化学气相沉积.全解

合集下载

化学气相沉积名词解释

化学气相沉积名词解释

化学气相沉积名词解释
高等教育中,化学气相沉积是一个比较重要的实验技术。

它需要一定的精密仪器和操作技术,能够在特定储存条件下保存样品,从而一步步进行体外细胞实验和细胞系创建。

首先,根据实验需要,将各种细胞分别放置在不同的容器中,然后在室温下进行扩增手术和准备各种液体,如细胞培养液、抗原池液等。

之后,细胞样品经过培养后,将细胞以游离的方式悬浮在士光管气相层内,利用缓冲法和氧化还原电位调节液进行细胞转染,以获取最终的气相传输细胞。

有了细胞气相沉积,可以让实验变得更容易了,不需要人工观察细胞,而且可以将细胞悬浮在不受影响的气体中,在化学分析实验中,极大地提高了精确度和准确性,这在一定程度上提升了实验的质量,重要的是早期的实验,也可以将一些变换和保护药物,一步步的细胞实验和细胞系的创建,起到非常重要的作用,使得高等教育中的实验更加准确有效。

总之,要想学好高等教育中的化学气相沉积,就必须要掌握一定的精密仪器和操作技术,用正确的方法来进行实验。

只有掌握正确的方法和正确的思路,才能使实验结果准确而稳定,才能发挥最大的效果。

化学气相沉积

化学气相沉积

集成电路芯片工艺化学气相沉积(CVD)化学汽相淀积(CVD)化学汽相淀积是指通过气态物质的化学反应在衬底上淀积一层薄膜材料的过程。

CVD膜的结构可以是单晶、多晶或非晶态,淀积单晶硅薄膜的CVD过程通常被称为外延。

CVD技术具有淀积温度低、薄膜成分和厚度易于控制、均匀性和重复性好、台阶覆盖优良、适用范围广、设备简单等一系列优点。

利用CVD方这几乎可以淀积集成电路工艺中所需要的各种薄膜,例如掺杂或不掺杂的SiO:、多晶硅、非晶硅、氮化硅、金属(钨、钼)等。

一:化学气相沉积方法常用的CVD方法主要有三种:常压化学汽相淀积(APCVD)、低压化学汽相淀积(LPCVIi~)和等离子增强化学汽相淀积(PECVD).APCVD反应器的结构与氧化炉类似,如图1-1所示,该系统中的压强约为一个大气压,因此被称为常压CVD。

气相外延单晶硅所采用的方法就是APCVD。

图1-1APCVD反应器的结构示意图,LPCVD反应器的结构如图1-2所示,石英管采用三温区管状炉加热,气体由一端引入,另一端抽出,半导体晶片垂直插在石英舟上。

由于石英管壁靠近炉管,温度很高,因此也称它为热壁CVD装置,这与利用射频加热的冷壁反应器如卧式外延炉不同.这种反应器的最大特点就是薄膜厚度的均匀性非常好、装片量大,一炉可以加工几百片,但淀积速度较慢.它与APCVD的最大区别是压强由原来的1X10SPa降低到1X102Pa左右。

图1-2LPCVD反应器的结构示意图图1-3平行板型PECVD反应器的结构示意图PECVD是一种能量增强的CVD方法,这是因为在通常CVD系统中热能的基础上又增加了等离子体的能量.图1-3给出了平行板型等离子体增强CVD反应器,反应室由两块平行的金属电极板组成,射频电压施加在上电极上,下电极接地。

射频电压使平板电极之间的气体发生等离子放电。

工作气体由位于下电极附近的进气口进入,并流过放电区。

半导体片放在下电极上,并被加热到100—400;C左右.这种反应器的最大优点是淀积温度低。

化学气相沉积

化学气相沉积

化学气相沉积作为一种非常有效的材料表 面改性方法,具有十分广阔的发展应用前景。 随着工业生产要求的不断提高, CVD 的工艺 及设备得到不断改进, 现已获得了更多新的 膜层, 并大大提高了膜层的性能和质量,它 对于提高材料的使用寿命、改善材料的性 能、节省材料的用量等方面起到了重要的 作用,下一步将向着沉积温度更低、有害生 成物更少、规模更大等方向发展。随着各 个应用领域要求的不断提高, 对化学气相沉 积的研究也将进一步深化,CVD 技术的发展 和应用也将跨上一个新的台阶。
2、CVD过程 反应气体向基体表面扩散
反应气体吸附于基体表面
在基体表面上产生的气相副产物脱离表面
留下的反应产物形成覆层
3、CVD几种典型化学反应
1)热分解
SiH4 >500℃ Si + 2H2 (在900-1000℃成膜) CH3SiCl3 1400℃ SiC + 3HCl
2)还原
WF6 +3H2 SiCl4 + 2Zn WF6 + 3 Si 2 W + 6HF (氢还原) Si + 2ZnCl2 (金属还原) SiF4 (基体材料还原) W+3 2
反应沉积成膜 反应沉积成膜
3、PCVD的特点
成膜温度低
沉积速率高 膜层结合力高
膜层质量好 能进行根据热力学规律难以发生的反应
4、PCVD与CVD装置结构相近, 只是需要增加能产生等离子体 的反应器。用于激发CVD反应 的等离子体有: 直流等离子体 射频等离子体 微波等离子体 脉冲等离子体
直流等离子体法(DCPCVD)
2、PCVD的成膜步骤 等离子体产生 等离子体产生
辉光放电的压力较低,加 速了等离子体的质量 输送和扩散

