Markov迭代函数系统分形的动力学特性分析

2009年工程图学学报2009第6期JOURNALOFENGINEERINGGRAPHICSNo.6

IlllMarkov迭代函数系统分形的动力学特性分析

章立亮

(宁德师范高等专科学校数学系,福建宁德352100)

摘要:研究Markov迭代函数系统(MIFS)的转移概率矩阵与MIFS吸引子分形结构之间的关系。首先提出了分支Markov迭代函数系统的概念并将MIFS系统分解成若干分支系统,给出和证明了几个相关定理。然后讨论转移概率矩阵的零元素对吸引子结构的影响,分析吸引子的局部结构特征,发现MIFS系统吸引子包含自相似结构,基于计算机数学实验分析了吸引子分形形成的动力学特性并给予具体的定性描述。

关键词:计算机应用;迭代函数系统;Markov链;分形

中图分类号:TP391

文献标识码:A文章编号:1003—0158(2009)06.0132.05

AnalysisoftheDynamicalCharacteristicsof

MarkovIteratedFunctionSystems

ZHANGLi?liang

(DepartmentofMathematics,NingdeTeachersCollege,NingdeFujian352100,China)

Abstract:TherelationshipbetweentransitionprobabilitymatrixofMarkoviteratedfunctionsystemsandthefractalattractorstructureofMIFSiSresearched.Firstly,thefiliationMarkoviteratedfunctionsystemsiSdefined.andaMIFSsystemiSbrokendownintoseveralfiliationsystems.Secondly,theeffectofzeroelementsintransitionprobabilitymatrixisdiscussed.Atlast,dynamicalcharacteristicsofgeneratingfractalimagebasedoncomputermathematicalexperimentiSanalyzed.

Keywords:computerapplication;iteratedfunctionsystems;markovchain;fractal

迭代函数系统IFS(IteratedFunctionSystems、是分形理论研究的一个重要领域,其理论和方法在分形的计算机构造和图像压缩方面应用广泛。1982年,Dekking将具有很强实际应用价值的Markov理论引入迭代函数系统的研究之中,提出了一种Markov特性的IFS系统【1】(简记为MIFS),MFBarnsely、JHElton、JCHart等人对此问题作了更进一步深入研究的工作,克服了传统IFS方法的局限性,得到更具普遍意义的广义迭代函数系统,并开展了许多具体的应用

收稿B期:2008—12—03

基金项目:福建省自然科学基金资助项目(Z0511053)

作者简介;章立亮(1963-),男,福建宁德人,副教授,主要研究方向为分形与计算机图形图像。万方数据

结构动力特性测试方法及原理

结构动力特性的测试方法及应用(讲稿) 一. 概述 每个结构都有自己的动力特性,惯称自振特性。了解结构的动力特性是进行结构抗震设 计和结构损伤检测的重要步骤。目前,在结构地震反应分析中,广泛采用振型叠加原理的反 应谱分析方法,但需要以确定结构的动力特性为前提。n 个自由度的结构体系的振动方程如 下: [][][]{}{})()()()(...t p t y K t y C t y M =+? ?????+?????? 式中[]M 、[]C 、[]K 分别为结构的总体质量矩阵、阻尼矩阵、刚度矩阵,均为n 维矩阵; {})(t p 为外部作用力的n 维随机过程列阵;{})(t y 为位移响应的n 维随机过程列阵;{} )(t y &为速度响应的n 维随机过程列阵;{})(t y && 为加速度响应的n 维随机过程列阵。 表征结构动力特性的主要参数是结构的自振频率f (其倒数即自振周期T )、振型Y(i)和 阻尼比ξ,这些数值在结构动力计算中经常用到。 任何结构都可看作是由刚度、质量、阻尼矩阵(统称结构参数)构成的动力学系统, 结构一旦出现破损,结构参数也随之变化,从而导致系统频响函数和模态参数的改变,这种 改变可视为结构破损发生的标志。这样,可利用结构破损前后的测试动态数据来诊断结构的破损,进而提出修复方案,现代发展起来的“结构破损诊断”技术就是这样一种方法。其最 大优点是将导致结构振动的外界因素作为激励源,诊断过程不影响结构的正常使用,能方便 地完成结构破损的在线监测与诊断。从传感器测试设备到相应的信号处理软件,振动模态测 量方法已有几十年发展历史,积累了丰富的经验,振动模态测量在桥梁损伤检测领域的发展 也很快。随着动态测试、信号处理、计算机辅助试验技术的提高,结构的振动信息可以在桥 梁运营过程中利用环境激振来监测,并可得到比较精确的结构动态特性(如频响函数、模态 参数等)。目前,许多国家在一些已建和在建桥梁上进行该方面有益的尝试。 测量结构物自振特性的方法很多,目前主要有稳态正弦激振法、传递函数法、脉动测试 法和自由振动法。稳态正弦激振法是给结构以一定的稳态正弦激励力,通过频率扫描的办法 确定各共振频率下结构的振型和对应的阻尼比。 传递函数法是用各种不同的方法对结构进 行激励(如正弦激励、脉冲激励或随机激励等),测出激励力和各点的响应,利用专用的分 析设备求出各响应点与激励点之间的传递函数,进而可以得出结构的各阶模态参数(包括振 型、频率、阻尼比)。脉动测试法是利用结构物(尤其是高柔性结构)在自然环境振源(如 风、行车、水流、地脉动等)的影响下,所产生的随机振动,通过传感器记录、经谱分析, 求得结构物的动力特性参数。自由振动法是:通过外力使被测结构沿某个主轴方向产生一定 的初位移后突然释放,使之产生一个初速度,以激发起被测结构的自由振动。 以上几种方法各有其优点和局限性。利用共振法可以获得结构比较精确的自振频率和阻 尼比,但其缺点是,采用单点激振时只能求得低阶振型时的自振特性,而采用多点激振需较 多的设备和较高的试验技术;传递函数法应用于模型试验,常常可以得到满意的结果,但对 于尺度很大的实际结构要用较大的激励力才能使结构振动起来,从而获得比较满意的传递函 数,这在实际测试工作中往往有一定的困难。 利用环境随机振动作为结构物激振的振源,来测定并分析结构物固有特性的方法,是近 年来随着计算机技术及FFT 理论的普及而发展起来的,现已被广泛应用于建筑物的动力分 析研究中,对于斜拉桥及悬索桥等大型柔性结构的动力分析也得到了广泛的运用。斜拉桥或 悬索桥的环境随机振源来自两方面:一方面指从基础部分传到结构的地面振动及由于大气变 化而影响到上部结构的振动(根据动力量测结果,可发现其频谱是相当丰富的,具有不同的

