高考数学必考知识点19概率随机变量及其分布列
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年高考数学必考知识点19 概率、随机变量及其分布列
(2012·湖南)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次购物量 1至4件 5至8件 9至12件 13至16件 17件及以上
顾客 数(人) x 30 25 y 10
结算时间 (分钟/人)
1 1.5
2 2.5 3
已知这100位顾客中一次购物量超过8件的顾客占55%.
(1)确定x ,y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望;
(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)
答案:解 (1)由已知得25+y +10=55,x +30=45,所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,将频率视为概率得
P (X =1)=
15100=320,P (X =1.5)=30100=310,P (X =2)=25100=14,P (X =2.5)=20100=15,P (X =3)=10100=110
. X 的分布列为
X 1 1.5 2 2.5 3 P
3
20
310
14
15
110
X 的数学期望为
E (X)=1×320+1.5×310+2×14+2.5×15+3×110
=1.9.
(2)记A 为事件“该顾客结算前的等候时间不超过2.5分钟”,X i (i =1,2)为该顾客前面第i 位顾客的结算时间,则
P (A)=P (X 1=1且X 2=1)+P (X 1=1且X 2=1.5)+P (X 1=1.5且X 2=1).
由于各顾客的结算相互独立,且X 1,X 2的分布列都与X 的分布列相同,所以
P (A)=P (X 1=1)×P (X 2=1)+P (X 1=1)×P (X 2=1.5)+P (X 1=1.5)×P (X 2=1)=
320×320+320×310+310×320=980
. 故该顾客结算前的等候时间不超过2.5分钟的概率为9
80
.
结合事件的互斥性、对立性、独立性以及古典概型,主要以解答题的方式考查离散型随机变量分布列、期望和方差的求解及其实际应用.
本部分复习要从整体上,知识的相关关系上进行.离散型随机变量问题的核心是概率计算,而概率计算又以事件的独立性、互斥性、对立性为核心,在解题中要充分分析事件之间的关系.
必备知识
互斥事件有一个发生的概率
若A、B是互斥事件,则P(A+B)=P(A)+P(B),P(A)+P(A)=1.
相互独立事件与n次独立重复试验
(1)若A1,A2,…,A n是相互独立事件,则P(A1·A2·…·A n)=P(A1)·P(A2)·…·P(A n).
(2)如果在一次试验中事件A发生的概率为p,事件A不发生的概率为1-p,那么在n次独立重复试验中事件A发生k次的概率为:
P n(k)=C k n p k(1-p)n-k.
离散型随机变量的分布列、期望与方差
(1)主干知识:随机变量的可能取值,分布列,期望,方差,二项分布,超几何分布,正态分布.
(2)基本公式:①E(ξ)=x1p1+x2p2+…+x n p n+…;
②D(ξ)=(x1-E(ξ))2p1+(x2-E(ξ))2p2+…+(x n-E(ξ))2p n+…;
③E(aξ+b)=aE(ξ)+b,D(aξ+b)=a2D(ξ);
④二项分布:ξ~B(n,p),则P(ξ=k)=C k n p k(1-p)n-k,E(ξ)=np,D(ξ)=np(1-p).
正态分布
(1)若X服从参数为μ和σ2的正态分布,则可表示为X~N(μ,σ2).
(2)N(μ,σ2)的分布密度曲线关于直线x=μ对称,该曲线与x轴所围成的图形的面积为1.
(3)当X~N(μ,σ2)时,0.683=P(μ-σ<X≤μ+σ),0.954=P(μ-2σ<X≤μ+2σ),0.997=P(μ-3σ<X≤μ+3σ).
以上三个概率值具有重要的应用,要熟记,不可混用.
必备方法
1.在解含有相互独立事件的概率题时,首先把所求的随机事件分拆成若干个互斥事件的和,其次将分拆后的每个事件分拆为若干个相互独立事件的乘积,这两个事情做好了,问题的思路就清晰了,接下来就是按照相关的概率值进行计算的问题了,如果某些相互独立事件符合独立重复试验概型,就把这部分归结为用独立重复试验概型,用独立重复试验概型的概率计算公式解答.
2.相当一类概率应用题都是由掷硬币、掷骰子、摸球等概率模型赋予实际背景后得出来的,我们在解题时就要把实际问题再还原为我们常见的一些概率模型,这就要根据问题的具体情况去分析,对照常见的概率模型,把不影响问题本质的因素去除,抓住问题的本质.
3.求解一般的随机变量的期望和方差的基本方法是:先根据随机变量的意义,确定随机变量可以取哪些值,然后根据随机变量取这些值的意义求出取这些值的概率,列出分布列,根据数学期望和方差的公式计算.
互斥事件与相互独立事件的概率
互斥事件、相互独立事件的概率在求随机变量的分布列、期望、方差往往起工具性作用,试题多来源于生活,考查阅读理解能力及对概率知识的应用能力.
【例1】►(2012·陕西)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下: