高一10月月考数学试题
陕西省安康市高新中学2024-2025学年高一上学期第二次月考(10月)数学试题
陕西省安康市高新中学2024-2025学年高一上学期第二次月考(10月)数学试题一、单选题1.已知集合{}{}2,3,5,1,4,5,7A B ==,则()A .A B =∅ B .A B ⊆C .A B A= D .5A B∈ 2.已知函数()()21,223,2f x x f x x x x ⎧->-=⎨+-≤-⎩则()()1f f =()A .5B .0C .-3D .-43.已知不等式210ax bx +->的解集为11,23⎛⎫-- ⎪⎝⎭,则不等式20x bx a --≥的解集为()A .(][),32,-∞--+∞ B .[]3,2--C .[]2,3D .][()–,23,∞+∞ 4.设,,a b c 为实数,且0a b <<,则下列不等式正确的是()A .11a b <B .22ac bc <C .b a a b>D .22a ab b >>5.已知幂函数()2()1mf x m m x =+-的图像与坐标轴没有公共点,则(2)f =()A .12BC .14D.6.已知()e ex x xf x a -=+是偶函数,则a =()A .2-B .1-C .1D .27.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为223y x =-,值域为{}1,5-的“孪生函数”共有()A .10个B .9个C .8个D .4个8.已知数2,0,()1,04,x x f x x x+≤⎧⎪=⎨<≤⎪⎩若m n <且()()f n f m =,则n m +的取值范围是()A .(1,2]B .90,4⎡⎤⎢⎥⎣⎦C .3,24⎛⎤ ⎥⎝⎦D .3,24⎛⎫⎪⎝⎭二、多选题9.下面命题正确的是()A .“1a >”是“11a<”的充分不必要条件B .命题“若1x <,则21x <”的是真命题C .设,x y ∈R ,则“2x ≥且2y ≥”是“224x y +≥”的必要不充分条件D .设,a b ∈R ,则“0a ≠”是“0ab ≠”的必要不充分条件10.定义在R 上的函数()f x ,对任意的1x ,2x ∈R ,都有()()()12121f x x f x f x +=+-,且当0x >时,()()0f x f >恒成立,则下列说法正确的是()A .()01f =B .函数()f x 的单调递增区间为()0,∞+C .函数()f x 为R 上的增函数D .函数()()1g x f x =-为奇函数11.设正实数m ,n 满足1m n +=,则()A .12m n+的最小值为3+B C的最大值为1D .22m n +的最小值为12三、填空题12.已知集合A ={1,3},B ={1,m },A ∪B =A ,则m =.13.已知函数()f x 的定义域是[]0,4,则函数y =的定义域是.14.已知函数()f x 是定义在R 上的奇函数,且()20f -=,若对任意的()12,,0x x ∈-∞,当12x x ≠时,都有()()1122120x f x x f x x x ⋅-⋅<-成立,则不等式()0f x >的解集为.四、解答题15.已知集合{}250A x x x =-≤,(){}24B x x a =->.(1)若0a =,求A B ;(2)若“x A ∈”是“x B ∈R ð”的必要条件,求实数a 的取值范围16.已知幂函数()f x 与一次函数()g x 的图象都经过点()4,2,且()()95f g =.(1)求()f x 与()g x 的解析式;(2)求函数()()()h x g x f x =-在[]0,1上的值域.17.已知函数()21x bf x x +=-是定义域()1,1-上的奇函数.(1)确定()f x 的解析式;(2)用定义证明:()f x 在区间()1,1-上是减函数;(3)解不等式()()10f t f t -+<.18.设函数()y f x =是定义在()0∞,+上的减函数,并且满足()()()f xy f x f y =+,112f ⎛⎫= ⎪⎝⎭(1)求()1f 和()2f 的值(2)如果()128x f f x ⎛⎫+-< ⎪⎝⎭,求x 的取值范围19.已知函数()311a f x x x ⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭为偶函数.(1)证明:函数()f x 在()0,∞+上单调递增;(2)若不等式()()21f x m f x ->+对任意的(]0,2x ∈恒成立,求实数m 的取值范围.。
2024-2025学年广东省深圳南山外国语学校高级中学高一上学期10月月考数学及答案
深圳市南山外国语学校(集团)高级中学2024-2025学年第一学期 高一年级10月月考数学学科 试题卷说明:1、本试卷满分150分;考试时间为150分钟;2、本试卷分试题卷、答题卷两部分,考试结束,只交答题卷.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1 已知全集Z U =,集合{}Z 33A x x x =∈≤->或,()0,3B =,则()U A B ⋂=ð( )A. ()1,2B. {}1,2,3C. {}0,1,3D. {}1,22. 设2254M a a =++,(1)(3)N a a =++,则M 与N 的大小关系为( )A. M N >B. M N=C. M N < D. 无法确定3. 分式不等式501x x +-≤的解集为( )A. {}51x x -≤≤ B. {}51x x -≤<C. {|5x x ≤-或1}x ≥ D. {|5x x ≤-或1}x >4. 已知二次函数()2321y k x x =-++的图象与x 轴有交点,则k 的取值范围是( )A. 4k <B. 4k ≤C. 4k <且3k ≠D. 4k ≤且3k ≠5. 满足条件{}1,2A ⊆{}1,2,3,4,5的集合A 的个数是( )A. 5B. 6C. 7D. 86. 设R x ∈,则“11x -<”是“2x x <”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7. 在R 上定义运算:2a b ab a b ⊗⊗=++,则满足(2)0x x ⊗-<的实数x 的取值范围为( )A. ()0,2B. ()2,1-C. (,2)(1,)-∞-+∞D. (1,2)-.的8. 已知实数,0x y >,且211x y +=,若228x y m m +>-恒成立,则实数m 的取值范围为( )A. ()9,1- B. ()1,9- C. []1,9- D. ()(),19,-∞-+∞ 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. (多选)不等式20ax bx c -+>的解集是122x x ⎧⎫-<<⎨⎬⎩⎭,对于系数a,b,c ,下列结论正确的是( )A. a >0B. 0a <C. 0b < D. 0a b c -+>10. 若0a b >>,则下列不等式成立的是( )A. baa b > B. 2ab b >C. 11b b a a +<+ D. 11a b b a+>+11. 已知集合{}1234,,,A x x x x =且1234x x x x <<<,定义集合{|,,,,1,2,3,4}i j i j B x x x x x x A i j ==-∈=,若B A =,下列说法正确的是( )A. 0A ∉B. 1423x x x x +=+C. 2132x x x =+D. 3242x x x =+三、填空题:本题共3小题,每小题5分,共15分.12. 已知37,12x y <<<<,则yx 的取值范围是______.13. 若{}210,,21m m m ∈-+,则m =__________.14. 若关于x 的不等式()22120x a x a -++<恰有两个整数解,则a 的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知集合{}023A x x a =<+≤,122B x x ⎧⎫=-<<⎨⎬⎩⎭.(1)当1a =-时,求A B ⋂和A B ;(2)若A B ⊆,求实数a 的取值的集合.16. 已知集合{}2320,,A x ax x x a =-+=∈∈R R .(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并求集合A ;(3)若A 中至少有一个元素,求a 的取值范围.17. 已知二次函数222y x ax =++.(1)若[1,5]x ∈时,不等式3y ax >恒成立,求实数a 的取值范围;(2)解关于x 不等式2(1)a x x y ++>(其中a<0).18. 某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为300吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为21200450002y x x =-+,且每处理一吨二氧化碳得到可利用的化工产品价值为200元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利,如果获利,最大利润为多少元?19. 《见微知著》谈到:从一个简单经典问题出发,从特殊到一般,由简单到复杂:从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是思想阀门发现新问题、新结论的重要方法.阅读材料一:利用整体思想解题,运用代数式的恒等变形,使不少依照常规思路难以解决的问题找到简便解决方法,常用的途径有:(1)整体观察;(2)整体设元;(3)整体代入:(4)整体求和等.例如,1ab =,求证:11111a b+=++. 证明:原式111111ab b ab a b b b =+=+=++++.波利亚在《怎样解题》中指出:“当你找到第一个藤菇或作出第一个发现后,再四处看看,他们总是成群生长”类似问题,我们有更多式子满足以上特征.2a b +≤(0a >,0b >),当且仅当a b =时等号成立,它是解决最值问题的有力工具.例如:在0x >的条件下,当x 为何值时,1x x+有最小值,最小值是多少?解:0x >,10x >,12x x +∴≥1x x +≥,12x x ∴+≥,当且仅当1x x =,即1x =时,1x x+有最小值,最小值为2.请根据以上阅读材料解答下列问题:(1)已知1a b ⋅=,求221111a b +++的值.(2)若1a b c ⋅⋅=,解关于x 的方程5551111ax bx cx ab a bc b ca c ++=++++++.(3)若正数a ,b 满足1a b ⋅=,求11112M a b =+++的最小值.的的的深圳市南山外国语学校(集团)高级中学2024-2025学年第一学期高一年级10月月考数学学科试题卷说明:1、本试卷满分150分;考试时间为150分钟;2、本试卷分试题卷、答题卷两部分,考试结束,只交答题卷.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】D【2题答案】【答案】A【3题答案】【答案】D【4题答案】【答案】D【5题答案】【答案】C【6题答案】【答案】B【7题答案】【答案】B【8题答案】【答案】B二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BCD【10题答案】【答案】BCD【11题答案】【答案】BCD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】12 73yx<<【13题答案】【答案】2【14题答案】【答案】112a a ⎧-≤<-⎨⎩或322a ⎫<≤⎬⎭四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)122x x ⎧⎫<<⎨⎬⎩⎭;122x x ⎧⎫-<≤⎨⎬⎩⎭;(2){}11a a -<≤【16题答案】【答案】(1)9,8∞⎛⎫+ ⎪⎝⎭(2)当0a =时,集合23A ⎧⎫=⎨⎬⎩⎭,当98a =时,集合43A ⎧⎫=⎨⎬⎩⎭;(3)9,8∞⎛⎤- ⎥⎝⎦【17题答案】【答案】(1)(-∞,.(2)答案见解析.【18题答案】【答案】(1)300吨(2)35000元.【19题答案】【答案】(1)1(2)15x =(3)2-。
