飞机起落架的减震系统

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.6 起落架的减震系统

一、概述

飞机起落架的减震系统由减震器和轮胎组成.其中减震器(也称缓冲器)是所有现代起落架所必须具备的构件,也是最重要的构件.某些起落架可以没有机轮、刹车、收放系统等,但是它们都必须具备某种形式的减震器。而轮胎虽然也能吸收一部分能量,但仅占减震系统总量的10%~15%。当飞机以一定的下沉速度(一般“限制下沉速度”为3 m/s,美国规定某些短距起落或海军用舰载机等可以更大些)着陆时,起落架会受到很大的撞击,并来回振动.减震装置的主要作用就是用来吸收着陆和滑行时的撞击能,以使作用到机体上的载荷减小到可以接受的程度;同时须使振动很快衰减。由以上功用对减震装置提出如下的设计要求.

(1)在压缩行程(正行程)时,减震装置应能吸收设计规范要求的全部撞击能,而使作用在起落架和机体结构上的载荷尽可能小。在压缩过程中载荷变化应匀滑,功量曲线应充实——也即减震器应具有较高的效率.

(2)为了减少颠簸或在伸展行程(反行程)中不出现回跳,要求系统在压缩行程中所吸收的能量中的较大部分(一般应有65%~80%左右)转化为热能消散掉。

(3)为了让起落架能及时承受再次撞击,减震器应有必要的能量和伸展压力使起落架恢复到伸出状态,伸展放能时应柔和,支柱慢慢伸出,这样可消除回跳。减震器完成一个正、反行程的时间应短,一般不能大于o.8s。以上(2),(3)项措施同时也对提高乘员舒适性有利。

(4)着陆滑跑时,根据各种飞机对所预定的使用跑道的通过性(漂浮性)要求,规定在遇到某一高度的凸台和坑洼地时载荷系数不能超过允许值,(如某些次等级跑道的路面包含有76 mm高的凸台.以及一定波长和波幅的波形表面隆起)。轮胎的弹性变形和弹性力对吸收能量、减小载荷系数和提高滑行时乘员的舒适性等方面均起一定作用,但是它不能消耗能量。

二、减震器的类型

总的说减震器可分为两大类广类是由橡胶或钢制的固体“弹簧”式减震器;另一类是使用气体、油液或两者混合(通常称油气式)的流体“弹簧”式减震器。利用橡胶、钢弹簧和气体作为介质的减震器是利用介质变形吸收撞击动能,靠介质内的分子摩擦消耗能量,因此这些减震器的热耗作用很小,只适用于轻型低速飞机以及后三点式起落架的尾乾.图8.24对不同类型减震器的效率V和效率/重量比作了比较。

v(%)‘A/LS,其中A为减震器在正行程中实际吸收的能量;I为正行程中受到的最大载荷;s为正行程中的最大行程。由团可知油气式减震器是目前效率/重量比最高的减震器类型,其效率实际上可达到80%一90%之间。图8.25所示波音-737主起落架的试验曲线表明其效率达到了90%。此外它还具有很好的能量消散能力。因此现代飞机一般多采用泊气式减震器。全泊液式减震器结构紧凑,尺寸小,效率也可在75%以上,设计得好可达到90%。但由于高液压而需要加强减震器的构件,导致减震器重量较大,且密封比较困难,目前在战斗机上有使用。气体式减震器因效率/重量比低,耗散能量差,可靠性也较差,目前已不再使用。固体“弹簧”式减震器虽因效率/重量比小,耗散能量少等缺点,一般在速度较高的现代飞机上基本不采用。但仍应对其构造简单,工作可靠性高,维护要求低以及相应的低价格予以应有的认识。对于某些轻型的简易飞机或多用途小飞机,若起落架不收放,此时通过综合考虑和折衷平衡也有采用片簧式或橡胶压块式减震器。如加拿大的

DHC—6(“双水獭”)飞机为涡轮螺旋桨发动机短距起落的小型运输机,最大起飞重量为5.6t。它的不可收的主起落架就采用了橡胶压块式减震器(见图8.26),前起落架为油气式减震器。该机于1969年改型后的DHC—s—300系列有二百余架投入了使用。由于油气式减震器是目前性能最好、使用最广泛的减震界,下面我们将对它着重讨论。

三、油气式减震器

油气式减震器通常由外筒、活塞内筒、制动活门(反冲阀)、柱塞(阻尼孔支撑管)组成,有的还带有油针,内充气体(空气或氮气)和油液。它的典型构造见图8.27。当起落架受到撞击时,油液被迫通过一个或多个阻尼孔(也称油IL或限流孔)压缩气体,减震器吸收能量。在初始撞击之后,由压缩后的高压气体迫使活塞内筒向外伸出。这一反弹过程由气体压力控制,它迫使油液通过一个或多个反弹阻尼孔流回油液腔。假如油液回流太快,飞机将向上弹跳;如果油液回流太慢,会使支柱不能足够快地

回到它的初始位置,将使高频撞击(在滑行时可能出现)不能完全被阻尼。

1.气体

气体起两个作用,一是减震支柱受载、气体被压缩时气体吸收能量,起缓冲垫和滑跑减震作用二是撞击过后压力增大的气体将支柱重新顶出.根据气体力学的知识和活塞杆的受力平衡可知(略去摩擦力影响情况下)F——活塞承受气压的有效面积;P。——气体对活塞的总压力;。——气体匝缩过程的多变指数,它随气体在压缩过程中的热交换情况而定:等温过程时为“绝热过程为1.4,在油气式减震器内有一定程度的热交换,通常取n为1.2.由式(8.1)得出A。就是P。一S工作曲线下的面积,故户。一s图称功量图.从图8.28可见,在吸收同样的撞击能A。的情况下,若声。不变,则Vo愈大,s将愈大,减震0S愈软,若y。不变,则》o愈小,s也愈大,减震器也愈软;反之亦然。由此可知,可以用调节V,或》o的方法来调节减震器的行程s和软硬程度。但是若只考虑由气体工作则有以下缺点。

(1)它只能吸收能量,减小撞击过载,但不能消散能量.就像一般的弹簧一样,来回跳动。这样,对人员、结构、装载、设备等均不利.

(2)它的功量图中间凹下去,不够充实,吸能的效率低。若需吸收同样的能量,效率低会使行程和末压力增大,从而导致减震器的尺寸和过载的增大。为此,加进了油液和阻尼孔装置。

2,油波和阻尼孔的作用及对功量图的影响

加进油液和阻尼孔后,在活塞运动的过程中油液就被来回挤过阻尼孔,使减震支柱运动时受到的阻力增大;油液流经阻尼孔磨擦生热,将撞击能变为热能消散掉。设油液流经阻尼孔时受到的阻力为尸f,活塞运动时的机械磨擦力为P尸减震支柱上的外

载为户。,那么由力的平衡关系可得到压缩行程时户-=尸c+户,十户,伸展行程时尸:二户。一户,一尸/(8.5)

图8.29为油液流经阻尼孔时的尸J一5曲线和加进阻尼孔后的功量图户。~s曲线。由上图可见,加进油液和阻尼孔的减震器吸收和消散的能量大为增加,从原理

相关文档
最新文档