、方法都是因为解决问题的需要而产生的。

对于一个新问题,往往原先的概念与方法不够用了,就不得不去创新,构建新的概念、创造新的方法。

因此每节课都要首先提出问题,并且去解决它。

导人新课时如何富有创新,灵活多样,恰到好处地提出问题,是促进学生自主学习,把学习活动转变成创新工作的关键。

本文通过对几个较为成功的教学案例的分析,对课堂教学中由问题导入新课作出了一点梳理与总结:一、开门见山。

直入主题案例1:课题线性规划第一课时(一)提出问题设z=2x+y,x、y满足不等式组(x-4y≤3,3x+5y≤25,x≥1)如何求x的最大值与最小值。

(二)问题处理1.求不等式组表示的平面区域可以学生活动为主。

2.教师带领学生对目标函数进行细致分析(主要是和一元函数的区别与联系)。

3.由学生进行问题-观察-探究-总结-应用,教师给予适当的启示与补充。

(三)方法分析问题的提出开门见山,本节课的教学目标即为解决这一线性规划问题,对目标函数求最值贯穿本节课,简洁、明确、大气、大巧若拙。

二、实践探究。

发现问题案例2:课题椭圆的定义及标准方程第一课时(一)动手操作:先用图钉将细线两端固定在白纸上(要求学生事先准备两枚图钉、一条细线、一张白纸、一支铅笔,让细线松弛),用铅笔将细线拉紧,使笔尖在纸上转动一周,画出一个椭圆。

(二)提出问题椭圆上的点有什么特征?细线的长度与两图钉间距离有何关系?试着给出椭圆的定义并求出其标准方程。

(三)问题处理1.由学生从实践中发现椭圆的定义并对定义进行规范表述。

2.带领学生推导椭圆的标准方程。

(四)方法分析《普通高中数学课程标准》指出:“学生的数学学习活动不应只限于对概念、结论和技能的接受、记忆、模仿和练习;自主探究、动手实践、合作交流、阅读自学等都是学习数学的重要方式。

高中数学新课导入

高中数学新课导入

浅谈高中数学新课导入一堂课的成功,必须注重导入新课的多样性和艺术性。

教师在教学中应重视新课的导入,只有多形式、有艺术的新课导入才能激发学生兴趣,打造先声夺人的声势,起到事半功倍的作用。

俗话说:“万事开头难。

”对于一节课来说,怎样有一个好的开端,吸引学生的学习兴趣就变得非常重要了。

新课导入是课堂教学的先导,良好的开端是成功的一半。

怎样在课堂教学中培养学生的学习兴趣、激活情感、启迪智慧、诱发思维呢?下面笔者谈一谈根据数学素质教育的要求,在高中数学新课导入中的几种尝试:一、开门见山直接导入,带领学生直奔探索主题开门见山直接导入是教师直接从课本的课题中提出新课的学习重点、难点和教学目的,以引起学生的有意注意,诱发探求新知识的兴趣,使学生直接进入学习状态。

它的设计思路:教师用简捷明快的讲述或设问,直接点题导入新课。

例如:在学习“弧度制”时,教师直接引入新课:“以前我们研究角的度量时,规定周角为1度的角,这种度量角的制度叫做角度制。

今天我们学习另外一种度量角的常用制度——弧度制。

本节主要要求是:掌握1弧度角的概念;能够实现角度制与弧度制两种制度的换算;掌握弧度制下的弧长公式并能运用解题。

”这种方法多用于相对能自成一体且与前后知识联系不十分紧密的新知识教学的导入。

二、创设情境导入,多种方式激发学生兴趣创设良好导入情境,激发探索动机是引导学生探索学习的前提。

随着数学教学的价值取向由知识传授为主转向个性、才能的发展为主,导入阶段的目标也应随之由为知识学习做准备为主转向以情感诱导为主;由关注知识技能领域转向关注发展个性领域。

因而,在导入阶段应当弱化复习作用,强化情境创设功能,创设好奇、疑惑、生动、有趣的情境,使学生对学习产生兴趣,进而产生主动探索的强烈欲望。

新课开始可利用与数学知识有关的小故事、小游戏来创设情境,适当增加趣味成分,使看似枯燥的数学变得形象具体,这样可以提高学生的学习兴趣,因而有利于提高学生的学习主动性。

启迪智慧 培养兴趣——高中数学新课导入方法探索

启迪智慧  培养兴趣——高中数学新课导入方法探索
() , 3 4, , 7 8 … 1l 2, , 5 6, , , () , , , 2 1 , 8 2 , 4 … 2 3 6 9 1 ,5 l , l 2 , () , , , , , l 一1 , 3 一1 一3 一5 一7 一9 一1 , 3