函数迭代

专题-----函数迭代 利用了一个函数自身复合多次,这就叫做迭代。一般地,设f :D →D 是一个函数,对任意的x ∈D ,记f (0) (x)=x ,f (1) (x)=f(x)f (2) (x)=f(f(x)),…,f (n+1) (x)=f(f (n)(x)).则称f (n)(x)为f(x)的n 次迭代,并称n 为f (n) (x)的迭代指数。 如果f (n) (x)有反函数,则记为f (-n) (x).于是迭代指数可以取所有整数. 对于一些简单的函数,它的n 次迭代是容易得到的. 若f(x)=x+c ,则f (n) (x)=x+nc. 若f(x)=x 2 ,则f (n) (x)=x 2 n . 若f(x)=ax+b ,则f(n)(x)=a n x+ a a n --11b(a ≠). 函数的迭代的理论与方法在计算数学和微分动力系统等领域中有着很重要的应用。然而,由于它的一些方法和结果是初等的,又较有趣,因而在数学竞赛中屡有出现。 ⑴观查法 例1、设f(x)=3x+2,证明:存在正整数m ,使f (100) (m)能被1988整除。 例2、 设 ).(.1 2)()(2 x f x x x f n 计算-= ⑵不动点求函数迭代: 如果x 0是)(x f 的不动点,则x 0也是)()(x f n 的不动点。这一点用数学归纳法是容易证明的。 例3、若 9319)(2+=x x f 求,)()(x f n 。 ③函数迭代应用: 在国内外数学竞赛中,不断出现一些要用到各种技巧的函数迭代和函数方程问题。主要有三个方面:(1)研究函数的性质;(2)求函数的值;(3)确定函数的解析表达式。下面通过例题来介绍解决这些问题的方法和技巧。 例4、设N 是自然数集合,k ∈N 。如果有一个函数f :N →N 是严格递增的,且对于每个n ∈N ,都有f (f (n ))=k n 。证明:对每个n ∈N ,都有 12+k k n ≤f (n )≤2 1 +k n . 例5、 设函数f (x )对所有x >0有意义,且满足下列条件: (1)对于x >0,有f (x )f [f (x )+x 1 ]=1; (2)f (x )在(0,+∞)上严格递增。 求f (1)的值。 例6 、证明:不存在函数f :R + →R + ,使得对任何正实数x 、y ,都有 (f (x ))2 ≥f (x+y)(f (x )+y). ① 例7、设Q + 是全体正有理数集.试作一个函数f :Q + →Q + ,使得对一切x ,y ∈Q + ,都有 f (xf (y ))= y x f ) (. ①