化学气相沉积CVD

化学气相沉积CVD
离解和离化,从而大大提高了参与反应的物质活性;
这些具有高反应活性的物质很容易被吸附到较低温度的基
体表面上,于是,在较低的温度下发生非平衡的化学反应
沉积生成薄膜,这就大大降低了基体的温度,提高了沉积
速率。
16
3. PECVD装置
普通CVD+高频电源(用于产生等离子体)
用高频产生辉光放电等离子体的卧式反应
主要由反应器(室)、供气系统和加热系统等组成
图8.3.1
Si片PN结构微细加工的CVD装置意示图
6
反应器的类型:
图8.3.2 CVD反应器的类型
7
沉积过程:
① 在主气流区域,反应物从反应器入口到分解区域的质
量输运;
② 气相反应产生膜形成的前驱体和副产物;
③ 成膜前驱体质量输运至生长表面;
④ 成膜前驱体吸附在生长表面;
可有效解决普通CVD基体温度高,沉积速率慢的不足。
1.等离子体
(1)物质的第四态
给物质以能量,即T↗:
固 液 气 电离,离子+自
由电子,等离子体,第四态。
(2)产生
自然界:大气电离层,高温太阳
实验室:气体放电,供给能量,维持;
图8.3.3 物质的四态
15
(3)性质及应用
气体高度电离的状态;
下进行沉积的某些场合,如沉积平面
硅和MOS集成电路的纯化膜。
(2)按照沉积时系统压强的大小分类:
常压CVD(NPCVD),~1atm;
低压CVD(LPCVD),10~100Pa;
LPCVD具有沉积膜均匀性好、台阶覆盖及一致性较好、
针孔较小、膜结构完整性优良、反应气体的利用率高等优
点,不仅用于制备硅外延层,还广泛用于制备各种无定形

化学气相沉积解读

化学气相沉积解读

由上图分析可知: 高温:扩散控制 低温:表面反应控制 反应导致的沉积速率为:
其中 N0 为表面原子密度。 沉积速率随温度的变化规律取决于Ks,D,δ 等随温度的变化情况。 因此,一般而言,化学反应或化学气相沉积的速度将随温度的升 高而加快。 但有时并非如此,化学气相沉积的速率随温度的升高 出现先升高后降低的情况。 这是什么原因呢?
第四章 化学气相沉积
(Chemical vapor deposition)


4.4 薄膜生长动力学 4.5 化学气相沉积装置
4.4 薄膜生长动力学
在CVD过程中,薄膜生长过程取决于气体与衬底间界面
的相互作用,具体过程如下: 1. 反应气体扩散通过界面 层 2. 气体分子在薄膜或衬底 表面的吸附 3. 原子表面的扩散、反应 和溶入薄膜晶格之中 4. 反应产物扩散离开衬底 表面并通过界面层
此式表明:Si的沉积速度将随着距离的增加呈指数 趋势下降,即反应物将随着距离的增加逐渐贫化。

轴向生长速率的均匀性:

扩散速度小于气流速度

沉积速率随距离的增加呈指数下降! 倾斜基片使薄膜生长的均匀性得以改善 ;
提高气体流速v和装置的尺寸b 调整装置内温度分布,影响扩散系数D的分布
因此,提高沉积均匀性可以采取如下措施:
我们用CVD方法共同的典型式子来说明: 设这一反应正向进行时为放热反应,则
aA( g ) bB( g ) cC (s) dD( g )
ΔH<0, U0<U
上式描述的正向和逆向反应速率如下页图a所示,均随 温度上升而提高。同时,正向反应的激活能低于逆向反应 的激活能。而净反应速率应是正反向反应速率之差,而他 随温度升高时会出现一个最大值。因此温度持续升高将会 导致逆反应速度超过正向的,薄膜的沉积过程变为薄膜的 刻蚀过程。

化学气相沉积(CVD)PPT演示课件

化学气相沉积(CVD)PPT演示课件

growth of Si films.(歧化反应)
16
6)可逆输运
采用氯化物工艺沉积GaAs单晶薄膜,InP,GaP, InAs,(Ga, In)As, Ga(As, P)
As 4(g) As 2(g) 6GaCl(g) 3H2(g) 87 5500 oo CC 6GaAs(s) 6HCl (g)
5
Schematic diagram of the chemical, transport, and geometric6 al complexities involved in modeling CVD processes.
一、反应类型
主要反应类型:
热分解反应(Pyrolysis)
还原反应(Reduction)
11
3) 氧化反应(Oxidation)
SiH4(g) +O2(g) 450oCSiO2(s) +2H2(g) 2AlCl3(g) 3H2(g) +3CO2(g) 1000oC Al2O3(s) +3CO(g) +6HCl(g) SiCl4(g) +O2(g) +2H2(g) 1500oCSiO2(s) +4HCl(g)
当挥发性金属可以形成具有在不同温度范围内 稳定性不同的挥发性化合物时,有可能发生歧 化反应。
2GeI
2
(
g
)
300 oC 600 oC
Ge
(
s)