第 三 步 , 题 的 发展 : 师 在肯 定 方 案 问 教 数 及 反 三 角 函数 ; 差 数 列 与等 比数 列 ; 等 四 正 确性 和 可 行性 基 础 上 , 进 一步 提 出 , 再 如 种 二 次 曲 线( 、 圆 、 圆 椭 抛物 线 、 曲线 ) 空 何 还 贷款 , 几 次 付 , 样 付 款 才 能 最 合 双 ; 分 怎
24 0
中国科教创新导刊
C ia E u a in In v t n H r l h d c t n o ai e ad n o o
充分 展现 对 闻题 加 工 处 理过 程 和 解 决方 案
的制定过程 。
案 例 :分 期 付 款 中 的有 关 计 算 ” 我 这 “ , 样 以 问题 的形 式 进 行 了课 堂 引入 。 第 一 步 , 供 问题 : 提 想买 一 件 较 贵 的 物 品 , 现 在 又 没 那 么 多钱 该 怎 么办 ? 但 第 二步 , 计 解 决 方 案 : 一 向 银行 贷 设 第 款, 第二 变 相 向商 家 贷款 也 就 是分 期 付 款 , 比较 之 下 当 然 第 二 种方 案 更 方 便 快 捷 。

3 设计 活 动 , 让学 生 体 验 数学
数 学 课 程 包 括 数 学 学 科 、 学 活 动 两 数 部分 。 科与活动相辅相成 , 一不可 , 学 缺 学 科 教 学 过 程 中 , 们 可 以 发 挥 活动 课 的 优 我 势 , 生 动 具 体 的生 活 场景 再 现 于课 堂 , 把 借 以激 发 学 生 兴趣 , 促进 学 生 理 解数 学 知 识 。 案 例 : 椭 圆 及 其 标 准 方 程 》 一 课 时 《 第 的课 堂 引 入 如下 : 课前 , 事先 准 备 好 的 圆 将 形纸 片 给 每 位 同 学 发 一 张 , 大 家 按 这 样 让 的步 骤 进 行 , 1在 圆 内部 任 意 找一 个 不 同 () 于 圆心 的 点A,2 在 圆周上 3 个 等 分 点 , () 0 分 别记为Bl B 、 B 0;3折 叠 圆纸 片 , 圆 、 2 …、 3 () 使 周 上 的点 Bl 点A重 合 , 开 纸 片 后 得 到 与 展 条折 痕 ; ) 复上 一 步骤 , 圆周上 其 余 ( 重 4 使 各 点 与A点 重合 , 得到 3 条 对应 的 折 痕 ;5 0 () 最 后 展 开 纸 片 , 以 发 现 未 被 折 痕 覆 盖 到 可 的 区 域正 是 一 个 椭 圆的 形 状 。 这 样 的 引 入 方法 比之 常规 引入 法 更 新 颖、 更具 吸 引力 , 学 生 感性 地 认 识椭 圆这 使

高中数学新课圆锥曲线方程教案

高中数学新课圆锥曲线方程教案

高中数学新课圆锥曲线方程教案一、教学目标1. 理解圆锥曲线的基本概念,掌握圆锥曲线的定义及其性质。

2. 学习圆锥曲线的标准方程及其求法。

3. 能够运用圆锥曲线方程解决实际问题,提高数学应用能力。

二、教学内容1. 圆锥曲线的定义与性质1.1 圆锥曲线的定义1.2 圆锥曲线的性质2. 圆锥曲线的标准方程2.1 椭圆的标准方程2.2 双曲线的标准方程2.3 抛物线的标准方程三、教学重点与难点1. 重点:圆锥曲线的定义、性质及标准方程的求法。

2. 难点:圆锥曲线标准方程的推导与应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究圆锥曲线的定义与性质。