结构动力分析

【结构工程的软件时代】 结构工程已全面进入软件时代,结构工程师要从繁琐的重复劳动中解脱出来,培养结构概念和体系,锻炼结构整体思维。 《结构概念和体系》是国际著名的结构大师林同炎广为流传的著作。相信大多数从事建筑结构的工程人员都或多或少读过这本书。其实,这本书可以说是结构工程师的必修课。从事结构工作,很重要的一点就是在工作中培养结构概念体系和整体性思维的方法。这对于结构工程师来讲,是十分重要的。 如今的软件技术已相当发达,很多繁琐的工作都可以通过软件完成,甚至于智能化到了“一键式完成”的地步。设想,如果在软件再这么智能化而且功能强大下去,到时候,只要输入基本的设计参数和经济指标,按一个回车键,软件就将建筑方案设计、结构方案设计、施工图设计全部一条线完成出来了,那么对结构工程师来说不是一场灾难嘛。软件取代所有主要工作,技术人员不就要下岗了啊。所以,我认为,从一个角度来讲,结构工程软件时代的到来,意味着结构工程师的一场“危机”。如何在这场即将到来的危机面前“明哲保身”,做软件所不能做到的事情是很关键和重要的,什么最关键而重要,我认为就是结构的概念和体系思维,这个才是将来结构工程师的价值所在,而这恰恰是软件所难以做到的。 闲话暂放,言归正传。这篇博客将粗浅地探讨结构动力学问题的概念和体系问题。之所以关注结构动力学问题,一是因为结构静力学研究已比较成熟,林同炎前辈的《结构概念和体系》一书中已阐明很完善精辟了,二是因为现阶段工程结构抗震问题是研究的热点和前沿,这个时代里不懂工程抗震概念的结构工程师很难成为一个好工程师。 构件→结构→结构体系,整体性思维,需要工程实践的锻炼以及不断思考的积累。在实践中,反复向自己提问是培养结构概念的一个好方法。比如,问自己什么叫振型分解法?有哪些假定?什么叫时程分析法?有哪些优缺点?……这样积累下来,很多概念就越辩越明,结构的概念也就逐渐得到建立。 【结构动力分析的分类】 结构动力分析主要包括:特征值分析、反应谱分析、时程分析三大块。特征值分析也称结构自振特性分析,主要求解结构的自振周期和振型向量。反应谱分析基于振型分解反应谱理论,是一种工程上最常用的计算地震作用下结构动力响应方法,但这种方法只限于线弹性结构,弹塑性阶段振型分解法不再适用。时程分析包括线弹性时程分析和弹塑性时程分析两大类,与振型分解法的主要区别在于采用实测的地震波输入结构计算结构的响应,弹塑性时程分析具体还可分为静力弹塑性时程分析(也称Pushover分析)和动力弹塑性时程分析两类。 上述结构动力分析中,特征值分析和反应谱分析比较常用。而时程分析一般仅针对重要建筑以及体型非常复杂的建筑。小震水准下可进行结构线弹性时程分析,大震水准下需要采用结构弹塑性时程分析方法。现阶段,弹塑性时程分析还属于工程上比较前沿的分析内容,还属于一部分实力较强的设计院和科研机构的“专利业务”。当然,我认为随着结构技术人员水平的不断提高,以及软件技术的发达,结构弹塑性时程分析在将来将会越来越普及,甚至成为结构设计人员的“家常便饭”。 【特征值分析】 特征值分析也称结构自振特性分析,因为在数学上这个问题属于齐次线性方程组特征值的求解问题,故亦称特征值分析。其目的是求解结构的自振周期和振型。以前曾经碰到这样一个很有意思的概念问题:结构的阻尼比越大,那么结构的自振周期是减小还是增大呢?概念不清就很容易产生混乱。其实,结构的自振特性均是指无阻尼自由振动的特性值,因此不存在阻尼的影响问题。还有一个问题就是什么是振型?虽然我们经常提振型这个概念,不少人一时半会答不上来。从概念上讲,振型是结构发生无阻尼自由振动时各质点的相对位移,

结构动力特性测试方法及原理

结构动力特性的测试方法及应用(讲稿) 一. 概述 每个结构都有自己的动力特性,惯称自振特性。了解结构的动力特性就是进行结构抗震设 计与结构损伤检测的重要步骤。目前,在结构地震反应分析中,广泛采用振型叠加原理的反应谱分析方法,但需要以确定结构的动力特性为前提。n 个自由度的结构体系的振动方程如下: [][][]{}{})()()()(...t p t y K t y C t y M =+??????+?????? 式中[]M 、[]C 、[]K 分别为结构的总体质量矩阵、阻尼矩阵、刚度矩阵,均为n 维矩阵;{} )(t p 为外部作用力的n 维随机过程列阵;{})(t y 为位移响应的n 维随机过程列阵;{})(t y &为速度响应的n 维随机过程列阵;{})(t y && 为加速度响应的n 维随机过程列阵。 表征结构动力特性的主要参数就是结构的自振频率f (其倒数即自振周期T )、振型Y(i)与阻尼比ξ,这些数值在结构动力计算中经常用到。 任何结构都可瞧作就是由刚度、质量、阻尼矩阵(统称结构参数)构成的动力学系统,结构一旦出现破损,结构参数也随之变化,从而导致系统频响函数与模态参数的改变,这种改变可视为结构破损发生的标志。这样,可利用结构破损前后的测试动态数据来诊断结构的破损,进而提出修复方案,现代发展起来的“结构破损诊断”技术就就是这样一种方法。其最大优点就是将导致结构振动的外界因素作为激励源,诊断过程不影响结构的正常使用,能方便地完成结构破损的在线监测与诊断。从传感器测试设备到相应的信号处理软件,振动模态测量方法已有几十年发展历史,积累了丰富的经验,振动模态测量在桥梁损伤检测领域的发展也很快。随着动态测试、信号处理、计算机辅助试验技术的提高,结构的振动信息可以在桥梁运营过程中利用环境激振来监测,并可得到比较精确的结构动态特性(如频响函数、模态参数等)。目前,许多国家在一些已建与在建桥梁上进行该方面有益的尝试。 测量结构物自振特性的方法很多,目前主要有稳态正弦激振法、传递函数法、脉动测试法与自由振动法。稳态正弦激振法就是给结构以一定的稳态正弦激励力,通过频率扫描的办法确定各共振频率下结构的振型与对应的阻尼比。 传递函数法就是用各种不同的方法对结构进行激励(如正弦激励、脉冲激励或随机激励等),测出激励力与各点的响应,利用专用的分析设备求出各响应点与激励点之间的传递函数,进而可以得出结构的各阶模态参数(包括振型、频率、阻尼比)。脉动测试法就是利用结构物(尤其就是高柔性结构)在自然环境振源(如风、行车、水流、地脉动等)的影响下,所产生的随机振动,通过传感器记录、经谱分析,求得结构物的动力特性参数。自由振动法就是:通过外力使被测结构沿某个主轴方向产生一定的初位移后突然释放,使之产生一个初速度,以激发起被测结构的自由振动。 以上几种方法各有其优点与局限性。利用共振法可以获得结构比较精确的自振频率与阻尼比,但其缺点就是,采用单点激振时只能求得低阶振型时的自振特性,而采用多点激振需较多的设备与较高的试验技术;传递函数法应用于模型试验,常常可以得到满意的结果,但对于尺度很大的实际结构要用较大的激励力才能使结构振动起来,从而获得比较满意的传递函数,这在实际测试工作中往往有一定的困难。 利用环境随机振动作为结构物激振的振源,来测定并分析结构物固有特性的方法,就是近年来随着计算机技术及FFT 理论的普及而发展起来的,现已被广泛应用于建筑物的动力分析研究中,对于斜拉桥及悬索桥等大型柔性结构的动力分析也得到了广泛的运用。斜拉桥或悬索桥的环境随机振源来自两方面:一方面指从基础部分传到结构的地面振动及由于大气变化而影响到上部结构的振动(根据动力量测结果,可发现其频谱就是相当丰富的,具有不同的脉动卓越周期,反应了不同地区地质土壤的动力特性);另一方面主要来自过桥车辆的随机振动。