GeI
4
(
g
)
金属离子呈现两种价态,低价化合物在高温下 更加稳定。
15
Байду номын сангаас
Early experimental reactor for epitaxial

化学气相沉积(CVD)技术梳理

化学气相沉积(CVD)技术梳理

化学气相沉积(CVD)技术梳理1. 化学气相沉积CVD的来源及发展化学气相沉积(Chemical Vapor Deposition)中的Vapor Deposition意为气相沉积,其意是指利用气相中发生的物理、化学过程,在固体表面形成沉积物的技术。

按照机理其可以划分为三大类:物理气相沉积(Physical Vapor Deposition,简称PVD),化学气相沉积(Chemical Vapor Deposition,简称CVD)和等离子体气相沉积(Plasma Chemical Vapor Deposition,简称PCVD)。

[1]目前CVD的应用最为广泛,其技术发展及研究也最为成熟,其广泛应用于广泛用于提纯物质、制备各种单晶、多晶或玻璃态无机薄膜材料。

CVD和PVD之间的区别主要是,CVD沉积过程要发生化学反应,属于气相化学生长过程,其具体是指利用气态或者蒸汽态的物质在固体表面上发生化学反应继而生成固态沉积物的工艺过程。

简而言之,即通过将多种气体原料导入到反应室内,使其相互间发生化学反应生成新材料,最后沉积到基片体表面的过程。

CVD这一名称最早在Powell C F等人1966年所著名为《Vapor Deposition》的书中被首次提到,之后Chemical Vapor Deposition才为人广泛接受。

[2]CVD技术的利用最早可以被追溯到古人类时期,岩洞壁或岩石上留下了由于取暖和烧烤等形成的黑色碳层。

现代CVD技术萌芽于20世纪的50年代,当时其主要应用于制作刀具的涂层。

20世纪60~70年代以来,随着半导体和集成电路技术的发展,CVD技术得到了长足的发展和进步。

1968年Nishizawa课题组首次使用低压汞灯研究了光照射对固体表面上沉积P型单晶硅膜的影响,开启了光沉积的研究。

[3] 1972年Nelson和Richardson用CO2激光聚焦束沉积碳膜,开始了激光化学气相沉积的研究。

化学气相沉积

化学气相沉积
起反应室内的微粒或
微尘,使沉积薄膜的
品质受到影响
2、CVD技术的热动力学原理
输送现象:
动量传递
以“雷诺数”作为流体以何种
方式进行流动的评估依据:
Re
d v

流速与流向均
平顺者称为“层
流”;
其中,d为流体流经的管径,ρ为流体的密度,
流动过程中产
生扰动等不均
匀现象的流动
形式,则称为
“湍流”。
21
4.2 化学气相沉积原理
二、化学气相沉积法原理
2、CVD技术的热动力学原理
输送现象:
质量传递
反应气体或生成物通过边界层是以扩散的方式来进行的,而使气体分子进
行扩散的驱动力则是来自于气体分子局部的浓度梯度。CVD反应的质量传递用
Fick第一扩散定律描述:
扩散流量 = = −(
22

)
Si 4 HCl
1150~12000 C
10
4.2 化学气相沉积原理
化学合成反应:
由两种或两种以上的反应原料气在沉积反应器中相互作用合成得到所需要的
无机薄膜或其它材料形式的方法。与热分解法比,这种方法的应用更为广泛,
因为可用于热分解沉积的化合物并不很多,而无机材料原则上都可以通过合
适的反应合成得到。
在气体中生成粒子。
3
4.2 化学气相沉积原理
一、基本概念
CVD技术要求:
反应剂在室温或不太高的温度下最好是气态或有较高的蒸气压而易于挥发成
蒸汽的液态或固态物质,且有很高的纯度;
通过沉积反应易于生成所需要的材料沉积物,而其他副产物均易挥发而留在
气相排出或易于分离;
反应易于控制。