广西壮族自治区南宁市兴宁区南宁市第三中学2024-2025学年高一上学期10月月考(一)数学试题
南宁三中2024~2025学年度上学期高一月考(一)数学试题一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,集合,则( )A .B .C .D .2.如果,则正确的是( )A .若a >b,则B .若a >b ,则C .若a >b ,c >d ,则a +c >b +dD .若a >b ,c >d ,则ac >bd3.设命题甲:,命题乙:,那么甲是乙的( )A .充分不必要条件B .必要不充分条件C .既充分又必要条件D .既不充分也不必要条件4.已知实数x ,y 满足,则的取值范围是( )A .B .C .D .5.若不等式的解集是或x >2},则a ,b 的值为( )A .,B .,C .,D .,6.二次函数的图象如图所示,反比例函数与正比例函数在同一坐标系中的大致图象可能是( )A .B .C .D .7.在R 上定义运算:a ⊕b =(a +1)b .已知1≤x ≤2时,存在x 使不等式(m -x )⊕(m +x )<4成立,则实数m 的取值范围为( ){}22M x x =-<<{1,0,1,2}N =-M N = {1,0,1}-{0,1,2}{}12x x -<≤{}12x x -≤≤,,,R a b c d ∈11a b<22ac bc >{}3|0x x <<{|||}12x x <-14,23x y -<<<<z x y =-{|31}z z -<<{|42}z z -<<{|32}z z -<<{|43}z z -<<-20x ax b ++>{3x x <-1a =6b =1a =-6b =1a =6b =-1a =-6b =-2y ax bxc =++ay x=()y b c x =+A.{m|-2<m<2}B.{m|-1<m<2}C.{m|-3<m<2}D.{m|1<m<2}8.若“”是“”的必要不充分条件,则实数的取值范围是()A.B.C.D.二、选择题:本题共3小题,每小题6分,共18分。
重庆市2024-2025学年高一上学期10月月考试题 数学含答案
重庆高2027届高一上期月考数学试题卷(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上.2.作答时,务必将答案写在答题卡上.写在本试卷及草稿纸上无效.3.考试结束后,将答题卡交回.一、单项选择题.本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}432A B x x =≤=,,则A B = ()A.2163xx ⎧⎫<≤⎨⎬⎩⎭B.{}316x x ≤< C.223xx ⎧⎫<≤⎨⎬⎩⎭D.{}02x x ≤≤2.命题.“230,1x x x ∃<+>”的否定是()A.230,1x x x ∀≥+≤ B.230,1x x x ∀<+≤ C.230,1x x x ∃<+≤ D.230,1x x x ∃≥+≤3.已知函数()2f x +的定义域为()3,4-,则函数()1g x +=的定义域为()A.()4,3- B.()2,5- C.1,33⎛⎫⎪⎝⎭D.1,53⎛⎫ ⎪⎝⎭4.使得“[]21,2,0x x x a ∀∈+-≤”为真命题的一个充分不必要条件是()A.2a ≥ B.2a > C.6a > D.6a ≥5.若正实数,x y 满足3x y +=,且不等式22823m m x y+>-+恒成立,则实数m 的取值范围是()A.{31}m m -<<∣B.{3m m <-∣或1}m >C.{13}m m -<<∣D.{1mm <-∣或3}m >6.函数()()()245,2231,2x a x x f x a x x ⎧-++<⎪=⎨-+≥⎪⎩满足对12,R x x ∀∈且12x x ≠,都有()()()12120f x f x x x --<⎡⎤⎣⎦,则实数a 的取值范围是()A.30,2⎛⎫⎪⎝⎭B.30,2⎡⎫⎪⎢⎣⎭C.()0,1 D.[]0,17.已知,a b 均为正实数,且1a b +=,则下列选项错误的是()A.的B.34aa b++的最小值为7+C.()()11a b ++的最大值为94D.2232a b a b +++的最小值为168.含有有限个元素的数集,定义其“交替和”如下:把集合中的数按从小到大的顺序排列,然后从最大的数开始交替地加减各数,例如{}4,6,9的“交替和”是9647-+=;而{}5的交替和是5,则集合{}Z 54M x x =∈-≤≤∣的所有非空子集的“交替和”的总和为()A.2048B.2024C.1024D.512二、多项选择题.本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知,,a b c ∈R ;则下列不等式一定成立的有()A.若0ab ≠且a b <,则11a b >B.若0a b >>,则20242024b b a a +<+C.若,a b c d >>,则ac bd >D.()221222a b a b ++≥--10.下列说法正确的是()A.若p 是q 的必要不充分条件,p 是r 的充要条件,则q 是r 的充分不必要条件B.若关于x 的不等式2430kx kx k -++≥的解集为R ,则实数k 的取值范围是01k <≤C.若不等式()()30x ax b x c-+≤-的解集为[)[)2,13,∞-⋃+,则不等式2320ax ax b --≥的解集为[]1,4-D.“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题的充要条件为[]51,0,43x ⎡⎤∈-⋃⎢⎥⎣⎦11.已知函数()f x 的定义域为[)0,+∞,且满足当[)0,2x ∈时,()22f x x x =-+,当2x ≥时,恒有()()2f x f x λ=-,且λ为非零常数,则下列说法正确的有()A.()()101320272024f f λ+=B.当12λ=时,反比例函数()1g x x =与()f x 在()0,2024x ∈上的图象有且仅有6个交点C.当0λ<时,()f x 在区间[]2024,2025上单调递减D.当1λ<-时,()f x 在[]()*0,4n n ∈N上的值域为2122,n n λλ--⎡⎤⎣⎦三、填空题.本题共3小题,每小题5分,共15分.12.已知集合{}210A xx =-=∣,则集合A 有__________个子集.13.已知集合[]()(){}1,4,10A B x x a ax ==+-≤∣,若A B B = 且0a ≥,则实数a 的取值范围是__________.14.若正实数x ,y 满足()()332331423x y x y -+-=--,则2346y x x x y++的最小值为__________.四、解答题、本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()21,122,1x x f x x x ⎧->-⎪=⎨⎪--≤-⎩.(1)若()01f x =,求0x 的值;(2)若()3f a a <+,求实数a 的取值范围.16.已知函数()f x =A ,集合{}321B xx =->∣.(1)求A B ;(2)集合{}321M xa x a =-≤≤-∣,若M ()RA ð,求实数a 的取值范围.17.已知二次函数()f x 的图象过原点()0,0,且对任意x ∈R ,恒有()26231x f x x --≤≤+.(1)求()1f -的值;(2)求函数()f x 的解析式;(3)记函数()g x m x =-,若对任意(]11,6x ∈,均存在[]26,10x ∈,使得()()12f x g x >,求实数m 的取值范围.18.教材中的基本不等式可以推广到n 阶:n 个正数的算数平均数不小于它们的几何平均数.也即:若12,,,0n a a a >,则有*12,2n a a a n n n+++≥∈≥N ,当且仅当12n a a a === 时取等.利用此结论解决下列问题:(1)若,,0x y z >,求24y z xx y z++的最小值;(2)若10,2x ⎛⎫∈ ⎪⎝⎭,求()312x x -的最大值,并求取得最大值时的x 的值;(3)对任意*k ∈N ,判断11kk ⎛⎫+ ⎪⎝⎭与1111k k +⎛⎫+ ⎪+⎝⎭的大小关系并加以严格证明.19.已知定义在11,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭上的函数()f x 同时满足下列四个条件:①512f ⎛⎫=-⎪⎝⎭;②对任意12x >,恒有()()0f x f x -+=;③对任意32x >,恒有()0f x <;④对任意,0a b >,恒有111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求32f ⎛⎫-⎪⎝⎭的值;(2)判断()f x 在1,2⎛⎫+∞⎪⎝⎭上的单调性,并用定义法证明;(3)若对任意[]1,1t ∈-,恒有()()21232f t k t k -+-+≤,求实数k 的取值范围.重庆高2027届高一上期月考数学试题卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上.2.作答时,务必将答案写在答题卡上.写在本试卷及草稿纸上无效.3.考试结束后,将答题卡交回.一、单项选择题.本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}432A B x x =≤=,,则A B = ()A.2163xx ⎧⎫<≤⎨⎬⎩⎭B.{}316x x ≤< C.223xx ⎧⎫<≤⎨⎬⎩⎭D.