迭代函数系统在自然景物模拟中的应用

迭代函数系统在自然景物模拟中的应用 作者:指导老师: 摘要:本论文首先介绍了分形的由来,包括分形艺术以及它的特征和应用。接着简要论述了自然景物模拟的方法,重点介绍了迭代函数系统对自然景物进行模拟的方法,并通过举例来分析具体的实现步骤!在Windows XP环境下,利用微软公司提供的Visual C++6.0开发工具,编程实现了一个简单的分形艺术图形生成软件。 关键字:分形艺术的由来,分形艺术图形,生成算法,迭代函数系统,IFS码对自然景物的模拟,牛顿迭代法之分形艺术图形软件介绍 1 分形的由来 1.1分形艺术 分形艺术是科学中的艺术,也是艺术中的科学,分形艺术不仅表达着艺术形式和外观,而且表达着生成这种艺术的科学知识,分形艺术广泛的运用在书籍装帧、广告、装饰、服装设计、影视等领域。从狭义的角度讲,分形艺术是指根据分形几何的科学原理,通过计算机软件创造出来的具有审美功能的图形,动画等艺术作品;从广义的角度讲,凡是具有分形思想的艺术作品都可称之为分形艺术,狭义的分性艺术可以划归电脑艺术(数码艺术)门类,而广义的分形艺术也包括通过手工绘制而成的作品。在艺术史中,广义的分性艺术早已存在,如日本艺术家葛饰北斋的作品《神奈川的巨浪》就是一例,此外一些古建筑艺术和少数民族的装饰艺术中也有类似分形的图案。 分形艺术对艺术最直接的贡献就是带来了新的造型语言及表达方式,分形艺术借助计算机技术构造复杂的几何图形并“诗意”的处理这些图形,表现出新的风格,开辟了视觉传达的新领域,分性艺术这种不同于传统绘画艺术的创作方式,也打破了“艺术只属于艺术家”的传统一是,史任何人都有可能创作自己的艺术作品。 分形几何提供了用于描述一些不能用传统的欧几里德几何描述的复杂几何图形的一种方法。是现代数学的一个重要内容,也是研究和处理自然与工程中不规则图形的强有力的工具,他的应用几乎设计自然科学的各个领域。 1.2分形艺术的特征 分性艺术不仅蕴含了传统的美学思想,而且还产生出许多新的美学特征,首先,分性艺术作品中除了对称性中包含的传统的上下,左右及中心对称等观念之外,它的自相似性又揭示了一种新的对称性,即局部与整体的对称,在欣赏分形艺术作品时,如果我们放大某件作品的局部,就会发现这些局部图形与整体的图形史相似的,其次,分形艺术作品中的线条美也具有新的内涵,以往的绘画,雕塑等一书中,线条主要有直线,圆弧线、波状线、蛇形线。在数学上这些线条都是可微分的。然而,在分形艺术作品中,线条是十分复杂和不规则的,常会使用皮亚诺曲线、希尔伯特曲线、柯赫曲线等类曲线。这类曲线通常被称为“妖魔曲线”。它们具有以下三个特征: 1、能够填充整个空间;

结构动力特性试验

第七章结构动力特性试验 7.1概述 建筑结构动力特性是反映结构本身所固有的动力性能。它的主要内容包括结构的自振频率、阻尼系数和振型等一些基本参数,也称动力特性参数或振动模态参数。这些特性是由结构形式、质量分布、结构刚度、材料性质,构造连接等因素决定,但与外荷载无关。 建筑结构动力特性试验量测结构动力特性参数是结构动力试验的基本内容,在研究建筑结构或其他工程结构的抗震、抗风或抗御其它动荷载的性能和能力时,都必须要进行结构动力特性试验,了解结构的自振特性。 1.在结构抗震设计中,为了确定地震作用的大小,必须了解各类结构的自振周期。同样,对于已建建筑的震后加固修复,也需了解结构的动力特性,建立结构的动力计算模型,才能进行地震反应分析。 2测量结构动力特性,了解结构的自振频率,可以避免和防止动荷载作用所产生的干扰与结构产生共振或拍振现象。在设计中可以便结构避开干扰源的影响,同样也可以设法防止结构自身动力特性对于仪器设备的工作产生干扰的影响,可以帮助寻找采取相应的措施进行防震,隔震或消震。 3.结构动力特性试验可以为检测、诊断结构的损伤积累提供可靠的资料和数据。由于结构受动力作用,特别是地震作用后,结构受损开裂使结构刚度发生变化,刚度的减弱使结构自振周期变长,阻尼变大。由此,可以从结构自身固有特性的变化来识别结构物的损伤程度,为结构的可靠度诊断和剩余寿命的估计提供依据。 建筑结构的动力特性可按结构动力学的理论进行计算。但由于实际结构的组成,材料和连接等因素,经简化计算得出的理论数据往往会有一定误差。对于结构阻尼系数一般只能通过试验来加以确定。因此,建筑结构动力特性试验就成为动力试验中的一个极为重要的组成部分,而引起人们的关注和重视。 结构动力特性试验是以研究结构自振特性为主,由于它可以在小振幅试验下求得,不会使结构出现过大的振动和损坏,因此经常可以在现场进行结构的实物试验,正如本章所介绍的试验实例。当然随着对结构动力反应研究的需要,目前较多的结构动力试验,特别是研究地震,风震反应的抗震动力试验,也可以通过试验室内的模型试验来测量它的动力特性。 结构动力特性试验的方法主要有人工激振法和环境随机振动法。人工激报法又可分为自由振动法和强迫振动法。 人工激振法是一种早期使用的方法,试验得到的资料数据直观简单,容易处理;环境随机振动法是一种建立在计算机技术发展基础上采用数理统计处理数据的新方法,由于它是利用环境脉动的随机激振,不需要激振设备,对于现场测试特别有利。以上任何一种方法都能测得结构的各种自振特性参数,由于计算机技术的发展和数据分析专用仪器的普及使用,为各种方法所测得的资料数据提供了快速有效的处理分析条件。 7.2人工激振法测量结构动力特性 7.2.且结构自振频率测量 一、自由振动法 在试验中采用初位移或初速度的突卸或突加荷载的方法,使结构受一冲击荷载作用而产生自由振动。在现场试验中可用反冲激振器对结构产生冲击荷载;在工业厂房中可以通过锻锤、

某装备结构动态特性分析

技术篇 2007年 第十期 某装备结构动态特性分析 霍 红 (中北大学,太原 030051) 摘 要:利用试验模态分析法获得了某机枪结构的模态参数,分析了机枪的动态特性,并通过基于模态试验的灵敏度分析方法,获得了影响该机枪动态特性的敏感部位,为改善机枪动态特性提供了依据. 关键词:机枪;灵敏度分析;动态特性;分析 中图分类号:TP302.7 文献标识码:A 文章编号:1005 8354(2007)10 0001 02 Analysis on structural dyna m ic characteristics for certai n equi p m e nt HUO H ong (N orth U n i ve rs i ty o f Ch i na ,T a i yuan 030051,Chi na) Abstract :A ccor ding to modal analysism etho d,modal parametersw ere derived and structural dynam ic charac teristics were analyzed.U sing sensitivit y analysis of model test ,t he dyna m ic characteristics and sensitive p oints of a m achine gun were obt ained.These woul d be used to i m prove dyna m ic propert y of t hemachine gun. K ey words :machine gun;sensitivity analysis ;struct ural dyna m ic characteristics ;analysis 收稿日期:2007 08 22 作者简介:霍红(1968 ),女,实验师,研究方向:火炮、自动武器与弹药工程. 0 引 言 当今为提高自动武器的机动性,广泛采用弹性枪架,但随着重量的减轻,武器系统的振动加剧.而武器系统的振动又直接影响到射击精度,特别是弹丸出膛 口时的横向位移、横向速度以及弹丸初始扰动等对武器射击精度影响尤其明显 [1] .为此,需掌握武器系统 的固有特性,为分析和优化机枪的动力学特性提供依据,以提高其射击精度.而系统固有特性一般可由理论分析方法和试验方法获得,前者是利用有限元分析法,后者是利用试验模态分析法,随着试验技术的发展和测量仪器精度的提高,利用试验模态分析法得到的结果越来越受到重视,并且常常作为验证有限元模型正确性的主要依据,所以,常采用理论分析和试验两种方法相结合建立模型 [1,2] ,以获得接近实际的结 果,为进一步分析如结构修改设计及结构动力特性优化设计提供良好的基础.本文以某机枪为例,采用试验模态分析法识别机枪系统的模态参数和分析其动 态特性,并在此基础上进行了灵敏度分析,获得机枪动力学特性对各参数变化的灵敏度,为机枪的动力学特性优化设计提供依据. 1 机枪结构试验模态分析 1.1 模态测试系统 模态测试系统基本由以下几部分组成:激励部分、信号测量和数据采集部分、信号分析和频响函数 估计部分 [3] .其测试系统框图见图1所示. 图1 机枪模态试验系统框图 1

