实变函数试题库及参考答案精修订
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实变函数试题库及参考
答案
GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-
实变函数试题库及参考答案(3) 本科
一、填空题
1.设,A B 为集合,则()\B A B A A B
2.设A 为无理数集,则A c (其中c 表示自然数集[]0,1的基数)
3.设n E ⊂,如果E 中没有不是内点的点,则称E 是
4.任意个闭集的交是
5.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈
,()E x a f x b ⎡⎤≤<⎣⎦是可测,
(a b ≤)则称()f x 在E 上 6.可测函数列的上确界也是
7.设()()n f x f x ⇒,()()n g x g x ⇒..a e ,则()()n n f x g x ⇒
8.设()()n f x f x ⇒,那么由黎斯定理,(){}n f x 有子列()k
n f x ,使 ..a e 于E
二、选择题
1.下列集合关系成立的是( )
2.设n R E ⊂,则( )
3.设P 为康托集,则( )
A P 是可数集
B 0mP =
C P 是不可数集
D P 是开集
4.下列集合关系成立的是( )
A 若A
B ⊂则c c B A ⊂ B 若A B ⊂则c c A B ⊂
C 若A B ⊂则A B B =
D 若A B ⊂则A B B =
三、多项选择题(每题至少有两个以上的正确答案)
1.设()D x 是狄利克莱函数,即()[][]10,100,1x D x x ⎧⎪=⎨⎪⎩
为中有理数为中无理数,则( ) A ()D x 几乎处处等于1 B ()D x 几乎处处等于0
C ()
D x 是非负可测函数 D ()D x 是L 可积函数
2.设n E ⊂,*0m E =,则( )
A E 是可测集
B E 的任何子集是可测集
C E 是可数集
D
E 不一定是可数集
3.设n E ⊂,()10E c x E x x E χ∈⎧=⎨
∈⎩,则( ) A 当E 是可测集时,()E x χ是可测函数 B 当()E x χ是可测函数时,E 是可测集
C 当E 是不可测集时,()E x χ可以是可测函数
D 当()
E x χ是不是可测函数时,E 不一定是可测集
4.设()f x 是(),a b 上的连续函数,则( )
A ()f x 在(),a b 上有界
B ()f x 在(),a b 上可测
C ()f x 在(),a b 上L 可积
D ()f x 在(),a b 上不一定L 可积
四、判断题
1. 对等的集合不一定相等. ( )
2. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是零测集. ( )
3. 可数个开集的交是开集 ( )
4. 可测函数不一定是连续函数. ( )
5. 对等的集合有相同的基数. ( )
五、定义题
1. 简述证明集合对等的伯恩斯坦定理.
2. 简述1R 中开集的结构.
3. 可测集与闭集、F σ集有什么关系?
4.
5. 为什么说绝对连续函数几乎处处可微?
六、计算题
1. 设()3
cos 0,\2x x E f x x x E π⎧∈⎪=⎨⎡⎤∈⎪⎢⎥⎣⎦⎩,E 为0,2π⎡⎤⎢⎥⎣⎦中有理数集,求()0,2f x dx π⎡⎤⎢⎥⎣⎦
⎰. 2. 设()()[]22
cos ,0,11n nx nx f x x n x =∈+,求()[]
0,1lim n n f x dx →∞⎰. 七、证明题
1.设()f x 是E 上的可测函数,则对任何常数0a >,有()[|()]a f x E
mE x f x a e e dx -≥≤⎰ 2.设()f x 是E 上的可积函数,{}n E 为E 的一列可测子集,mE <+∞,如果
lim n n mE mE →∞
= 则lim ()()n
E E n f x dx f x dx →∞=⎰⎰ 3.证明集合等式:()\(\)(\)A B C A C B C =
4.设n E R ⊂是零测集,则E 的任何子集F 是可测集,且0mF =
5. 证明:1R 上的实值连续函数()f x 必为1R 上的可测函数
本科实变函数试题库及参考答案(3)
一、填空题
1.=
2.=
3.开集
4.闭集
5.可测
6.可测函数
7.()()f x g x
8.()()k
n f x f x → 二、单选题
1.B
2.A
3.B
4.A
三、多选题
1.BCD
2.ABD
3.AB
4.BD
四、判断题
√√×√√
五、定义题
1.答:若A B B *⊂,又B A A *⊂,则A B
2.答: 设G 为1R 中开集,则G 可表示成1R 中至多可数个互不相交的开区间的并.
3.答:设E 是可测集,则0ε∀>,∃闭集F E ⊂,使()\m E F ε<或∃ F σ集F E ⊂,
使()\0m E F =.
4.答:因为绝对连续函数是有界变差,由若当分解定理,它可表示成两个单调增函数的差,而单调函数几乎处处有有限的导数,所以绝对连续函数几乎处处可微.