化学气相沉积CVD

化学气相沉积CVD

围以及避免了基片变形问题。
SEIEE
化学气相沉积——基本原理
(3)氢化物和金属有机化合物系统
630 675℃ Ga(CH3 )3 + AsH3 GaAs + 3CH4 475℃ Cd(CH3 )2 + H2S CdS + 2CH4
广泛用于制备化合物半导体薄膜。 ( 4 )其它气态络合物、复合物(贵金属、过渡金属沉积)
原则上可制备任一种无机薄膜。
SEIEE
化学气相沉积——基本原理
化学输运反应
将薄膜物质作为源物质(无挥发性物质),借助适当 的气体介质(输运剂)与之反应而形成气态化合物,这种 气态化合物经过化学迁移或物理输运到与源区温度不同的 沉积区,在基片上再通过逆反应使源物质重新分解出来, 这种反应过程称为化学输运反应。
1000 ℃ SiCl 2 H Si 4HCl 4 2
H、Cl、Si三元体系
SEIEE
化学气相沉积——基本原理
CVD的(化学反应)动力学
反应动力学是一个把反应热力学预言变为现实,使反 应实际进行的问题;它是研究化学反应的速度和各种因素 对其影响的科学。 动力学的因素决定了上述过程发生的速度以及他在有限时 间内可进行的程度 CVD 反应动力学分析的基本任务是:通过实验研究薄 膜的生长速率,确定过程速率的控制机制,以便进一步调 整工艺参数,获得高质量、厚度均匀的薄膜。
其自由能变化
ΔGr=cGc-bGb-aGa
Gi Gi0 RT ln ai
SEIEE
化学气相沉积——基本原理
Gr 与反应系统的化学平衡常数K有关
G RT ln K
K Pi (生成物)iBiblioteka 1 n或m j 1 j

化学气相沉积法名词解释

化学气相沉积法名词解释

化学气相沉积法名词解释
化学气相沉积法(Chemical Vapor Deposition,CVD)是一种常用的化学气相沉积技术,用于在固体表面上沉积薄膜或纳米结构材料。

在CVD过程中,化学气体通过化学反应在固体表面上沉积出固体产物,通常在高温和大气压下进行。

CVD通常包括热CVD、等离子体增强CVD、金属有机化学气相沉积等多种形式。

在CVD过程中,通常需要提供一种或多种反应气体,这些气体在反应室中与固体表面发生化学反应,生成沉积物。

反应气体通常是一些有机物、金属有机物或卤化物,可以通过热解或氧化反应来沉积出所需的材料。

CVD技术可以用于生长碳纳米管、石墨烯、金属薄膜、氧化物薄膜等材料。

CVD技术具有许多优点,例如可以在大面积、复杂形状的基板上进行沉积,可以控制沉积薄膜的厚度和成分,并且可以在较低的温度下进行。

同时,CVD也存在一些挑战,例如需要严格控制反应条件、气体流动和温度分布,以确保沉积物的均匀性和质量。

总的来说,化学气相沉积法是一种重要的薄膜和纳米结构材料制备技术,广泛应用于半导体、光电子、纳米材料等领域。

通过
CVD技术,可以制备出具有特定性能和功能的薄膜和纳米结构材料,为现代科学技术的发展提供了重要支持。

化学气相沉积技术

化学气相沉积技术

化学气相沉积技术化学气相沉积技术(Chemical Vapor Deposition,CVD)是一种在气体环境下进行的化学反应过程,通过在固体表面上沉积出一层薄膜或涂层的方法。

该技术在材料科学、纳米技术、电子学、光学等领域得到了广泛应用。

一、化学气相沉积技术的基本原理化学气相沉积技术是利用气相中的化学反应来生成或沉积出所需的薄膜或涂层。

通常情况下,该技术需要将一种或多种反应物气体输送到反应室中,然后在固体表面上发生化学反应,最终生成所需的薄膜或涂层。

根据反应条件和反应机理的不同,化学气相沉积技术可以分为几种不同的类型,如下所述:1. 热化学气相沉积(Thermal CVD):该技术是利用高温下气体分子的热运动来促进化学反应的进行。

常见的热化学气相沉积技术包括低压化学气相沉积(LPCVD)和气相外延(Gas Phase Epitaxy,GPE)等。

2. 液相化学气相沉积(Liquid Phase CVD,LPCVD):该技术是将固体表面浸泡于一种含有反应物的溶液中,通过溶液中的化学反应生成所需的沉积物。

液相化学气相沉积技术主要用于纳米颗粒的制备。

3. 辅助化学气相沉积(Assisted CVD):该技术是在化学气相沉积的过程中引入外部能量或辅助剂来促进反应的进行。

常见的辅助化学气相沉积技术包括等离子体增强化学气相沉积(Plasma Enhanced CVD,PECVD)和光辅助化学气相沉积(Photo-Assisted CVD)等。

三、化学气相沉积技术的应用领域化学气相沉积技术在材料科学、纳米技术、电子学、光学等领域有着广泛的应用。

下面列举几个常见的应用领域:1. 半导体器件制造:化学气相沉积技术可以用于制备半导体材料的薄膜,如硅、氮化硅等。

这些薄膜可以作为半导体器件的绝缘层、隔离层或介质层。

2. 硬质涂层:化学气相沉积技术可以用于制备硬质涂层,如碳化硅、氮化硼等。

这些硬质涂层具有优异的耐磨损性和高温稳定性,广泛应用于刀具、模具等领域。

化学气相沉积CVD

化学气相沉积CVD

化学气相沉积1 前言化学气相沉积CVD(Chemical Vapor Deposition)是利用加热,等离子体激励或光辐射等方法,使气态或蒸汽状态的化学物质发生反应并以原子态沉积在置于适当位置的衬底上,从而形成所需要的固态薄膜或涂层的过程。

一般地说,化学气相沉积可以采用加热的方法获取活化能,这需要在较高的温度下进行;也可以采用等离子体激发或激光辐射等方法获取活化能,使沉积在较低的温度下进行。

另外,在工艺性质上,由于化学气相沉积是原子尺度内的粒子堆积,因而可以在很宽的范围内控制所制备薄膜的化学计量比;同时通过控制涂层化学成分的变化,可以制备梯度功能材料或得到多层涂层。

在工艺过程中,化学气相沉积常常在开放的非平衡状态下进行,根据耗散结构理论,利用化学气相沉积可以获得多种晶体结构。

在工艺材料上,化学气相沉积涵盖无机、有机金属及有机化合物,几乎可以制备所有的金属(包括碳和硅),非金属及其化合物(碳化物、氮化物、氧化物、金属间化合物等等)沉积层。

另外,由于气态原子或分子具有较大的转动动能,可以在深孔、阶梯、洼面或其他形状复杂的衬底及颗粒材料上进行沉积。

为使沉积层达到所需要的性能,对气相反应必须精确控制。

正是由于化学气相沉积在活化方式、涂层材料、涂层结构方面的多样性以及涂层纯度高工艺简单容易进行等一系列的特点,化学气相沉积成为一种非常灵活、应用极为广泛的工艺方法,可以用来制备各种涂层、粉末、纤维和成型元器件。

特别在半导体材料的生产方面,化学气相沉积的外延生长显示出与其他外延方法(如分子束外延、液相外延)无与伦比的优越性,即使在化学性质完全不同的衬底上,利用化学气相沉积也能产生出晶格常数与衬底匹配良好的外延薄膜。

此外,利用化学气相沉积还可生产耐磨、耐蚀、抗氧化、抗冲蚀等功能涂层。

在超大规模集成电路中很多薄膜都是采用CVD方法制备。

经过CVD 处理后,表面处理膜密着性约提高30%,防止高强力钢的弯曲,拉伸等成形时产生的刮痕。

第四章 化学气相沉积讲解

第四章 化学气相沉积讲解

设在生长中的薄膜表面形成了界面层,其厚度为,cg和cs分别为 反应物的原始浓度和其在衬底表面的浓度,则
扩散至衬底表面的反应物的通量为: 衬底表面消耗的反应物通量与Cs成正比
平衡时两个通量相等,得
F1 hg (Cg Cs )
F2 ksCs
F1 F2
Cs
Cg 1 ks
hg
hg为气相质量输运系数,Ks为表面化学反应速率常数
第四章 化学气相沉积----4.2 化学气相沉积
1. 歧化反应
大多数歧化反应,源区只有在高温下才能生成可进行歧化反 应的中间产物,源区的反应器壁也要处于高温下,以避免在 反应器上进行沉积,如生成SiI2中间产物需要1150℃:
Si(s) + 2I2(g) → SiI4 (g) SiI4 (g) + Si(s) → 2SiI2 (g) 衬底区生成硅外延层的歧化反应只需900℃:
第四章 化学气相沉积----4.2 化学气相沉积
3. 热解反应 某些元素的氢化物和金属有机化合物高温下不稳
定,发生分解,产物可沉积为薄膜,反应是不可逆的。 如:
SiH4(g) = Si(s) + 2H2(g) Ni(CO)4(g) = Ni(s) + 4CO(g)
TiI(g) = Ti(s) + 2I 多晶硅沉积的生长温度可低至600℃;单晶硅则需850。 当需要低温工艺时,硅烷可作为理想的硅源来使用。
4. 氧化反应 利用氧气作为氧化剂促进反应:
SiH4(g) + O2 = SiO2(s) + H2O(g) (450℃) Si(C2H5O)4 + 8O2 = SiO2 + 10H2O + 8CO2
(Si(C2H5O)4是正硅酸乙酯 简称TEOS)

化学气相沉积

化学气相沉积

一、化学气相沉积的原理
化学气相沉积反应的物质源 1、气态物质源 如H2、N2、CH4、O2、SiH4等。这种物质源对CVD工艺技术最为方 便 ,涂层设备系统比较简单,对获得高质量涂层成分和组织十分有 利。 2、液态物质源 此物质源分两种:(1)该液态物质的蒸汽压在相当高的温度下 也很低,必须加入另一种物质与之反应生成气态物质送入沉积室,才 能参加沉积反应。(2)该液态物质源在室温或稍高一点的温度就能得 到较高的蒸汽压,满足沉积工艺技术的要求。如:TiCl4、CH3CN、 SiCl4、VCl4、BCl3。 3、固态物质源 如:AlCl3、NbCl5、TaCl5、ZrC积室中。因为 固态物质源的蒸汽压对温度十分敏感,对加热温度和载气量的控制精 度十分严格,对涂层设备设计、制造提出了更高的要求。
二、化学气相沉积的工艺方法
T2
ZnSe(s) +I2(g)
T1
ZnI2(g) +1/2 Se2(g)
二、化学气相沉积的工艺方法 • 化学气相沉积主要工艺参数:
一、温度 • 首先,温度影响气体质量运输过程,从而影响薄 膜的形核率,改变薄膜的组织与性能;其次,温度升高 可显著增加界面反应率和新生态固体原子的重排过程, 从而获得更加稳定的结构。
一、化学气相沉积的原理
原理:
CVD是利用气态物质在固体表面进 行化学反应,生成固态沉积物的过程 三个步骤 1.产生挥发性物质 2.将挥发性物质运到沉积区 3.挥发性物质在基体上发生 化学反应
一、化学气相沉积的原理
CVD化学反应中须具备三个挥发性条件: (1)反应产物具有足够高的蒸气压 (2)除了涂层物质之外的其他反应产物必须是挥发性的 (3)沉积物具有足够低的蒸气压
一、化学气相沉积的原理

第十三章化学气相沉积ppt课件

第十三章化学气相沉积ppt课件
利用歧化反应,一般都在多温区炉内进行, 至少需要两个温区。
2GeI2 (g) Ge(s) GeI4 (g)
3GaCl(g) 2Ga(l) GaCl3(g)
合成反应
合成反应中输运的组分的氧化态不变,通 常都是最高的氧化态。
合成反应易形成多晶,外延成核很困难, 往往需要在很高温度下生长。
综合比较
SiCl4
(g)
3 2
H
2
(g
)
Si(s) 3HCl(g)
不论哪种反应,都是在生长层表面得到游离状态 的硅原子;
这些硅原子在高温下具有很高的热能,便在表面 上扩散到晶核边的折角处,按照一定的晶向加到 晶格点阵上,并释放出热能;
副产物HCl等则从生长表面脱附,经扩散穿过边界 层进入主气流,排出系统外。
通常氢气作还原剂,同时也用它作载气 这里反应是可逆反应
SiCl4 (g) 2H2 (g) Si(s) 4HCl(g) SiCl4 (g) CCl4 (g) 2H2 (g) SiC(s) 8HCl(g)
歧化反应
具有歧化作用的元素能够生成几种氧化态 的气态化合物,在反应过程中,由于反应 物在较低温度下不稳定,一部分被氧化成 高价的比较稳定的化合物,另一部分被还 原成该元素的原子沉积在衬底上进行外延 生长。
沉是积 由氮 硅化 烷硅 和膜 氮反(Si应3N形4)就成是的一。个很好的例子,它
化学气相沉积的优点
准确控制薄膜的组分和掺杂水平 可在复杂的衬底上沉积薄膜 不需要昂贵的真空设备 高温沉积可改善结晶完整性 可在大尺寸基片上沉积薄膜
闭管外延
生长设备分类
开管外延
卧式 立式 桶式
闭管外延
闭管外延是将源材料, 衬底等一起放在一密 封容器内,容器抽空 或者充气,将源和衬 底分别放在两温区的 不同温区处