机床动力学特性研究

机床动力学特性研究 摘要 介绍机床主轴系统动力学和基于非线性的数控机床结合部动力学特性的研究进展以及基于空间统计学的机床动力学特性。主轴系统的建模、动态特性的研究方法、轴承参数及加工条件等多种因素对机床主轴动力学特性的影响方面作了系统阐述,简要介绍主轴系统的优化设计方法以及结构改进。由于结合部存在着变刚度、变阻尼、迟滞等非线性行为,因此文章指出只有从非线性动力学角度研究结合部,才能适应研发高档数控机床的需要。并明确了从非线性角度研究结合部的主要研究内容和可以采用的研究方法。 abstract This paper introduces the dynamics of machine tool spindle system and the dynamic characteristics of CNC machine tool joints based on nonlinearity, and the dynamic characteristics of machine tools based on spatial statistics. The main shaft system modeling, the dynamic characteristic research method, the bearing parameter and the processing condition and so on many kinds of factors to the machine tool spindle dynamics characteristic aspect has made the system elaboration, briefly introduced the spindle system optimization design method as well as the structure improvement. Due to the non-linear behaviors such as variable stiffness, variable damping and hysteresis in the joint, it is pointed out that only by studying the joint part from the non-linear dynamics, can we meet the needs of high-end CNC machine tools. And the main research contents and the research methods that can be used are studied from the non-linear angle. 前言:众所周知,在机床加工过程中,振动的危害极大,尤其对于超精密机床。使用金刚石刀具作超精密切削时,要求机床工作极其平稳,振动极小,否则很难保证较高的加工精度和超光滑的表面质量。因此,对机床的动力学分析就成为超精密加工中,保障加工质量的关键技术之一。 通过查阅大量的资料文献发现,目前国内外对机床的主轴、导轨等单个零件的动力学分析有很多,但是对机床整机的动力学研究就相对少很多。有介绍机床整机的动力学分析的也是大概笼统的介绍了下,很少有很详细全面的研究。对于这种情况大致了解了到是因为对机床整机进行动力学分析,因为机床本身的体积很大,很难进行有效的激振,需要考虑的因素较多。例如:机床整机不是一个单一的零件,做动力学分析难度较大;机床整机的体积较大,外界环境的干扰较大;所以做机床整机的动力学分析,想要得到有效的动力学数据,必须合理的设计实验步骤和实验平台。 机床的加工性能与其动力学特性非常密切,其动态性能(振动、噪声及稳定性等)是影响其工作性能及品质质量最重要的性能指标。随着机床向高精度、高表面质量和高生产率方向发展,关于机床的振动问题,近年来备受关注。其加工精度很大程度上取决于加工过程中机床的振动,振动的产生不仅制约了数控机床的生产效率,而且还会在加工工件的表面留下波纹,这大大影响了机床加工精度。因此,对机床的动力学研究一直以来都是一个重要的课题。我国及世界其他国家都在竞相发展以高速、高精、高效为主要特征的超精密机床,对这类机床进行动力学优化就显得更加重要。对于高速精密机床而言,进行机床动力学特性分析,了解机床结构本身具有的刚度特性即机床的固有频率和主振型,将可以避免在使用中因振动造成不必要的损失。

Markov迭代函数系统分形的动力学特性分析

2009年工程图学学报2009第6期JOURNALOFENGINEERINGGRAPHICSNo.6 IlllMarkov迭代函数系统分形的动力学特性分析 章立亮 (宁德师范高等专科学校数学系,福建宁德352100) 摘要:研究Markov迭代函数系统(MIFS)的转移概率矩阵与MIFS吸引子分形结构之间的关系。首先提出了分支Markov迭代函数系统的概念并将MIFS系统分解成若干分支系统,给出和证明了几个相关定理。然后讨论转移概率矩阵的零元素对吸引子结构的影响,分析吸引子的局部结构特征,发现MIFS系统吸引子包含自相似结构,基于计算机数学实验分析了吸引子分形形成的动力学特性并给予具体的定性描述。 关键词:计算机应用;迭代函数系统;Markov链;分形 中图分类号:TP391 文献标识码:A文章编号:1003—0158(2009)06.0132.05 AnalysisoftheDynamicalCharacteristicsof MarkovIteratedFunctionSystems ZHANGLi?liang (DepartmentofMathematics,NingdeTeachersCollege,NingdeFujian352100,China) Abstract:TherelationshipbetweentransitionprobabilitymatrixofMarkoviteratedfunctionsystemsandthefractalattractorstructureofMIFSiSresearched.Firstly,thefiliationMarkoviteratedfunctionsystemsiSdefined.andaMIFSsystemiSbrokendownintoseveralfiliationsystems.Secondly,theeffectofzeroelementsintransitionprobabilitymatrixisdiscussed.Atlast,dynamicalcharacteristicsofgeneratingfractalimagebasedoncomputermathematicalexperimentiSanalyzed. Keywords:computerapplication;iteratedfunctionsystems;markovchain;fractal 迭代函数系统IFS(IteratedFunctionSystems、是分形理论研究的一个重要领域,其理论和方法在分形的计算机构造和图像压缩方面应用广泛。1982年,Dekking将具有很强实际应用价值的Markov理论引入迭代函数系统的研究之中,提出了一种Markov特性的IFS系统【1】(简记为MIFS),MFBarnsely、JHElton、JCHart等人对此问题作了更进一步深入研究的工作,克服了传统IFS方法的局限性,得到更具普遍意义的广义迭代函数系统,并开展了许多具体的应用 收稿B期:2008—12—03 基金项目:福建省自然科学基金资助项目(Z0511053) 作者简介;章立亮(1963-),男,福建宁德人,副教授,主要研究方向为分形与计算机图形图像。万方数据

结构动力学概念题

概念题 1.1 结构动力计算与静力计算的主要区别是什么? 答:主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无惯性力;(2) 在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3) 动力分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。 1.2 什么是动力自由度,确定体系动力自由度的目的是什么? 答:确定体系在振动过程中任一时刻体系全部质量位置或变形形态所需要的独立参数的个数,称为体系的动力自由度(质点处的基本位移未知量)。 确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。 1.3 结构动力自由度与体系几何分析中的自由度有何区别? 答:二者的区别是:几何组成分析中的自由度是确定刚体系位置所需独立参数的数目,分析的目的是要确定体系能否发生刚体运动。结构动力分析自由度是确定结构上各质量位置所需的独立参数数目,分析的目的是要确定结构振动形状。 1.4 结构的动力特性一般指什么? 答:结构的动力特性是指:频率(周期)、振型和阻尼。动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)所确定的、表征结构动力响应特性的量。动力特性不同,在振动中的响应特点亦不同。 1.5 什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼? 答:振动过程的能量耗散称为阻尼。 产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。当然,也包括结构中安装的各种阻尼器、耗能器。阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假想力。粘滞阻尼理论假定阻尼力与质量的速度成比例。 粘滞阻尼理论的优点是便于求解,但其缺点是与往往实际不符,为扬长避短,按能量等效原则将实际的阻尼耗能换算成粘滞阻尼理论的相关参数,这种阻尼假设称为等效粘滞阻尼。 1.6 采用集中质量法、广义位移法(坐标法)和有限元法都可使无限自由度体系简化为有限自由度体系,它们采用的手法有何不同? 答:集中质量法:将结构的分布质量按一定规则集中到结构的某个或某些位置上,认为其他地方没有质量。质量集中后,结构杆件仍具有可变形性质,称为“无重杆”。 广义坐标法:在数学中常采用级数展开法求解微分方程,在结构动力分析中,也可采用相同的方法求解,这就是广义坐标法的理论依据。所假设的形状曲线数目代表在这个理想化形式中所考虑的自由度个数。考虑了质点间均匀分布质量的影响(形状函数),一般来说,对于一个给定自由度数目的动力分析,用理想化的形状函数法比用集中质量法更为精确。 有限元法:有限元法可以看成是广义坐标法的一种特殊的应用。一般的广义坐标中,广义坐标是形函数的幅值,有时没有明确的物理意义,并且在广义坐标中,形状函数是针对整个结构定义的。而有限元法则采用具有明确物理意义的参数作为广义坐标,且形函数是定义

