湖北省武汉市黄陂区2018-2018学年八年级下期末数学试卷解析版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省武汉市黄陂区2013-2014学年八年级(下)
期末数学试卷
一、选择题(每小题3分,共30分)本题共10个小题,每小题均给出A、B、C、D四个选项,有且只有一个答案是正确的,请将正确答案的代号填在答题卡上,答在试题卷上无效.
1.(3分)二次根式有意义的条件是()
A.x>2 B.x<2 C.x≥2D.x≤2
2.(3分)下列计算正确的是()
A.=±2 B.C.2﹣=2 D.
3.(3分)如图,数轴上点A对应的数为2,AB⊥OA于A,且AB=1,以OB为半径画圆,交数轴于点C,则OC的长为()
A.3B.C.D.
4.(3分)为参加中学生篮球运动会,某校篮球队准备购买10双运动鞋,各种尺码统计如下表,则这10双运动鞋的尺码的众数和中位数分别为()
尺码(厘米)25 25.5 26 26.5 27
购买量(双) 1 2 3 2 2
A.25.5,25.5 B.25.5,26 C.26,25.5 D.26,26
5.(3分)已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()
A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定
6.(3分)菱形的两条对角线长分别为9cm与4cm,则此菱形的面积为()cm2.A.12 B.18 C.20 D.36
7.(3分)匀速地向如图的容器内注水,最后把容器注满,在注水过程中,水面的高度h随时间t的变化而变化,变化规律为一折线,下列图象(草图)正确的是()
A.B.
C.D.
8.(3分)某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)次为95,90,88,则小彤这学期的体育成绩为()
A.89 B.90 C.92 D.93
9.(3分)如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A8的坐标是()
A.(﹣8,0)B.(0,8)C.(0,8)D.(0,16)
10.(3分)如图,正方形ABCD的边长为2,点E、F分别为边AD、BC上的点,EF=,点G、H分别为AB、CD边上的点,连接GH,若线段GH与EF的夹角为45°,则GH的长为()
A.B.C.D.
二、填空题(每小题3分,共18分)
11.(3分)计算:=_________.
12.(3分)若3,a,4,5的众数是4,则这组数据的平均数是_________.
13.(3分)平行四边形的一个内角平分线将该平行四边形的一边分为3cm和4cm两部分,则该平行四边形的周长为_________.
14.(3分)已知点A(﹣3,a),B(1,b)都在一次函数y=kx+2的图象上,则a与b的数量关系为_________.
15.(3分)在一次越野赛跑中,当小明跑了1600m时,小刚跑了1450m,此后两人分别调整速度,并以各自新的速度匀速跑,又过100s时小刚追上小明,200s时小刚到达终点,300s时小明到达终点.他们赛跑使用时间t(s)及所跑距离如图s(m),这次越野赛的赛跑全程为_________m?
16.(3分)在平面直角坐标系中,直线y=kx+x+1过一定点A,坐标系中有点B(2,0)和点C,要使以A、O、B、C为顶点的四边形为平行四边形,则点C的坐标为_________.
三、解答题(共9小题,共72分)
17.(6分)化简:.
18.(6分)在平面直角坐标系中,直线y=kx﹣2经过点A(﹣2,0),求不等式4kx+3≤0的解集.
19.(6分)已知▱ABCD中,AE平分∠BAD,CF平分∠BCD,分别交CD、AB于E、F,求证:AE=CF.
20.(7分)点P(x,y)在直线x+y=8上,且x>0,y>0,点A的坐标为(6,0),设△OP A 的面积为S.
(1)求S与x的函数关系式,并直接写出x的取值范围;
(2)当S=12时,求点P的坐标.
21.(7分)某公司为了了解员工每人所创年利润情况,公司从各部抽取部分员工对每年所创年利润情况进行统计,并绘制如图1,图2统计图.
(1)将图补充完整;
(2)本次共抽取员工_________人,每人所创年利润的众数是_________,平均数是_________;
(3)若每人创造年利润10万元及(含10万元)以上位优秀员工,在公司1200员工中有多少可以评为优秀员工?
22.(8分)如图,在▱ABCD中,E是AD上一点,连接BE,F为BE中点,且AF=BF,(1)求证:四边形ABCD为矩形;
(2)过点F作FG⊥BE,垂足为F,交BC于点G,若BE=BC,S△BFG=5,CD=4,求CG.
23.(10分)某欢乐谷为回馈广大谷迷,在暑假期间推出学生个人门票优惠价,各票价如下:票价种类(A)学生夜场票(B)学生日通票(C)节假日通票
单价(元)80 120 150
某慈善单位欲购买三种类型的票共100张奖励品学兼优的留守学生,其中购买的B种票数是A种票数的3倍还多7张,C种票y张.
(1)直接写出x与y之间的函数关系式;
(2)设购票总费用为元,求(元)与x(张)之间的函数关系式;
(3)为方便学生游玩,计划购买的学生夜场票不低于20张,且每种票至少购买5张,则有几种购票方案?并指出哪种方案费用最少.
24.(10分)四边形ABCD为矩形,G是BC上的任意一点,DE⊥AG于点E.