cvd 化学气相沉积

cvd 化学气相沉积

cvd 化学气相沉积CVD(化学气相沉积)是一种重要的薄膜制备技术,广泛应用于微电子、材料科学、纳米技术等领域。

本文将介绍CVD的基本原理、应用领域以及未来发展方向。

让我们来了解CVD的基本原理。

化学气相沉积是一种在气相条件下通过化学反应生成固体薄膜的技术。

它的基本原理是在高温下,将气体或液体前体物质引入反应室中,通过化学反应形成气相中间体,然后在衬底上沉积出所需的固体薄膜。

CVD的反应过程主要包括气体输运、吸附、表面反应和膜沉积等步骤。

CVD技术具有许多优点,如制备的薄膜具有高纯度、均匀性好、可控性强等特点。

此外,CVD还可以在复杂的表面形貌上进行薄膜沉积,如纳米颗粒、多孔膜等。

因此,CVD被广泛应用于微电子行业,用于制备晶体管、集成电路、显示器件等。

同时,它也被应用于材料科学领域,用于制备超硬材料、陶瓷薄膜、光学薄膜等。

除了微电子和材料科学领域,CVD还在纳米技术领域得到了广泛应用。

纳米领域的发展对CVD技术提出了更高的要求,例如制备纳米线、纳米颗粒和纳米薄膜等。

由于CVD具有优异的可控性和均匀性,它成为了纳米材料制备的重要工具。

通过调节反应条件和前体物质的选择,可以实现对纳米材料形貌、大小和组成的精确控制。

未来,CVD技术在能源领域和生物医学领域的应用也备受关注。

在能源领域,CVD可以用于制备高效的太阳能电池、燃料电池等器件。

通过优化薄膜的能带结构和界面特性,可以提高能源转换效率。

在生物医学领域,CVD可以用于制备生物传感器、药物传递系统等。

通过在表面修饰功能性薄膜,可以实现对生物分子的高灵敏检测和精确控制。

CVD是一种重要的化学气相沉积技术,广泛应用于微电子、材料科学、纳米技术等领域。

它具有优异的可控性和均匀性,可以制备高纯度、均匀性好的薄膜。

随着纳米技术和能源领域的快速发展,CVD技术在这些领域的应用前景非常广阔。

未来,我们可以期待CVD技术在更多领域的突破和创新。

化学气相沉积(中文版)(最新修正版)课件.ppt

化学气相沉积(中文版)(最新修正版)课件.ppt
精心整理
低压化学气相沉积法(LPCVD)
• 低气压(133.3Pa)下的CVD较长的平均自由路径可 减少气相成核几率,减少颗粒,不需气体隔离,孔 洞少,成膜质量好
•但是反应速率较低,需要较高的衬底温度
精心整理
晶圆装 载门
低压化学气相沉积系统
压力计Βιβλιοθήκη 晶圆加热线圈至真空帮 浦
制程气体入口 温度
晶舟 中心区 均温区
精心整理
石英 管
距离
等离子体增强型化学气相沉积 (PECVD)
• 射频在沉积气体中感应等离子体场以提 高反应效率,因此,低温低压下有高的 沉积速率.
• 表面所吸附的原子不断受到离子与电子 的轰击,容易迁移,使成膜均匀性好,台阶覆 盖性好
精心整理
等离子体增强型化学气相沉积 (PECVD)
制程反 应室
a
结构 基片
h b
d
w
精心整理
严重时会形成空洞
金属
介电质
金属
介电质
金属
空洞
精心整理
介电质
金属 4
金属层间介电质3
金属 3
金属层间介电质2
精心整理
影响阶梯覆盖的因素
• 源材料的到达角度 • 源材料的再发射 • 源材料的表面迁移率
黏附系数
精心整理
黏附系数
• 源材料原子和基片表面产生一次碰撞的过 程中,能与基片表面形成一个化学键并被 表面吸附的机率
高掺杂多晶硅作为栅电极和短程互联线在MOS集 成电路得到广泛应用。
常常将钨、钛、钴(考虑到离子注入后的退火,这里 只能用难熔金属)等硅化物做在多晶硅薄膜上,形成具有 较低的方块电阻(相对于单独的多晶硅而言)。
精心整理

化学气相沉积

化学气相沉积

SiO2 + 2H2
• (3)还原反应 用氢、金属或基材作还原 剂还原气态卤化物,在衬底上沉积形成纯 金属膜或多晶硅魔。
• SiCl4+2Zn △ Si+2ZnCl2
• (4)水解反应 卤化物与水作用制备氧化 薄膜或晶须。
• SiCl4 +2H2O
SiO2+4HCl
• (5)可逆输送 化学转换或输运过程的特 征是在同一反应器维持在不同温度的源区 和沉积区的可逆的化学反应平衡状态。
• 上述诸过程,进行速度最慢的一步限制了整体进行速度。
CVD的特点
• (1)在中温或高温下,通过气态的初始化合物之 间的气相化学反应而沉积固体。
• (2)可以在大气压(常压)或者低于大气压下 (低压)进行沉积。一般来说低压效果要好些。
• (3)采用等离子和激光辅助技术可以显著地促进 化学反应,使沉积可在较低的温度下进行。
化学气相沉积的过程
• 在反应器内进行的CVD过程,其化学反应是不均匀的,可 在衬底表面或衬底表面以外的空间进行。衬底体表面的大 致反应过程如下:
• ①反应气体扩散到衬底表面 • ②反应气体分子被表面吸附 • ③在表面上进行化学反应、表面移动、成核及膜生长 • ④生成物从表面解吸 • ⑤生成物在表面扩散
化学气相沉积
• 化学气相沉积(CVD)是利用加热、等离子 体激励或光辐射等方法,使气态或蒸汽状 态的化学物质发生反应并以原子态沉积在 置于适当位置的衬底上,从而形成所需要 的固态薄膜或涂层的过程。
• CVD可在常压或低压下进行。通常CVD的 反应温度范围大约900~1200℃,它取决于 沉积物的特性。
• 为克服传统CVD的高温工艺缺陷,近年来 开发出了多种中温(800 ℃ 以下)和低温 (500 ℃ )以下CVD新技术,由此扩大了 CVD技术在表面技术领域的应用范围。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Your site here
LOGO
气相沉积技术分类及解释
如今,CVD 的趋向是向低温和高真空两个方 向发展,出现了新方法包括:
1.金属有机化学气相沉积技术 (Metalorganic Chemical Vapor Deposition,简称 MOCVD)
2.等离子增强化学气相沉积 (Plasma Enhance Chemical Vapor Deposition,简称PECVD) 3.激光化学气相沉积 (Laser Chemical Vapor Deposition,简称 LCVD)
Your site here
LOGO
气相沉积技术分类及解释
物理气相沉积 在真空条件下,利用各种物理方法,将镀料 气化成原子、分子,直接沉积基体表面上的方 法。 物理气相沉积主要包括真空蒸镀、溅射镀 膜、离子镀膜等。
Your site here
LOGO
气相沉积技术分类及解释
化学气相沉积 把含有构成薄膜元素的一种或几种化合物、 单质气体供给基体,借助气相作用或在基体表面 上的化学反应在基体上制得金属或化合物薄膜的 方法。 化学气相沉积法主要包括常压化学气相沉积 低压化学气相沉积和兼有CVD和PVD两者特点的等 离子化学气相沉积等。
Your site here
LOGO
一、气相沉积技术分类及解释
气相沉积 物理气相沉积 (Physical Vapor Deposition,简称PVD)
化学气相沉积 (Chemical Vapor Deposition,简称 CVD) 气相沉积
一种在基体上形成一层功能膜的技术,它是 利用气相之间的反应,在各种材料或制品表面沉 积单层或多层膜,从而使材料或制品获得所需的 各种优异性能。
ZnSe ( s ) I 2 ( g ) ZnI 2 ( g ) 2 Se2 ( g )
3.CVD技术
CVD 技术分为开管气流法和封管气流法两种基本类型。 ①开管气流法 特点是反应气体混合物能够连续补充,同时废弃的反 应产物不断排出沉积室。 其主要由双温区开启式电阻炉及控温设备、反应管、 载气净化及载带导入系统三大部分构成。
6GaCl As4 4GaAs 2GaCl (歧化反应) 3
Your site here
LOGO
化学气相沉积基本理论
0
C
AsCl3
图1
砷化镓气相外延装置示意图
Your site here
LOGO
化学气相沉积基本理论
由上述分析,可以归纳出开管法的优点: I.式样容易放进和取出 II.同一装置可以反复多次使用 III.沉积条件易于控制,结果易于重现 同时,反应器的类型多种多样,按照不同划分标准可 以有不同的类型: I.开管法的反应器分为三种,分别为水平式、立式和筒式 II.由反应过程的要求不同,反应器可分为单温区、双温区 和多温区
Your site here
LOGO
二、化学气相沉积基本理论
1. CVD含义 2.CVD基本原理
CVD 是利用气态物质在固体表面进行化学反应,生成 固态沉积物的工艺过程。 最常见的化学气相沉积反应有:热分解反应、化学合 成反应和化学传输反应。举例如下: ① 热分解反应: I. 氢化物分解 ,沉积硅 反应过程: 800 1000 0 C SiH 4 g Si g 2 H 2
Your site here
LOGO
化学气相沉积基本理论
以砷化镓的气相外延为例,说明开管法的工作流程 ,该例子涉及的化学反应:
2 AsCl 3 3H 2
850 0 C
1 As 4 6 HCl 2
1 1 GaAs (壳) HCl GaCl As 4 H 2 4 2
II.金属有机化合物分解 ,沉积 Al2O3
Your site here
LOGO
化学气相沉积基本理论
反应过程: 2Al (OC3 H 7 )3 Al2O3 6C3 H 6 3H 2O III.羰基氯化物分解,沉积贵金属及其他过渡族金属 反应过程: 1402400C
420 0C
化学气相沉积技术 -----研究和材料制备
凝聚态专业研究生 指导教师 郝永皓 赵建伟副教授
LOGO
化学气相沉积内容总览
气相沉积的分类、解释 化学气相沉积的含义、基本原理、技术、生长 机制及制备材料的一般步骤 化学气相沉积与无机材料的制备 化学气相沉积的5种新技术 化学气相沉积技术在其他领域的应用
Your site here
LOGO
气相沉积技术分类及解释
4.真空化学气相沉积 (Ultraviolet High Void/Chemical Vapor Deposition,简称 UHV/ CVD) 5.低压化学气相沉积 (Low Press Chemical Vapor Deposition简称 LPCVD) 6.射频加热化学气相沉积 (Radio Frequency /Chemical Vapor Deposition ,简称 RF/ CVD) 7.紫外光能量辅助化学气相沉积 (Ultraviolet Void/ Chemical Vapor Deposition ,简称 UV/ CVD)
Ni膜的沉积,如沉积 Si3 N4 反应过程: 850 900 0C
3SiCl4 4 NH 3 Si3 N 4 12HCl
③化学传输反应
Your site here
LOGO
化学气相沉积基本理论
主要用于稀有金属的提纯和单晶生长,如ZnSe单晶生长 1 反应过程:
Your site here
LOGO
化学气相沉积基本理论
②封管气流法 这种反应系统是把一定量的反应物和适当的基体分别 放在反应器的两端 ,管内抽真空后充入一定量的输运气体 ,然后密封 ,再将反应器置于双温区内 ,使反应管内形成一 温度梯度。 以ZnSe为例进行说明该方法,其中涉及到的反应过程
1 ZnSe I 2 ( g ) ZnI2 ( g ) Se2 ( g ) 2 1 T1 ZnSe I 2 ( g ) ZnI2 ( g ) Se2 ( g ) 2
相关文档
最新文档