函数迭代

2011年1月数学学校 专题-----函数迭代 利用了一个函数自身复合多次,这就叫做迭代。一般地,设f :D →D 是一个函数,对任意的x ∈D ,记f (0)(x)=x ,f (1)(x)=f(x)f (2)(x)=f(f(x)),…,f (n+1)(x)=f(f (n)(x)).则称f (n)(x)为f(x)的n 次迭代,并称n 为f (n)(x)的迭代指数。 如果f (n)(x)有反函数,则记为f (-n)(x).于是迭代指数可以取所有整数. 对于一些简单的函数,它的n 次迭代是容易得到的. 若f(x)=x+c ,则f (n)(x)=x+nc. 若f(x)=x 2,则f (n)(x)=x 2n . 若f(x)=ax+b ,则f(n)(x)=a n x+a a n --11b(a ≠). 函数的迭代的理论与方法在计算数学和微分动力系统等领域中有着很重要的应用。然而,由于它的一些方法和结果是初等的,又较有趣,因而在数学竞赛中屡有出现。 ⑴观查法 例1、设f(x)=3x+2,证明:存在正整数m ,使f (100)(m)能被1988整除。 例2、 设).(.1 2)()(2 x f x x x f n 计算-= ⑵不动点求函数迭代: 如果x 0是)(x f 的不动点,则x 0也是)()(x f n 的不动点。这一点用数学归纳法是容易证明的。 例3、若9319)(2+=x x f 求,)()(x f n 。 ③函数迭代应用: 在国内外数学竞赛中,不断出现一些要用到各种技巧的函数迭代和函数方程问题。主要有三个方面: (1)研究函数的性质;(2)求函数的值;(3)确定函数的解析表达式。下面通过例题来介绍解决这些问题的方法和技巧。 例4、设N 是自然数集合,k ∈N 。如果有一个函数f :N →N 是严格递增的,且对于每个n ∈N ,都有f (f (n ))=k n 。证明:对每个n ∈N ,都有 12+k k n ≤f (n )≤2 1+k n .

结构动力特性测试方法及原理

一.概述 每个结构都有自己的动力特性,惯称自振特性。了解结构的动力特性是进行结构抗震设 计和结构损伤检测的重要步骤。目前,在结构地震反应分析中,广泛采用振型叠加原理的反应谱分析方法,但需要以确定结构的动力特性为前提。n个自由度的结构体系的振动方程如下: M y(t) C y(t) K y(t) p(t) 式中M、C、K分别为结构的总体质量矩阵、阻尼矩阵、刚度矩阵,均为n维矩阵;p(t)为外部作用力的n维随机过程列阵;y(t) 为位移响应的n维随机过程列阵;y(t)为速度响应的n维随机过程列阵;y(t)为加速度响应的n维随机过程列阵。 表征结构动力特性的主要参数是结构的自振频率 f (其倒数即自振周期T)、振型 Y(i)和阻尼比_:这些数值在结构动力计算中

经常用到。

任何结构都可看作是由刚度、质量、阻尼矩阵(统称结构参数)构成的动力学系统,结构一旦出现破损,结构参数也随之变化,从而导致系统频响函数和模态参数的改变,这种改变可视为结构破损发生的标志。这样,可利用结构破损前后的测试动态数据来诊断结构的破损,进而提岀修复方案,现代发展起来的“结构破损诊断” 技术就是这样一种方法。其最大优点是将导致结构振动的外界因素作为激励源,诊断过程不影响结构的正常使用,能方便地完成结构破损的在线监测与诊断。从传感器测试设备到相应的信号处理软件,振动 模态测量方法已有几十年发展历史,积累了丰富的经验,振动模态测量在桥梁损伤检测领域的发展也很快。随着动态测试、信号处理、计算机辅助试验技术的提高,结构的振动信息可以在桥梁运营过程中利用环境激振来监测,并可得到比较精确的结构动态特性(如频响函数、模态参数等)。目前,许多国家在一些已建和在建桥梁上进行该方面有益的尝试。 测量结构物自振特性的方法很多,目前 主要有稳态正弦激振法、传递函数法、脉动测

工程结构动力特性及动力响应检测技术

江苏省工程建设标准DGJ JXXXXX-2010DGJ32/JXX-2010 工程结构动力特性及动力响应检测技术规程 Technical specification for testing dynamic characteristic and dynamic response of engineering structures 2010-XX-XX发布2010-XX-XX实施江苏省建设厅审定发布 江苏省工程建设标准 工程结构动力特性及动力响应检测技术规程 DGJ32/JXX-2010 JXXXXX-2010 主编单位: 批准单位: 江苏省建设厅 批准日期: 2010年XX月XX日

前言 近年来,结构的安全评估及抗震性能评价越来越受到人们的重视,结构的动力检测由于其自身的优点逐渐成为工程界和学术界十分关注的一个研究领域。结构动力检测方法可不受结构规模和隐蔽的限制,高效模块化、数字化的结构动力响应测量技术为结构动力检测方法提供了有效的技术支持。为规范工程结构动力特性和动力响应检测方法和程序,提高检测结果的可靠性,特编制本规程。 根据江苏省建设厅《关于印发<江苏省2009年度工程建设标准和标准设计图集编制、修订计划>的通知》(苏建科[2009]99号)的要求,规范编制组在前期相关科研的基础上,经广泛调查研究,认真总结实践经验,参考国内外有关先进标准,开展专题研究、试验研究和典型工程应用,并在广泛征求意见的基础上,制定本规程。 本规程的主要技术内容是:1 总则;2术语和符号;3基本规定;4仪器设备;5工程结构动力特性检测;6工程结构动力响应检测;7检测报告的编写。 本规程在使用过程中如发现需要修改或补充之处,请随时将意见反馈至南京工业大学(南京市中山北路200号,邮政编码:210009),以供今后修订时参考。本标准主编单位、参编单位和主要起草人:主编单位: 主要起草人:

第2章 索网结构动力特性分析

第2章索网结构动力特性分析 2.1引言 索网结构的动力特性分析包括索网结构的模态阵型、频率和阻尼分析。索网结构的模态频率和阵型特性是索网结构动力特性分析的最基本方面,运用有限单元法对索网结构的模态频率和阵型进行分析,其中考虑了辅助索位置、阻尼器阻尼大小的影响。 索网结构中的集中阻尼除了来自于索端阻尼器之外,还来自于辅助索位置的阻尼器,例如可以在主索与辅助索的连接位置引入集中阻尼,而此集中阻尼可以是粘滞阻尼器,也可以是粘弹性阻尼器,本文考虑采用粘滞阻尼器进行分析。为了研究辅助索位置的集中阻尼对索网结构阻尼特性的影响,建立了考虑辅助索位置集中阻尼的索网体系的运动方程,推导得出关于索网结构集中的复频率方程,结果表明复频率方程是一个高次超越方程,需要运用迭代法进行数值求解无量纲复特征频率,从而得到模态阻尼比。 2.2正交索网结构复频率方程 2.2.1正交索网模型的建立 本索网模型(如图2-1所示)是由n根互相平行的斜拉索和 11 m-根互相平行的辅助索及在两者连接位置节点处的阻尼器组成。各斜拉索与辅助索相互正交。阻尼器采用Kelvin模型错误!未找到引用源。进行模拟,即除了阻尼器的阻尼大小外,还考虑阻尼器的并联内刚度,阻尼和刚度分别采用线性粘滞阻尼模型和线性弹簧模拟。 (a) 索网布置图(b)阻尼器模型图 图2-1 正交索网模型 2.2.2正交索网的复频率方程 在斜拉索-阻尼型辅助索索网系统中,对于连接斜拉索和辅助索的集中阻尼器,处考虑它的集中阻尼值以外,还要考虑它所带有的刚度对索网结构动力特性的影响。在模型中,分别采用线性粘滞阻尼和线性弹簧模拟阻尼器的阻尼和刚度, 根据张紧弦理论分析如图2-1所示正交索网的自由振动。模型中共有 11 m-根辅

钢框架动力特性实验报告汇总

钢框架模型动力特性试验报告 前言 建筑结构动力特性是反映结构本身所固有的动力性能。它的主要内容包括结构的自振频率、振型、阻尼系数等一些基本参数。这些特性是由结构形式、质量分布、结构刚度、材料性质、构造连接等因素决定,但与外荷载无关,它反应了体系的固有特性。 建筑结构动力特性试验量测结构动力特性参数是结构动力试验的基本内容,在研究建筑结构的抗震、抗风或抵御其他动力荷载的性能时,都必须要进行结构动力特性试验,了解结构的自振特性。由于它可在小振幅试验下求得,不会使结构出现过大的振动和损坏,因此经常在现场进行结构的实物试验,主要分为人工激振法和环境随机振动法。 建筑物周围大地环境引起结构物振动的地脉动和风称为环境激振。自然地脉动是由海浪、风、交通、机械等自然和人为活动所引起,其位移幅值从千分之几微米到几微米,频带从0.1Hz 到100Hz。通过拾振器测得建筑物脉动反应后,对随机的脉动信号进行数据处理,可得到结构的基频率或较低几阶的频率。可推导出脉动的功率谱峰值,这些峰值对应的频率即为结构的自振频率,而根据计算软件的精度不同,能得出较为精确的前几阶频率的数目也不同。 一.试验目的 1. 了解脉动测试法的基本原理,掌握用脉动法测试结构的固有频率、阻尼及振型的方法; 2. 熟悉常用结构动力特性测试系统的组成和相关仪器的使用方法; 3. 熟悉建(构)筑物动力特性现场实测的基本方法和一些应该注意的问题; 二.工程概况 1. 结构如图1所示:试验结构为一个7层多自由度钢框架,平面内框架尺寸为400mm×105mm,模型板超出框架柱范围,尺寸为500mm×300mm×15mm,每层层高为300mm,每层各有八块95mm×90mm×10mm的铁质的配重。结构材料为 Q235钢,节点处通过连接板和螺栓进行连接,4个框架柱为 8的Q235钢。

相关文档
最新文档