{}02x x ≤≤【答案】A 【解析】【分析】根据集合的交集运算法则运算即可.【详解】因为{}{}4016A x x =≤=≤≤,{}2323B x x x x ⎧⎫==>⎨⎩⎭,所以A B = 2163x x ⎧⎫<≤⎨⎬⎩⎭.故选:A .2.命题.“230,1x x x ∃<+>”的否定是()A.230,1x x x ∀≥+≤B.230,1x x x ∀<+≤ C.230,1x x x ∃<+≤ D.230,1x x x ∃≥+≤【答案】B 【解析】【分析】利用特称命题的否定形式回答即可.【详解】根据特称命题的否定形式可知命题.“230,1x x x ∃<+>”的否定是“230,1x x x ∀<+≤”.故选:B3.已知函数()2f x +的定义域为()3,4-,则函数()1g x +=的定义域为()A.()4,3- B.()2,5- C.1,33⎛⎫ ⎪⎝⎭D.1,53⎛⎫ ⎪⎝⎭【答案】D 【解析】【分析】根据抽象函数及具体函数的定义域求解即可.【详解】因为函数()2f x +的定义域为()3,4-,所以函数()f x 的定义域为()1,6-,则对于函数()1g x +=,需满足116310x x -<+<⎧⎨->⎩,解得153x <<,即函数()1g x +=的定义域为1,53⎛⎫⎪⎝⎭.故选:D.4.使得“[]21,2,0x x x a ∀∈+-≤”为真命题的一个充分不必要条件是()A.2a ≥B.2a >C.6a > D.6a ≥【答案】C 【解析】【分析】对于全称量词命题2[1,2],0x x x a ∀∈+-≤,我们需要先求出使得该命题为真时a 的取值范围,然后再根据充分不必要条件的定义来判断选项.【详解】令2()f x x x =+,[1,2]x ∈.对于二次函数2y ax bx c =++,其对称轴为122b x a =-=-.因为10a =>,所以函数()f x 在[1,2]上单调递增.那么()f x 在[1,2]上的最大值为2max ()(2)226f x f ==+=.因为2[1,2],0x x x a ∀∈+-≤为真命题,即2a x x ≥+在[1,2]上恒成立,所以max ()6a f x ≥=.A 是B 的充分而不必要条件,即值A B ⇒,B A ¿.当6a >时,一定满足6a ≥,所以6a >是6a ≥的充分不必要条件.而2a >时,不能保证一定满足6a ≥,2a ≥时,也不能保证一定满足6a ≥.故选:C.5.若正实数,x y 满足3x y +=,且不等式22823m m x y+>-+恒成立,则实数m 的取值范围是()A.{31}mm -<<∣ B.{3m m <-∣或1}m > C.{13}m m -<<∣ D.{1mm <-∣或3}m >【答案】C 【解析】【分析】利用基本不等式和常值代换法求得28x y+的最小值,依题得到不等式2236m m -+<,解之即得.【详解】因3x y +=,由28128()()3x y x y x y+=++1281(10)(10633y x x y =++≥+=,当且仅当28y x x y =时取等号,即当1,2x y ==时,28x y+取得最小值6.因不等式22823m m x y+>-+恒成立,故2236m m -+<,即2230m m --<,解得13m -<<.故选:C.6.函数()()()245,2231,2x a x x f x a x x ⎧-++<⎪=⎨-+≥⎪⎩满足对12,R x x ∀∈且12x x ≠,都有()()()12120f x f x x x --<⎡⎤⎣⎦,则实数a 的取值范围是()A.30,2⎛⎫ ⎪⎝⎭B.30,2⎡⎫⎪⎢⎣⎭C.()0,1 D.[]0,1【答案】D 【解析】【分析】根据题意,得到()f x 在定义域R 上为单调递减函数,结合分段函数的单调性的判定方法,列出不等式组,即可求解.【详解】由函数()()()245,2231,2x a x x f x a x x ⎧-++<⎪=⎨-+≥⎪⎩因为函数()y f x =任意12,R x x ∀∈且12x x ≠,都有()()()12120f x f x x x --<⎡⎤⎣⎦,所以函数()f x 在定义域R 上为单调递减函数,则满足()()242223024252321a a a a +⎧≥⎪⎪-<⎨⎪-+⨯+≥-⨯+⎪⎩,即0321a a a ≥⎧⎪⎪<⎨⎪≤⎪⎩,解得01a ≤≤,所以实数a 的取值范围是[]0,1.故选:D.7.已知,a b 均为正实数,且1a b +=,则下列选项错误的是()A.B.34a a b++的最小值为7+C.()()11a b ++的最大值为94D.2232a b a b +++的最小值为16【答案】B 【解析】【分析】利用基本不等式可判断AC 的正误,利用“1”的代换可判断B 的正误,利用换元法结合常数代换可判断D 的正误.【详解】选项A:2112,1a b a b +=+≤++===时取等,+A 对;选项B:3433443577a a b a b a b aa b a b a b+++++=+=++≥+,当且仅当35,22a b -==时取等,故34a a b ++的最小值为7+,故B 错选项C :()()2119111,242a b a b a b +++⎛⎫++≤=== ⎪⎝⎭时取等,故()()11a b ++的最大值为94,故C 对;选项D :换元,令3,2x a y b =+=+,则6x y +=,故()()222232941032x y a b x y a b x y x y--+=+=+-++++94194251413446666x y y x x y x y ⎛⎫⎛⎫+=+⋅-=++-≥-= ⎪ ⎪⎝⎭⎝⎭,当且仅当1812,55x y ==取等号,故2232a b a b +++的最小值为16,故D 正确;故选:B.8.含有有限个元素的数集,定义其“交替和”如下:把集合中的数按从小到大的顺序排列,然后从最大的数开始交替地加减各数,例如{}4,6,9的“交替和”是9647-+=;而{}5的交替和是5,则集合{}Z 54M x x =∈-≤≤∣的所有非空子集的“交替和”的总和为()A.2048B.2024C.1024D.512【答案】A 【解析】【分析】将集合M 的子集两两配对(),A B :使4,4A B ∈∉且{}4B A ⋃=,从而有集合A 与集合B 的交替和之和为4,再利用符合条件的集合对有92个,即可求解.【详解】由题知{}5,4,3,2,1,0,1,2,3,4M =-----,将集合M 的子集两两配对(),A B :使4,4A B ∈∉且{}4B A ⋃=,则符合条件的集合对有92个,又由题设定义有集合A 与集合B 的交替和之和为4,所以交替和的总和为9114222048⨯==.故选:A.二、多项选择题.本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知,,a b c ∈R ;则下列不等式一定成立的有()A.若0ab ≠且a b <,则11a b >B.若0a b >>,则20242024b b a a +<+C.若,a b c d >>,则ac bd >D.()221222a b a b ++≥--【答案】BD 【解析】【分析】利用特殊值验证AC 是错误的,利用作差法判断B 的真假,利用配方法证明D 是正确的.【详解】对A :令1a =-,1b =,则0ab ≠且a b <,但11a b>不成立,故A 错误;对B :当0a b >>时,()()()20242024202420242024b a a b b b a a a a +-++-=++()()202402024b a a a -=<+,所以20242024b b a a +<+成立,故B 正确;对C :令3a =-,4b =-,0c =,1d =-,则,a b c d >>,但ac bd >不成立,故C 错误;对D :因为()()()222212222144a b a b a b a b ++----++++=()()22120a b =-++≥,所以()221222a b a b ++≥--成立,故D 正确.故选:BD10.下列说法正确的是()A.若p 是q 的必要不充分条件,p 是r 的充要条件,则q 是r 的充分不必要条件B.若关于x 的不等式2430kx kx k -++≥的解集为R ,则实数k 的取值范围是01k <≤C.若不等式()()30x ax b x c-+≤-的解集为[)[)2,13,∞-⋃+,则不等式2320ax ax b --≥的解集为[]1,4-D.“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题的充要条件为[]51,0,43x ⎡⎤∈-⋃⎢⎥⎣⎦【答案】ACD 【解析】【分析】根据充分条件、必要条件的概念判断A ,分类讨论求出k 的范围判断B ,根据数轴穿根法及不等式的解集求出ba及0a <解不等式判断C ,由命题的否定转化为不等式恒成立,看作关于a 的不等式恒成立即可判断D.【详解】对A ,若p 是q 的必要不充分条件,p 是r 的充要条件,则q p r ⇒⇔,但是p 不能推出q ,所以q r ⇒,但是r 不能推出q ,所以q 是r 的充分不必要条件,故A 正确;对B ,当0k =时,原不等式为03≥,恒成立满足题意,当0k ≠时,由题意需满足()2Δ16430k k k k >⎧⎨=-⋅+≤⎩,解得01k <≤,综上,实数k 的取值范围是01k ≤≤,故B 错误;对C ,由不等式()()30x ax b x c-+≤-的解集为[)[)2,13,∞-⋃+,结合数轴穿根法知,1,2bc a==,且0a <,所以不等式2320ax ax b --≥可化为2340x x --≤,解得14x -≤≤,故C 正确;对D ,由题意知[]()21,3,2130a ax a x a ∀∈---+-≥为真命题,则()22130a x x x --++≥在[]1,3a ∈-时恒成立,令()2()213g a a x x x =--++,只需()()2213403350g x x g x x ⎧-=-++≥⎪⎨=-≥⎪⎩,则14503x x x -≤≤⎧⎪⎨≥≤⎪⎩或,解得[]51,0,43x ⎡⎤∈-⋃⎢⎥⎣⎦,故D 正确.故选:ACD11.已知函数()f x 的定义域为[)0,+∞,且满足当[)0,2x ∈时,()22f x x x =-+,当2x ≥时,恒有()()2f x f x λ=-,且λ为非零常数,则下列说法正确的有()A.()()101320272024f f λ+=B.当12λ=时,反比例函数()1g x x =与()f x 在()0,2024x ∈上的图象有且仅有6个交点C.当0λ<时,()f x 在区间[]2024,2025上单调递减D.当1λ<-时,()f x 在[]()*0,4n n ∈N 上的值域为2122,n n λλ--⎡⎤⎣⎦【答案】ABD 【解析】【分析】根据所给函数解析式直接求解判断A ,根据()f x 的性质及(),()g x f x 图象判断B ,归纳出()f x 在[]2024,2025上的解析式判断C ,根据规律,归纳值域特点判断D.