2. 利用图形演示,让学生直观理解圆锥曲线的特点。

3. 运用类比法,引导学生发现圆锥曲线标准方程的规律。

4. 注重实践操作,让学生在解决问题中巩固圆锥曲线方程的应用。

五、教学准备1. 教学课件:圆锥曲线的相关图片、图形演示等。

2. 教学素材:圆锥曲线的实例问题。

3. 学生用书:《高中数学》圆锥曲线相关章节。

教案篇幅有限,后续章节(六、七、八、九、十)将陆续提供。

请随时查阅。

六、教学过程1. 导入:通过展示生活中的圆锥曲线实例,如旋转的伞、地球卫星轨道等,引导学生关注圆锥曲线在现实世界中的应用。

2. 新课导入:介绍圆锥曲线的定义,引导学生理解圆锥曲线的形成过程。

3. 性质探讨:引导学生发现圆锥曲线的性质,如对称性、渐近线等。

4. 标准方程求法:讲解椭圆、双曲线、抛物线的标准方程求法。

5. 巩固练习:布置相关练习题,让学生巩固所学知识。

七、课堂互动1. 小组讨论:让学生分组讨论圆锥曲线的性质,分享各自的发现。

2. 提问环节:鼓励学生提问,解答学生关于圆锥曲线方程的疑问。

3. 案例分析:分析实际问题,引导学生运用圆锥曲线方程解决实际问题。

八、课后作业1. 完成学生用书上的课后练习题。

2. 选取一个实际问题,运用圆锥曲线方程进行解答。

九、教学反思2. 反思教学方法:观察学生对圆锥曲线方程的掌握情况,调整教学方法,提高教学效果。

班会教案设计高中数学模板

班会教案设计高中数学模板

---一、教学目标1. 知识目标:- 通过本次班会,帮助学生回顾和巩固高中数学中的重要知识点。

- 提高学生对数学学科的认识,激发学习兴趣。

2. 能力目标:- 培养学生的合作学习能力和团队协作精神。

- 提升学生的数学问题解决能力和创新思维。

3. 情感目标:- 增强学生对数学学科的热爱和自信心。

- 培养学生积极向上的学习态度和良好的学习习惯。

---二、教学重难点1. 教学重点:- 高中数学中的重要概念和公式。

- 数学解题方法和技巧。

2. 教学难点:- 复杂数学问题的解决策略。

- 学生对数学知识的灵活运用。

---三、教学过程(一)导入新课1. 活动:播放与数学相关的科普视频或数学家的故事,激发学生对数学的兴趣。

2. 提问:引导学生思考数学在生活中的应用,以及数学对个人成长的重要性。

(二)主题讲解1. 活动:将学生分成小组,每组负责讲解一个高中数学的重要知识点。

2. 内容:包括但不限于函数、三角函数、立体几何、概率统计等。

3. 要求:每组需准备PPT或黑板,进行讲解,其他小组进行提问和补充。

(三)案例分析1. 活动:展示一些典型的数学问题,让学生分组讨论解题思路和方法。

2. 目的:培养学生的逻辑思维能力和问题解决能力。

(四)互动环节1. 活动:进行数学知识竞赛或趣味数学游戏,增加课堂趣味性。

2. 目的:提高学生的参与度和学习兴趣。

(五)总结与反思1. 活动:各小组分享学习心得,教师进行总结。

2. 内容:包括对本次班会的评价、对数学学习的认识、对未来学习的规划等。

---四、教学评价1. 课堂表现:观察学生在课堂上的参与度、合作精神、问题解决能力等。

2. 课后作业:布置相关的数学题目,检查学生对知识的掌握程度。

3. 学生反馈:收集学生对本次班会的意见和建议,不断改进教学方法。

---五、教学反思1. 教学效果:反思本次班会对学生学习效果的提升情况。

2. 教学方法:总结本次班会的教学方法,分析其优缺点。

3. 改进措施:针对存在的问题,提出改进措施,为今后的教学提供参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈高中数学新课导入方法
教学是一门艺术,而新课导入是教学的重要的环节。

良好的开端是成功的一半,精彩的新课导入,不但会引起学生注意,激发学生学习的动机和兴趣,还能起到承前启后,建立知识联系的作用。

那么,怎样在课堂教学中培养学生的学习兴趣、激活情感、启迪智慧、诱发思维呢?在教学中,我们从实际出发精心安排的新课导入,可以为新课创设教学意境,使学生迅速进入角色,根据素质教育的要求,下面谈一谈在高中数学新课导入教学中的几种尝试。

一、直接导入法
当一些新授的数学知识难以借助旧知识引入时,可开门见山的点出课题,立即唤起学生的学习兴趣。

例如,在讲《二面角》的内容时,可这样引入:“两条直线所成的角,直线和平面所成的角,我们已经掌握了它们的度量方法,那么两个平面所成的角怎样度量呢?这节课我们就来学习这个内容----二面角和它的平面角!”(板书课题),这样导入,直截了当,促使学生迅速集中到新知识的探索追求中。

再如,讲《用单位园中的线段表示三角函数值》一节时,可作如下开篇“前面我们学习了三角函数的定义,每种三角函数的数值都是用两条线段的比值来定义的,这是我们在应用中带来诸多不便,如果变成一条线段,那么应用起来就会方便的多,这节课就来解决这个问题:“用单位园中的线段表示三角函数值”,这样导入课题,不仅明确了这堂课的主题,而且也说明了产生这堂课的背景。

二、忆旧导入法
当新旧知识联系较紧密时,用回忆旧知识来自然的导入新课也是常用的一种方法。

这种方法导入新课,既可以复习巩固旧知识,又可把新知识由浅到深、由简单到复杂、由低层次到高层次地建立在旧知识的基础上,从而有利于用知识的联系来启发思维,促进新知识的理解和掌握。