【详解】选项A :()()()()()210121013101320272025202331f f f f f λλλλλ====== ,()()()()()210111012202420222020200f f f f f λλλλ====== ,则()()101320272024f f λ+=,所以选项A 正确;选项B :由()()122f x f x =-知,()0,2024x ∈时,()()()()()[)()()[)()()[)210112,0,2124,2,42146,4,62120222024,2022,20242x x x x x x f x x x x x x x ⎧-∈⎪⎪--∈⎪⎪⎪=--∈⎨⎪⎪⎪⎪--∈⎪⎩ ,由于()()()()()()1111111,33,553254g f g f g f ===<==<=,但()()()()31011111177,202320237220232g f g f =>==>= ,作,的图象,如图,结合图象可知()0,6x ∈上有2226++=个交点,在[)6,2024x ∈上无交点,故选项B 正确;选项C :[]2024,2025x ∈时,()()()1012120242026f x x x λ=--,故()f x 在[]2024,2025上单增,故C 错误;选项D :因为1λ<-,所以当[]0,4x ∈时,值域为[],1λ;当[]0,8x ∈时,值域为32,λλ⎡⎤⎣⎦;当[]0,12x ∈时,值域为54,λλ⎡⎤⎣⎦;当[]0,16x ∈时,值域为76,λλ⎡⎤⎣⎦;L 当[]0,4x n ∈时,值域为2122,n n λλ--⎡⎤⎣⎦,故D 正确.故选:ABD.【点睛】关键点点睛:根据所给函数解析式,可知函数类似周期特点,图象形状类似,振幅有规律变化,据此可归纳函数的性质是解题的关键所在.三、填空题.本题共3小题,每小题5分,共15分.12.已知集合{}210A xx =-=∣,则集合A 有__________个子集.【答案】4【解析】【分析】求出集合A ,列举出集合A 的子集即可.【详解】因2{10}{1,1}A x x =-==-∣,故集合A 的子集有,{1},{1},{1,1}∅--共4个.故答案为:4.13.已知集合[]()(){}1,4,10A B x x a ax ==+-≤∣,若A B B = 且0a ≥,则实数a 的取值范围是__________.【答案】10,4⎡⎤⎢⎥⎣⎦【解析】【分析】根据集合的包含关系,讨论0a =和0a >两种情况,求集合B ,再比较端点值,即可求解.【详解】因为A B B = ,所以A B ⊆,因为()(){}10B x x a ax =+-≤∣,且0a ≥:1 当0a =时,[)0,B ∞=+,符合题意;2当0a >时,1,B a a ⎡⎤=-⎢⎥⎣⎦,则11404a a ≥⇒<≤,综上,10,4a ⎡⎤∈⎢⎥⎣⎦.故答案为:10,4⎡⎤⎢⎣⎦14.若正实数x ,y 满足()()332331423x y x y -+-=--,则2346y x x x y++的最小值为__________.【答案】【解析】【分析】根据函数的单调性可知243x y =-,代入可得234386y x y xx x y x y++=+,根据基本不等式可得最值.【详解】由题可知()()()()3323231313x x y y -+-=-+-,因为3,y t y t ==在R 上单调递增,所以()3g t t t =+在R 上单增,所以上式可表示为()()2313g x g y -=-,则2313x y -=-,即243x y =-,因此()22433433866x y y x y y x x x x y x y x y -++=++=+≥=当且仅当38243y x x y x y⎧=⎪⎨⎪=-⎩即25x -=,2415y -=时等号成立,故答案为:.四、解答题、本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()21,122,1x x f x x x ⎧->-⎪=⎨⎪--≤-⎩.(1)若()01f x =,求0x 的值;(2)若()3f a a <+,求实数a 的取值范围.【答案】(1)02x =或3-(2)5,42⎛⎫-⎪⎝⎭【解析】【分析】(1)根据分段函数定义分类列方程求解;(2)根据分段函数定义分类列不等式求解.【小问1详解】由()01f x =可得:1∘>−1−1=1⇒0=20=−2舍去)0000123,,23;21x x x x ≤-⎧⇒=-=-⎨--=⎩ 综上或【小问2详解】由()3f a a <+可得:1∘>−11<+3⇒>−12−2−8<0⇒>−1−2<<4⇒∈−1,4;2∘≤−1−−2<+3⇒≤−1>−52⇒∈−52,−1综上可得5,42a ⎛⎫∈-⎪⎝⎭.16.已知函数()f x =A ,集合{}321B xx =->∣.(1)求A B ;(2)集合{}321M xa x a =-≤≤-∣,若M ()RA ð,求实数a 的取值范围.【答案】(1)3{|4A B x x =≤ 或1}x >(2)3,2⎛⎤-∞ ⎥⎝⎦【解析】【分析】(1)根据条件,先求出集合,A B ,再利用集合的运算,即可求解;(2)由(1)可得R 3,24A ⎛⎤= ⎥⎝⎦ð,再根据条件,分M =∅和M 蛊两种情况讨论,即可求解.【小问1详解】由5402x +≥-,即4302x x -≥-,得到2x >或34x ≤,所以3{|4A x x =≤或2}x >,又由321x ->,得到321x -<-或321x ->,即13x <或1x >,所以1{3B x =<或1}x >,所以3{|4A B x x =≤ 或1}x >.【小问2详解】因为3{|4A x x =≤或2}x >,所以R 3,24A ⎛⎤= ⎥⎝⎦ð,①当321a a ->-,即43a <时,此时M =∅()RA ð,所以43a <满足题意,②当43a ≥,即M 蛊时,由题有212334a a -≤⎧⎪⎨->⎪⎩,解得4332a ≤≤,综上,实数a 的取值范围是3,2a ⎛⎤∈-∞ ⎥⎝⎦.17.已知二次函数()f x 的图象过原点()0,0,且对任意x ∈R ,恒有()26231x f x x --≤≤+.(1)求()1f -的值;(2)求函数()f x 的解析式;(3)记函数()g x m x =-,若对任意(]11,6x ∈,均存在[]26,10x ∈,使得()()12f x g x >,求实数m 的取值范围.【答案】(1)4(2)()222f x x x=-(3)(],10-∞【解析】【分析】(1)令1x =-即可求出()1f -.(2)根据条件,先设出二次函数的解析式,再根据()26231x f x x --≤≤+恒成立,可求待定系数.(3)问题转化成()f x 在区间(]1,6的最小值不小于()g x 在[]6,10上的最小值求参数的取值范围.【小问1详解】在不等式()26231x f x x --≤≤+,令()()141414x f f =-⇒≤-≤⇒-=.【小问2详解】因为()f x 为二次函数且图象过原点()0,0,所以可设()()2,0f x ax bx a =+≠,由()1444f a b b a -=⇒-=⇒=-,于是()()24f x ax a x =+-,由题:()()262220,f x x ax a x x ≥--⇔+++≥∈R 恒成立⇔>0Δ≤0⇔>0+22−8=−22≤0⇒=2,=−2⇒=22−2,检验知此时满足()()223110,f x x x x ≤+⇔+≥∈R ,故()222f x x x =-.【小问3详解】函数()222f x x x =-,开口向上,对称轴12x =,所以()222f x x x =-在区间(]1,6上单调递增,因此,(]11,6x ∈时,()()()(11,6f x f f ⎤∈⎦,即()(]10,60f x ∈,而()g x m x =-在[]6,10上单调递减,所以[]26,10x ∈时,()[]210,6g x m m ∈--因为对任意(]11,6x ∈,均存在[]26,10x ∈,使得()()12f x g x >,等价于()()(]110010,10f g m m ∞≥⇒≥-⇒∈-18.教材中的基本不等式可以推广到n 阶:n 个正数的算数平均数不小于它们的几何平均数.也即:若12,,,0n a a a > ,则有*12,2n a a a n n n +++≥∈≥N ,当且仅当12n a a a === 时取等.利用此结论解决下列问题:(1)若,,0x y z >,求24y z x x y z++的最小值;(2)若10,2x ⎛⎫∈ ⎪⎝⎭,求()312x x -的最大值,并求取得最大值时的x 的值;(3)对任意*k ∈N ,判断11kk ⎛⎫+ ⎪⎝⎭与1111k k +⎛⎫+ ⎪+⎝⎭的大小关系并加以严格证明.【答案】(1)6(2)最大值为272048,38x =(3)1*1111,1kk k k k +⎛⎫⎛⎫+<+∈ ⎪ ⎪+⎝⎭⎝⎭N ,证明见解析【解析】【分析】(1)根据三阶基本不等式的内容直接可得解;(2)由()()32722212128333x x xx x x -=⋅⋅⋅⋅-,结合四阶基本不等式可得最值;(3)猜测111111kk k k +⎛⎫⎛⎫+<+ ⎪ ⎪+⎝⎭⎝⎭,*k ∈N 成立,验证1k =不等式成立;结合推广公式证明2k ≥结论成立.【小问1详解】因为,,0x y z >,所以由三阶基本不等式可得:246y z x x y z ++≥,当且仅当24y z xx y z==即2y z x ==时取等号,因此24y z x x y z++的最小值为6;【小问2详解】当10,2x ⎛⎫∈ ⎪⎝⎭时,由四阶基本不等式可得:()()()432221227222272733312128333842048x x x x x x x x x x ⎛⎫+++- ⎪-=⋅⋅⋅⋅-≤= ⎪⎝⎭,当且仅当2123xx =-即310,82x ⎛⎫=∈ ⎪⎝⎭时取等号,因此()312x x -的最大值为272048;【小问3详解】大小关系为111111kk k k +⎛⎫⎛⎫+<+ ⎪ ⎪+⎝⎭⎝⎭,*k ∈N ,证明如下:由条件可知:12,,,0n a a a > 时,*1212,,2nn n a a a a a a n n n +++⎛⎫⋅≤∈≥ ⎪⎝⎭N ,当1k =时,左边11121⎛⎫=+= ⎪⎝⎭,右边219124⎛⎫=+= ⎪⎝⎭,左边<右边,不等式成立;当2k ≥,*k ∈N 时,由1k +阶基本不等式,可知:不等式左边111111111kk k k k ⎛⎫⎛⎫⎛⎫⎛⎫=+=+⋅++⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()(1)1111111111(11)11()111k k k k k k k k k k k k k ++++⎛⎫⎛⎫⎛⎫⎛⎫++++++++++ ⎪⎪ ⎪⎪⎛⎫++⎝⎭⎝⎭⎝⎭ ⎪≤== ⎪+++ ⎪⎝⎭⎪⎝⎭个个1111k k +⎛⎫=+ ⎪+⎝⎭而111k ⎛⎫+≠ ⎪⎝⎭,因此上式的不等号取不到等号,于是1111111111kk k k k k k ++++⎛⎫⎛⎫⎛⎫+<=+ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭,综上,原不等式得证.19.已知定义在11,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭上的函数()f x 同时满足下列四个条件:①512f ⎛⎫=-⎪⎝⎭;②对任意12x >,恒有()()0f x f x -+=;③对任意32x >,恒有()0f x <;④对任意,0a b >,恒有111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求32f ⎛⎫- ⎪⎝⎭的值;(2)判断()f x 在1,2⎛⎫+∞⎪⎝⎭上的单调性,并用定义法证明;(3)若对任意[]1,1t ∈-,恒有()()21232f t k t k -+-+≤,求实数k 的取值范围.【答案】(1)0(2)()f x 在1,2⎛⎫+∞⎪⎝⎭上单调递减,证明见解析(3)3,4⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)令1a b ==可得302f ⎛⎫= ⎪⎝⎭,再由()()0f x f x -+=,即可得出答案;(2)由单调性的定义证明即可;(3)由单调性和奇偶性列出不等式,再结合二次函数的性质求解即可.【小问1详解】在111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中令333120222a b ff f ⎛⎫⎛⎫⎛⎫==⇒=⇒= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(或令53532,102222a b f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==⇒+=⇒=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭).而()()333000222f x f x f f f ⎛⎫⎛⎫⎛⎫-+=⇒-+=⇒-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【小问2详解】()f x 在1,2∞⎛⎫+ ⎪⎝⎭上单调递减.下证明:由④知:对任意,0a b >,恒有111222f ab f b f a ⎛⎫⎛⎫⎛⎫+-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.证一:任取2112x x >>,于是()()22211111111111122112222222x x f x f x f x f x f x x ⎛⎫⎛⎫-- ⎪ ⎪⎛⎫⎛⎫⎛⎫-=⋅-+--+=+⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪ ⎪--⎝⎭⎝⎭因为2112x x >>,所以2111022x x ->->221111132********x x x x --⇒>⇒+>--,而对任意32x >时恒有()0f x <,故211120122x f x ⎛⎫- ⎪+<⎪ ⎪-⎝⎭,即()()210f x f x -<,所以()f x 在1,2∞⎛⎫+⎪⎝⎭上单调递减,证毕;证二:任取2112x x >>,设2111,,1,022x mn x n m n =+=+>>()()21111222f x f x f mn f n f m ⎛⎫⎛⎫⎛⎫-=+-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为131.22m m >+>,所以102f m ⎛⎫+< ⎪⎝⎭,即()()21f x f x <,也即()f x 在1,2∞⎛⎫+⎪⎝⎭单调递减,证毕;【小问3详解】在111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中:令5599222222a b f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==⇒+=⇒=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,而()()0f x f x -+=,于是922f ⎛⎫-= ⎪⎝⎭令139339,402442242a b f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⇒+==⇒=-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,由(2)知()f x 在1,2∞⎛⎫+ ⎪⎝⎭上单调递减,又()()0f x f x -+=,可得()f x 在1,2∞⎛⎫-- ⎪⎝⎭上也单调递减,如图,可知不等式()()21232f t k t k -+-+≤等价于:对任意[]11t ,∈-,不等式()231234t k t k -+-+≥……①或者()29112322t k t k -≤-+-+<-恒成立,……②法一:令()()[]2123,1,1g t t k t k t =-+-+∈-立,因为()g t 开口向下,由()g t 图像可知:不等式①()()11313204;334144k g k g k ⎧⎧≥-≥⎪⎪⎪⎪⇔⇒⇒≥⎨⎨⎪⎪≥≥⎪⎪⎩⎩对于②,当1t =±时,由()()1391121022919112222k g k g k ∅⎧⎧-≤<-≤-<-⎪⎪⎪⎪⇒⇒∈⎨⎨⎪⎪-≤<--≤<-⎪⎪⎩⎩,即一定不存在k 满足②.综上取并,得3,4k ∞⎡⎫∈+⎪⎢⎣⎭法二:令()()[]()2123,1,1,g t t k t k t g t =-+-+∈-开口向下,对称轴为12t k =-,且()()211152,1,224g k g k g k k k ⎛⎫-=-=-=++ ⎪⎝⎭,1 当112k -<-即32k >时,问题等价于>321≥34或>32−1<−121≥−92,解得32k >;2 当1102k -≤-≤即1322k ≤≤时,等价于()1322314k g ⎧≤≤⎪⎪⎨⎪≥⎪⎩或()13221133,;2242912k g k k g ⎧≤≤⎪⎪⎪⎛⎫⎡⎤-<-⇒∈⎨ ⎪⎢⎥⎝⎭⎣⎦⎪⎪≥-⎪⎩3 当1012k <-≤即1122k -≤<时,问题等价于()1122314k g ⎧-≤<⎪⎪⎨⎪-≥⎪⎩或()11221122912k g k g ⎧-≤<⎪⎪⎪⎛⎫-<-⎨ ⎪⎝⎭⎪⎪-≥-⎪⎩,解得k ∈∅;4 当112k ->即12k <-时,问题等价于()12314k g ⎧<-⎪⎪⎨⎪-≥⎪⎩或()()12112912k g g ⎧<-⎪⎪⎪<-⎨⎪⎪-≥-⎪⎩,解得k ∈∅;综上,3,4k ∞⎡⎫∈+⎪⎢⎣⎭.。
广西壮族自治区贵百河武鸣高中2024-2025学年高一上学期10月月考试题 数学(含解析)
2024级“贵百河—武鸣高中”10月高一年级新高考月考测试数 学(考试时间:120分钟 满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.回答非选择题时,将答案写在答题卡上,写在试卷上无效。
一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,集合,则图中阴影部分表示的集合为()A . B.C .D .2.已知命题,则是( )A .B .C .D .3.已知集合,则“”是“集合M 仅有1个真子集”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分又不必要条件4.已知函数的对应关系如下表,函数的图象如图,则的值为()A .3B .0C .1D .25.给出下列结论:①两个实数a ,b 之间,有且只有a ﹥b ,a =b ,a <b 三种关系中的一种;②若,则a ﹥b ;③若,;④已知,则.其中正确结论的个数为( )A .1B .2C .3D .4x123230{32}A x x =-<<{05}B x x =<<{35}x x -<<{02}x x <<{30}x x -<≤{3025}x x x -<≤≤<或2:1,1p x x ∀<->p ⌝21,1x x ∃≤-≤21,1x x ∃<-≤21,1x x ∀<->21,1x x ∀≥->{}()210R M x ax x a =-+=∈14a =)(x f y =)(x g y =()1f g ⎡⎤⎣⎦1>ab0a b >>0a bc d d c >>⇒>0ab >11a b a b>⇔<()f x6.已知函数的定义域是,则的定义域为()A .B .C .D .7.已知函数,若对于任意的实数与至少有一个为正数,则实数m 的取值范围是( )A .B .C .D .8.已知正实数a ,b ,记,则M 的最小值为()AB .2C .1D .二、多选题:本题共3小题,每小题6分,共18分。
重庆市第一中学2024-2025学年高一上学期10月月考数学试题
重庆市第一中学2024-2025学年高一上学期10月月考数学试题一、单选题1.已知集合{}{}432A B x x ==,,则A B =I ( )A .2163x x ⎧⎫<≤⎨⎬⎩⎭ B .{}316x x ≤<C .223x x ⎧⎫<≤⎨⎬⎩⎭D .{}02x x ≤≤2.命题.“230,1x x x ∃<+>”的否定是( ) A .230,1x x x ∀≥+≤ B .230,1x x x ∀<+≤ C .230,1x x x ∃<+≤D .230,1x x x ∃≥+≤3.已知函数()2f x +的定义域为()3,4-,则函数()1f xg x +的定义域为( )A .()4,3-B .()2,5-C .1,33⎛⎫⎪⎝⎭D .1,53⎛⎫ ⎪⎝⎭4.使得“[]21,2,0x x x a ∀∈+-≤”为真命题的一个充分不必要条件是( )A .2a ≥B .2a >C .6a >D .6a ≥5.若正实数,x y 满足3x y +=,且不等式22823m m x y+>-+恒成立,则实数m 的取值范围是( )A .{31}mm -<<∣ B .{3m m <-∣或1}m > C .{13}mm -<<∣D .{1mm <-∣或3}m > 6.函数()()()245,2231,2x a x x f x a x x ⎧-++<⎪=⎨-+≥⎪⎩满足对12,R x x ∀∈且12x x ≠,都有()()()12120f x f x x x --<⎡⎤⎣⎦,则实数a 的取值范围是( ) A .30,2⎛⎫⎪⎝⎭B .30,2⎡⎫⎪⎢⎣⎭C .()0,1D .[]0,17.已知,a b 均为正实数,且1a b +=,则下列选项错误的是( )AB .34a a b ++的最小值为7+C .()()11a b ++的最大值为94D .2232a b a b +++的最小值为16 8.含有有限个元素的数集,定义其“交替和”如下:把集合中的数按从小到大的顺序排列,然后从最大的数开始交替地加减各数,例如{}4,6,9的“交替和”是9647-+=;而{}5的交替和是5,则集合{}Z 54M x x =∈-≤≤∣的所有非空子集的“交替和”的总和为( ) A .2048B .2024C .1024D .512二、多选题9.已知,,a b c ∈R ;则下列不等式一定成立的有( ) A .若0ab ≠且a b <,则11a b> B .若0a b >>,则20242024b b a a +<+ C .若,a bcd >>,则ac bd >D .()221222a b a b ++≥--10.下列说法正确的是( )A .若p 是q 的必要不充分条件,p 是r 的充要条件,则q 是r 的充分不必要条件B .若关于x 的不等式2430kx kx k -++≥的解集为R ,则实数k 的取值范围是01k <≤C .若不等式()()30x ax b x c-+≤-的解集为[)[)2,13,∞-⋃+,则不等式2320ax ax b --≥的解集为[]1,4-D .“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题的充要条件为[]51,0,43x ⎡⎤∈-⋃⎢⎥⎣⎦11.已知函数()f x 的定义域为[)0,+∞,且满足当[)0,2x ∈时,()22f x x x =-+,当2x ≥时,恒有()()2f x f x λ=-,且λ为非零常数,则下列说法正确的有( )A .()()101320272024f f λ+=B .当12λ=时,反比例函数()1g x x =与()f x 在()0,2024x ∈上的图象有且仅有6个交点C .当0λ<时,()f x 在区间[]2024,2025上单调递减D .当1λ<-时,()f x 在[]()*0,4n n ∈N 上的值域为2122,n n λλ--⎡⎤⎣⎦三、填空题12.已知集合{}210A xx =-=∣,则集合A 有个子集. 13.已知集合[]()(){}1,4,10A B xx a ax ==+-≤∣,若A B B =U 且0a ≥,则实数a 的取值范围是.14.若正实数x ,y 满足()()332331423x y x y -+-=--,则2346y x x x y++的最小值为.四、解答题15.已知函数()21,122,1x x f x x x ⎧->-⎪=⎨⎪--≤-⎩.(1)若()01f x =,求0x 的值;(2)若()3f a a <+,求实数a 的取值范围. 16.已知函数()f x =A ,集合{}321B xx =->∣. (1)求A B U ;(2)集合{}321M xa x a =-≤≤-∣,若M ()R A ð,求实数a 的取值范围. 17.已知二次函数()f x 的图象过原点()0,0,且对任意x ∈R ,恒有()26231x f x x --≤≤+.(1)求()1f -的值; (2)求函数()f x 的解析式;(3)记函数()g x m x =-,若对任意(]11,6x ∈,均存在[]26,10x ∈,使得()()12f x g x >,求实数m 的取值范围.18.教材中的基本不等式可以推广到n 阶:n 个正数的算数平均数不小于它们的几何平均数.也即:若12,,,0n a a a >L,则有*12,2n a a a n n n+++∈≥N L ,当且仅当12n a a a ===L 时取等.利用此结论解决下列问题:(1)若,,0x y z >,求24y z x x y z++的最小值;(2)若10,2x ⎛⎫∈ ⎪⎝⎭,求()312x x -的最大值,并求取得最大值时的x 的值;(3)对任意*k ∈N ,判断11k k ⎛⎫+ ⎪⎝⎭与1111k k +⎛⎫+ ⎪+⎝⎭的大小关系并加以严格证明.19.已知定义在11,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭上的函数()f x 同时满足下列四个条件:①512f ⎛⎫=- ⎪⎝⎭;②对任意12x >,恒有()()0f x f x -+=; ③对任意32x >,恒有()0f x <; ④对任意,0a b >,恒有111222f a f b f ab ⎛⎫⎛⎫⎛⎫+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)求32f ⎛⎫- ⎪⎝⎭的值;(2)判断()f x 在1,2⎛⎫+∞ ⎪⎝⎭上的单调性,并用定义法证明;(3)若对任意[]1,1t ∈-,恒有()()21232f t k t k -+-+≤,求实数k 的取值范围.。
辽宁省沈阳市东北育才中学2024-2025学年高一上学期第一次月考(10月)数学试题(含解析)
东北育才高中2024-2025学年度上学期高一年级数学科第一次月考试卷时间:120分钟 满分:150分一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是正确的.1.已知集合,则中元素个数为( )A.2B.3C.4D.62.设集合,则集合的真子集的个数为( )A.3B.4C.15D.163.命题“,不等式”为假命题的一个必要不充分条件是( )A.B.C. D.4.设,则下列命题正确的是( )A.若,则B.若,则C.若则D.若,则5.若集合,若,则实数的取值范围是( )A.B.C.D.6.对于实数,当且仅当时,规定,则不等式的解集是()A. B.C. D.7.已知,则的最小值为( )(){}(){}*,,,,,8A x y x y y x B x y x y =∈≥=+=N ∣∣A B ⋂{}{}{}1,2,3,4,5,,,A B M xx a b a A b B ====+∈∈∣M x ∃∈R 2210ax x -+≤0a >1a >102a <<2a >,a b ∈R ,x y a b >>a x b y ->-a b >11a b<,x y a b >>ax by >a b >22a b >{}30,101x A xB x ax x ⎧⎫-===+=⎨⎬+⎩⎭∣B A ⊆a 13⎧⎫-⎨⎬⎩⎭1,13⎧⎫-⎨⎬⎩⎭10,3⎧⎫-⎨⎬⎩⎭10,,13⎧⎫-⎨⎬⎩⎭x ()1n x n n ≤<+∈N []x n =[]24[]36450x x -+<{28}xx ≤<∣31522xx ⎧⎫<<⎨⎬⎩⎭{}27xx ≤≤∣{27}x x <≤∣0,0,23x y x y >>+=23x yxy+A. B.8.方程至少有一个负实根的充要条件是( )A. B.C.D.或二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分,9.设均为非空集合,且满足,则下列各式中正确的是( )A. B.C.D.10.下列四个命题中正确的是( )A.由所确定的实数集合为B.同时满足的整数解的集合为C.集合可以化简为D.中含有三个元素11.已知关于的不等式的解集为,则下列结论正确的是()A. B.的最大值为C.的最小值为8 D.的最小值为三、填空题:本大题共3小题,每小题5分,共15分.12.的解集是__________.13.某班举行数学、物理、化学三科竞赛,每人至少参加一科,已知参加数学竞赛的有27人,参加物理竞赛的有25人,参加化学竞赛的有27人,其中同时只参加数学、物理两科的有10人,同时只参加物理、化学两科的有7人,同时只参加数学、化学两科的有11人,而参加数学、物理、化学三科的有4人,则全班共有__________人.3-11-1+2210ax x ++=01a <≤1a <1a ≤01a <≤0a <A B U 、、A B U ⊆⊆()U A B U ⋃=ð()()U U U A B B ⋂=ððð()U A B ⋂=∅ð()()U U A B U⋃=ðð(),a b a b ab+∈R {}2,0,2-240,121x x x +>⎧⎨+≥-⎩{}1,0,1,2-(){},3216,,x y x y x y +=∈∈N N ∣()()(){}0,8,2,5,4,26,3A aa a ⎧⎫=∈∈⎨⎬-⎩⎭N Z x ()()()2323100,0a m x b m x a b +---<>>11,2⎛⎫- ⎪⎝⎭21a b +=ab 1812a b +224a b +1222150x x -->14.已知关于的不等式(其中)的解集为,若满足(其中为整数集),则使得集合中元素个数最少时的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.(本小题13分)已知集合为全体实数集,或.(1)若,求;(2)若,求实数的取值范围.16.(本小题15分)已知全集,集合,集合.(1)若,求实数的取值集合;(2)若集合,且集合满足条件__________(从下列三个条件中任选一个作答),求实数的取值集合.条件①是的充分不必要条件:②是的必要不充分条件:③,使得.17.(本小题15分)设,且.(1介于之间;(2)求;(3)你能设计一个比的吗?并说明理由.18.(本小题17分)对于二次函数,若,使得成立,则称为二次函数的不动点.(1)求二次函数的不动点:(2)若二次函数有两个不相等的不动点,且,求的最小值.x ()()2640mx m x --+<m ∈R A A B ⋂=Z Z B m U {2M xx =<-∣{}5},121x N x a x a >=+≤≤-∣3a =()U M N ⋃ðU N M ⊆ða U =R A x y ⎧⎪==⎨⎪⎩()(){}2440B x x m x m =---<∣B =∅m B ≠∅,A B m x A ∈x B ∈x A ∈x B ∈12,x A x B ∀∈∃∈12x x =10a >1a ≈21111a a =++12,a a 12,a a 2a 3a ()20y ax bx c a =++≠0x ∃∈R 2000ax bx c x ++=0x ()20y ax bx c a =++≠222y x x =+-()2221y x a x a =-++-12,x x 12,0x x >2112x x x x +19.(本小题17分)已知是非空数集,如果对任意,都有,则称是封闭集.(1)判断集合是否为封闭集,并说明理由:(2)判断以下两个命题的真假,并说明理由:命题:若非空集合是封闭集,则也是封闭集;命题:若非空集合是封闭集,且,则也是封闭集:(3)若非空集合是封闭集合,且为实数集,求证:不是封闭集.A ,x y A ∈,x y A xy A +∈∈A {}{}0,1,0,1BC ==-p 12,A A 12A A ⋃q 12,A A 12A A ⋂≠∅12A A ⋂A ,A ≠R R A R ð东北育才高中2024-2025学年度上学期高一年级数学科第一次月考答案【解析】1.解:在集合中,观察集合的条件,当是正整数且时,有等4个元素,则中元素个数为4个.故选C.2.解:由题意可知,集合,集合中有4个元素,则集合的真子集有个,故选C.3.解:命题“,不等式”为假命题,则命题“,不等式”为真命题,所以,解得,所以使得命题“,不等式”为假命题,则实数的取值范围为1,则命题“,不等式”为假命题的一个必要不充分条件是,故选:A.4.解:A :令,则,故错误;B :令,则,故错误;C :令,则,故错误;D :因为,所以即,故正确;故选D.5.解:由题可知:.当时,显然不成立即,则满足;B 8x y +=A ,x y y x ≥()()()()1,7,2,6,3,5,4,4A B ⋂{}5,6,7,8M =M 42115-=x ∃∈R 2210ax x -+≤x ∀∈R 2210ax x -+>0Δ440a a >⎧⎨=-<⎩1a >x ∃∈R 2210ax x -+≤a a >x ∃∈R 2210ax x -+≤0a >1,3,2,0x y a b ==-==13a x b y -=<-=0,0a b ><11a b>0,1,1,0x y a b ==-==0ax by ==a a b >…22||a b >22a b >{}3031x A xx ⎧⎫-===⎨⎬+⎩⎭0a =10…B =∅B A ⊆当时,,由可得:;综上所述实数的取值范围为.故选C.6.解:由,根据的定义可知:不等式的解集是.故选A.7.解:因为,则,当且仅当时,即当,且,等号成立,故的最小值为故选B.8.当时,方程为有一个负实根,反之,时,则于是得;当时,,若,则,方程有两个不等实根,,即与一正一负,反之,方程有一正一负的两根时,则这两根之积小于,于是得,若,由,即知,方程有两个实根,0a ≠1B x x a ⎧⎫==-⎨⎬⎩⎭B A ⊆1133a a -=⇒=-a 10,3⎧⎫-⎨⎬⎩⎭[]24[]36450x x -+<[]()[]()232150x x ⇒--<[]31522x ⇒<<[]x []24[]36450x x -+<{28}xx <∣…0,0,23x y x y >>+=()22222322111x x y y x y x xy y x y xy xy xy y x +++++===+++=+…222x y =3x =-y =23x y xy+1+0a =210x +=12x =-12x =-0,a =0a =0a ≠Δ44a =-0a <Δ0>12,x x 1210x x a=<1x 2x 1a0,0a <0a <0a >Δ0≥01a <≤12,x x必有,此时与都是负数,反之,方程两根都为负,则,解得,于是得,综上,当时,方程至少有一个负实根,反之,方程至少有一个负实根,必有.所以方程至少有一个负实根的充要条件是.故选:9.解:因为,如下图所示,则,选项A 正确:,选项B 正确:,选项正确:,选项D 错误.故选ABC.10.解:分别取同正、同负和一正一负时,可以得到的值分别为,故A 正确;由得,12122010x x a x x a ⎧+=-<⎪⎪⎨⎪=>⎪⎩1x 2x 2210ax x ++=12,x x 1212Δ4402010a x x a x x a ⎧⎪=-≥⎪⎪+=-<⎨⎪⎪=>⎪⎩01a <≤01a <≤1a ≤2210ax x ++=2210ax x ++=1a ≤2210ax x ++=1a ≤CA B U ⊆⊆()U U U ,B A A B U ⊆⋃=ððð()()UUUA B B ⋂=ððð()U A B ⋂=∅ðð()()UUUA B A U ⋃=≠ððð,a b (),a b a b ab+∈R 2,2,0-240,121,x x x +>⎧⎨+≥-⎩22x -<≤所以符合条件的整数解的集合为,故B 正确;由,可以得到符合条件的数对有,故C 正确;当时,;当时,,当时,;当时,;当时,;当时,,所以集合含有四个元素,故D 错误,故选ABC.11.解:由题意,,且方程的两根为和,所以,所以,所以A 正确;因为,所以,可得,当且仅当时取等号,所以的最大值为B 正确;,当且仅当,即时取等号,所以的最小值为C 错误;,当且仅当时取等号,所以的最小值为,所以D 正确.故选ABD.12.解:由,,{}1,0,1,2-3216,,x y x y +=∈∈N N ()()()0,8,2,5,4,22a =666332a ==∈--N 1a =663331a ==∈--N 0a =662330a ==∈--N 1a =-66331a =∉-+N 2a =-6635a =∉-N 3a =-66136a ==∈-N A 2,1,0,3-30a m +>()()232310a m x b m x +---=1-12123111,12323b m a m a m--+=-⨯=-++32,231a m b m +=-=-21,a b +=0,0a b >>21a b +=≥18ab ≤122a b ==ab 1,8()121222255549b a a b a b a b a b ⎛⎫+=++=++≥+=+= ⎪⎝⎭22b a a b =13a b ==12a b+9,22222114(2)(2)22a b a b a b +=+≥+=122a b ==224a b +1222150x x -->2||2150x x ∴-->()()530x x ∴-+>解得:或(舍去),或,即所求的解集为,故答案为.13.解:设参加数学、物理、化学三科竞赛的人分别组成集合,各集合中元素的个数如图所示,则全班人数为.故答案为43.14.解:分情况讨论:当时,,解得;当时,,当且仅当解得或;当时,,当且仅当由,解得.因为,集合中元素个数最少,所以不符合题意;所以要使集合中元素个数最少,需要,解得.故答案为:.15.(本小题13分)5x >3x <-5x ∴<-5x >()(),55,∞∞--⋃+()(),55,∞∞--⋃+,,A B C 24510711443++++++=0m =()640x -+<{}4A xx =>-∣0m <()2266640,4m m x x m m m m ⎛⎫++-+>=+-<- ⎪⎝⎭…m =26{|m A x x m +=<4}x >-0m >2664m m m m+=+≥>m =()2640m x x m ⎛⎫+-+< ⎪⎝⎭264m A x x m ⎧⎫+⎪⎪=-<<⎨⎬⎪⎪⎩⎭A B ⋂=Z B 0m ≤B 265m m +≤23m ≤≤{}23mm ∣……【答案】解:(1)当时,,所以或,又或,所以或;(2)由题可得,①当时,则,即时,此时满足;②当时,则,所以,综上,实数的取值范围为.16.(本小题15分)【答案】解:(1)若,则,解得,所以实数的取值集合为(2)集合,集合,则此时,则集合,当选择条件①时,是的充分不必要条件,有 ,则,且不能同时取等,解得,所以实数的取值集合为当选择条件②时,是的必要不充分条件,有 ,则,且不能同时取等,解得,所以实数的取值集合为当选择条件③时,,使得,有,则,解得,所以实数的取值集合为3a ={}45N xx =≤≤∣U {4N x x =<∣ð5}x >{2M xx =<-∣5}x >()U {4M N x x ⋃=<∣ð5}x >{}U 25M xx =-≤≤∣ðN =∅121a a +>-2a <U N C M ⊆N ≠∅12112215a a a a +≤-⎧⎪+≥-⎨⎪-≤⎩23a ≤≤a {}3aa ∣…B =∅244m m =+2m =m {}2{}2200{45}A xx x x x =-++>=-<<∣∣B ≠∅2,m ≠2244(2)0m m m +-=->{}244B xm x m =<<+∣x A ∈x B ∈A B 24445m m ≤-⎧⎨+≥⎩1m <-m (),1∞--x A ∈x B ∈B A 24445m m ≥-⎧⎨+≤⎩11m -<≤m (]1,1-12,x A x B ∀∈∃∈12x x =A B ⊆24445m m ≤-⎧⎨+≥⎩1m ≤-m (],1∞--17.(本小题15分)【答案】解:(1)证明:.之间.(2比.(3)令,则比.证明如下:由(2.故比18.(本小题17分)【答案】解:(1)由题意知:,,解得,所以,二次函数的不动点为和1.(2)依题意,有两个不相等的正实数根,即方程有两个不相等的正实数根,所以,解得,所以,所以))12111101a a a a ⎫=-⋅--=<⎪+⎭12a a 、11a --1a -2a ∴1a 32111a a =++3a 2a 32a a -=--3a 2a 222x x x +-=()()120x x ∴-+=122,1x x =-=222y x x =+-2-()2221x a x a x -++-=()22310x a x a -++-=()2Δ(3)810a a =+-->12302a x x ++=>1a >12102a x x -⎛⎫=> ⎪⎝⎭121231,22a a x x x x +-+==()222121221121212122x x x x x x x x x x x x x x +-++==,当且仅当,即时等号成立,所以的最小值为6.19.(本小题17分)【答案】(1)解:对于集合,因为,所以是封闭集;对于集合,因为,所以集合不是封闭集;(2)解:对命题:令,则集合是封闭集,但不是封闭集,故错误;对于命题:设,则有,又因为集合是封闭集,所以,同理可得,所以,所以是封闭集,故正确;(3)证明:假设结论成立,设,若,矛盾,所以,所以有,设且,否则,所以有,矛盾,故假设不成立,原结论成立,证毕.()()()22231(1)41162132121212a a a a a a a a a +⎛⎫-+ ⎪-+-+++⎝⎭===---1822621a a -=++≥=-1821a a -=-5a =1221x x x x +{}0B =000,000B B +=∈⨯=∈{}0B ={}1,0,1C =-()112,112,C C -+-=-∉+=∉{}1,0,1C =-p {}{}122,,3,A xx k k A x x k k ==∈==∈Z Z ∣∣12,A A 12A A ⋃q ()12,a b A A ∈⋂1,a b A ∈1A 11,a b A ab A +∈∈22,a b A ab A +∈∈()()1212,a b A A ab A A +∈⋂∈⋂12A A ⋂2a A a A ∈⇒∈2R ()a A a A -∈⇒-∈R ðða A -∈0a a A -+=∈2R R b A b A ∈⇒∈ððR b A -∈ð2()b A b A -∈⇒-∈R 0b b A -+=∈ð。
2024-2025学年四川省成都市成都七中高一(上)月考数学试卷(10月份)(含答案)