例:讲三角函数的二倍角公式时,可以在复习回忆两角和公式的基础上顺利的导入,将半角公式可以在复习回忆二倍角公式基础上顺利导入。

讲半角公式可以在复习回忆二倍角公式的基础上顺利导入。

三、类比导入法
有些课题内容与前面学过的知识类似时,可运用类比法提出新课内容,促使知识的迁移,比旧出新,自然过渡。

例:讲指数、对数不等式的解法时,可类比指数和对数方程的解法提出课题。

有针对性的选择某个知识点进行类比,可以将“已知”和“未知”自然的连接起来,温故而成为知新的基石,课堂教学可望收到满意的效果。

四、发现导入法
启发学生从某些现象中发现某些规律从而导入新课,这种方法可使学生在发现的喜悦中提高学习的兴趣,同时也有利于学生对新知识的理解和记忆。

例:讲立体几何《锥体体积》时,教师拿一个圆柱形容器和一个与圆柱等底等高的圆锥形容器,当装满圆柱的沙倒入圆锥形容器中恰好倒满三次时,问学生: “你们能发现它们体积的关系吗?”学生立即就能悟出圆锥体积等于等底等高圆柱体积的三分之一,在学生这个发现的基础上,教师进一步引导:“这个体积上
的三分之一的关系是否对等高等底的各种形状的锥体和柱体都成立?若成立,怎样从理论上严格证明这一结论呢?今天就要来研究这一问题。

这样导入新课就把学生从生动的实验所得到的发现引向严密的逻辑推理,对教材来说,这是一种自然的过渡,对学生来说,则
成为一种思维上的需要和满足。

对于那些容易发现的规律适用于这种方法导入新课。

五、设疑导入法
教师对某些内容故意制造疑团而成为悬念,提出一些必须学习了新知识才能解答的问题,点燃学生的好奇之火,激发学生的求知欲,从而形成一种学习的动力。

如:讲立体几何《球冠》一节时,教师可如下设疑:由三个平行平面截一个球恰好把球的一条直径截成四等分,试问截得球面的四部分面积大小如何?教师留出几分钟时间让
学生观察议论,同学们一般猜测两头面积较小,中间的两“圈”面积较大。

教师这时却肯定的说:“这四部分面积时一样的,都是球面积的1/4!”又说:“这难道可能吗?两头看起来确实好像小,中间的圈要大,可是它们的面积相等却是事实!让我们来学习今天的内容:球冠。

”通过这个内容的学习,同学们自己就可以解开它们的面积为什么相等的迷。

学生带着这个疑团来学习新课,不仅能提高注意力,而且这个结论也将使学生经久不忘。

六、趣味导入法
新课导入时可讲与数学知识有关的小故事、小游戏或创设情境等,适当增加趣味成分,可以提高学生学习的兴趣,因而有利于提高学
生学习的主动性。

例如:在讲授《等比数列的前n项和公式》时,对学生说:同学们,我愿意在一个月(按30天算)内每天给你们1000元,但在这个月内,你们必须:第一天给我回扣1分钱,第二天给我回扣2分钱,第三天给我回扣4分钱……即后一天回扣的钱数是前一天的2倍,你们愿不愿意?此问题一出立即引起学生的极大兴趣,这么“诱人”的条件到底有没有陷阱?只有算出“收支”对比,才能回答愿与不愿。

“支”就是一个等比数列的前n项和的问题,如何求出这个等比数列的前n项和呢?这就需要我们探索出等比数列的求和方法及求和公式了。

通过这个例子不但使学生产生求知的热情及浓厚的兴趣,而且对引出等比数列的前n项和公式起到自然引入的作用。

七、联系实际导入法
在教学中,要广泛地、深入地结合学生的生活实际,使学生感到数学处处有,人类社会离不开数学,激发学生的兴趣。

例如在讲《排列和组合应用》时,以学生参加竞赛为背景,举了这样一个例子:a、b、c、d、e五名学生参加劳技课比赛,决出了第一到第五名的名次。

a、b两名参赛者去询问成绩,回答者对a说:“很遗憾你和b都没有拿到冠军”,对b说:“你当然不是最差的”。

从这回答分析,5人的名次排列共可能有____(用数字作答)种不同情况。

总之,数学教学中引入新课的方法是灵活多样的,没有固定的模式。

平时在教学实践中,可根据实际情况选取恰当的方法,有时也可把几种方法结合在一起。

新课引入的环节是新课教学的先导,设计巧妙的新课导入法,能够有效地为新课组织教学,把学生的注意力
集中到新课的学习中来,能够恰到好处地为新课创设情境,激发起学生学习的兴趣。

所以在新课教学中,切不可轻视导入新课这一环节。

相关文档
最新文档