2024-2025学年四川省成都七中高一(上)月考数学试卷(10月份)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A ={1,2},B ={1,3,4},则A ∪B =( )A. {1}B. {1,3,4}C. {1,2}D. {1,2,3,4}2.已知0<x <3,0<y <5,则3x−2y 的取值范围是( )A. (−1,0)B. (−10,9)C. (0,4)D. (0,9)3.对于实数x ,“2+x 2−x ≥0”是“|x|≤2”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.下列命题中真命题的个数是( )①命题“∀x ∈R ,|x|+x 2≥0”的否定为“∃x ∈R ,|x|+x 2<0”;②“a 2+(b−1)2=0”是“a(b−1)=0”的充要条件;③集合A ={y|y = x 2+1},B ={x|y = x 2+1}表示同一集合.A. 0B. 1C. 2D. 35.已知实数x ,y 满足4x 2+4xy +y +6=0,则y 的取值范围是( )A. {y|−3≤y ≤2}B. {y|−2≤y ≤3}C. {y|y ≤−2}∪{y|y ≥3}D. {y|y ≤−3}∪{y|y ≥2}6.已知正实数a ,b 满足2a +b =1,则5a +b a 2+ab 的最小值为( )A. 3B. 9C. 4D. 87.关于x 的不等式(ax−1)2<x 2恰有2个整数解,则实数a 的取值范围是( )A. (−32,−43]∪(43,32]B. (−32,−43]∪[43,32)C. [−32,−43)∪(43,32]D. [−32,−43)∪[43,32)8.已知函数f(x)={4x 2−2x +3,x ≤122x +1x ,x >12,设a ∈R ,若关于x 的不等式f(x)≥|x−a 2|在R 上恒成立,则a 的取值范围是( )A. [−398,478]B. [−4,478]C. [−4,4 3]D. [−398,4 3]二、多选题:本题共3小题,共18分。
高一10月月考(数学)试题含答案
高一10月月考(数学)(考试总分:150 分)一、 单选题 (本题共计12小题,总分60分)1.(5分)1.下列语言叙述中,能表示集合的是( )A .数轴上离原点距离很近的所有点;B .太阳系内的所有行星C .某高一年级全体视力差的学生;D .与ABC 大小相仿的所有三角形2.(5分)2.若{}21,2,x x ∈,则x 的可能值为( )A .0B .0,1C .0,2D .0,1,23.(5分)3.已知集合{}21P y x ==+,{}21Q y y x ==+,{}21R x y x ==+,(){}2,1M x y y x ==+,{}1N x x =≥,则( ). A .P M B .Q R = C .R M = D .Q N =4.(5分)4.设集合{1A =,2,6},{}24B =,,{|15}C x R x =∈-≤≤,则()A B C =( )A .{}2B .{1,2,4}C .{1,2,4,5}D .{|15}x R x ∈-≤≤5.(5分)5.已知集合{}12A x x =<<,集合{}B x x m =>,若()AB =∅R,则m 的取值范围为( ) A .(],1-∞B .(],2-∞C .[)1,+∞D .[)2,+∞6.(5分)6.不等式(1)(2)0x x +->的解集为( )A .{|1x x <-或2}x >B .{|2x x <-或1}x >C .{|21}x x -<<D .{|12}x x -<<7.(5分)7.已知函数,若R x ∈∀,则k 的取值范围是A 、0<k<43 B 、0≤k<43 C 、k<0或k>43 D 、0<k ≤438.(5分)8.已知集合{|2}A x x =<,{2B =-,0,1,2},则A B =( )A .{}01,B .{1-,0,1} C .{2-,0,1,2} D .{1-,0,1,2}9.(5分)9.若函数()f x 的定义域为[]1,3,则函数()g x =的定义域为( ) A .(]1,2B .(]1,5C .[]1,2D .[]1,510.(5分)10.在下列四组函数中,表示同一函数的是( )A .()21f x x =+,x ∈N ,()21g x x =-,x ∈NB.()f x =()g x =C .(1)(3)()1x x f x x -+=-, ()3g x x =+ D .()||fx x =,()g x11.(5分)11.已知函数()f x 满足()()()222f a b f a f b +=+对,a b ∈R 恒成立,且(1)0f ≠,则(2021)f =( )A .1010B .20212C .1011D .2023212.(5分)12.已知函数()1,101,0x x f x x x a --≤<⎧=⎨-≤≤⎩的值域是[]0,2,则实数a 的取值范围是( ) A .(]0,1B .[]1,3C .[]1,2D .[]2,3二、 填空题 (本题共计4小题,总分20分)13.(5分)13.设{}6A x Z x =∈≤,{}{}1,2,3,3,4,5,6B C ==,则()AAB C =______.14.(5分)14.函数()f x =__________. 15.(5分)15.函数()2,0,00,0x x f x x x π⎧>⎪==⎨⎪<⎩,则()3f f -⎡⎤⎣⎦等于__________.16.(5分)16.定义在R 上的函数()f x 满足1(1)()3f x f x +=,且当[]0,1x ∈时,()242f x x =--,若当[,)x k ∈+∞时,2()9f x ≤,则k 的最小值是___________.三、 解答题 (本题共计6小题,总分70分) 17.(10分)17.解下列不等式.(1)22730x x -+-> (2)3112x x-≥- 18.(12分)18.已知集合{}2|111,1210{|}A x B x x x m m x ==-≤≤+->.(1)若3m =,求()RAB ;(2)若A B A ⋃=,求实数m 的取值范围.19.(12分)19.已知集合{}2560A x x x =+-=,{}22(21)30B x x m x m =-++-=.(1)当1m =-时,集合C 满足{1}C ⊆⋃(A B ),这样的集合C 有几个? (2)若A B B =,求实数m 的取值范围.20.20.(12分)如图,OAB 是边长为2的正三角形,记OAB 位于直线()0x t t =>左侧的图形的面积为()f t .求:(1)函数()y f t =的解析式; (2)画出函数()y f t =的图象; (3)根据图像写出该函数的值域。
2024-2025学年河北省唐山市高一上学期10月月考数学质量检测试题(含解析)
2024-2025学年河北省唐山市高一上学期10月月考数学质量检测试题考生注意:1.本试卷分第I 卷和第Ⅱ卷两部分,共120分.考试时间90分钟.2.将第I 卷答案用2B 铅笔涂在答题卡上,第Ⅱ卷用蓝黑钢笔或圆珠笔答在答题卡上.第I 卷(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1. 集合,,则( ){1,4,5}A ={21,Z}B xx n n ==+∈∣A B = A. B. C. D. {1,5}{1,4,5}{4}{1}2. 命题“”的否定是2,220x x x ∃∈++≤R A.B.2,220x x x ∀∈++>R 2,220x R x x ∀∈++≤C.D.2,220x x x ∃∈++>R 2,220x x x ∃∈++≥R 3. 使 “”成立的必要不充分条件是()2101x x +≥-A .B. 112x -≤≤112x -≤<C.或 D.或12x ≤-1x ≥12x ≤-1x >4. 下列说法正确的为()A.12x x+≥B. 函数4y =C. 若则最大值为10,x >(2)x x -D. 已知时,,当且仅当即时,取得3a >43+≥-a a 43=-a a 4a =43+-a a 最小值85. 已知,则下列说法正确的是( )()0,,a b c a b c >>->∈R A. B. ac bc>c c a b <C.D. a c ab c b +>+a b b c a c<--6. 已知实数m ,n ,p 满足,且,则下列说法正确的是244m n m p ++=+210m n ++=()A.B.C. D. n p m≥>p n m≥>n p m >>p n m>>7. 设,集合.则“”是“”的( ),R a b ∈{}{}22,1,,1A a a B b b =+=+A B =a b =A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件8. 已知不等式对满足的所有正实数a ,b 都成立,则22211612xx a b +≥+-()410a b a +-=正数x 的最小值为()A. B. 1C. D. 21232二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图,全集为U,集合A ,B 是U 的两个子集,则阴影部分可表示为()A. B. ()()U A B A B ⋂⋃⋃ð()()U A B A B ⋃⋂⋂ðC .D.()()()U U A B A B ⎡⎤⋂⋃⋂⎣⎦ðð()()()U U A B A B ⎡⎤⋃⋂⋃⎣⎦ðð10. 对于给定的实数,关于实数的一元二次不等式的解集可能为(a x ()()10a x a x -+>)A. B.∅{}1-C. D. ,或{1}xa x <<-∣{1xx <-∣}x a >11. 若关于的不等式的解集为,则x ()2020ax bx c a ≤++≤>{x |−1≤x ≤3}的值可以是( )32a b c ++A. B. C. 2 D. 11232第II 卷三、填空题:本题共3小题,每小题5分,共15分.12. 已知集合或,,若B A ,则实数a 的取值范围是{|1A x x =≥2}x £-{}|B x x a =≥________.13. 若关于的方程至少有一个负实根,则实数的取值范围是x 2220mx x ++=m ________.14.对于任意正实数x 、y成立,则k 的范围为______.≤四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知,或.{}3A x a x a =≤≤-+∣{1B xx =<-∣5}x >(1)若,求的取值范围;A B =∅ a (2)若,求的取值范围.A B =R a 16. 已知正数满足.,a b 2a b ab +=(1)求的最小值;ab (2)求的最小值;a b +(3)求的最小值.2821a ba b +--17. 设函数.()21f x mx mx =--(1)若命题:是假命题,求的取值范围;()R,0x f x ∃∈>m (2)若存在成立,求实数的取值范围.()()()24,0,13x f x m x ∈-≥++m18. 某蛋糕店推出两款新品蛋糕,分别为薄脆百香果蛋糕和朱古力蜂果蛋糕,已知薄脆百香果蛋糕单价为x 元,朱古力蜂果蛋糕单位为y 元,现有两种购买方案:方案一:薄脆百香果蛋糕购买数量为a 个,朱古力蜂果蛋糕购买数量为b 个,花费记为;1S 方案二:薄脆百香果蛋糕购买数量为b 个,朱古力蜂果蛋糕购买数量为a 个,花费记为.2S (其中)4,4y x b a >>>>(1)试问哪种购买方案花费更少?请说明理由;(2)若a ,b ,x ,y 同时满足关系,求这两种购买方案花4224y x b a a =-=+-费的差值S 最小值(注:差值花费较大值-花费较小值).S =19. 已知集合,,,若,,或{}12,,,n A x x x = *N n ∈3n ≥x A ∈y A Îx y A +∈,则称集合A 具有“包容”性.x y A -∈(1)判断集合和集合是否具有“包容”性;{}1,1,2,3-{}1,0,1,2-(2)若集合具有“包容”性,求的值;{}1,,B a b =22a b +(3)若集合C 具有“包容”性,且集合C 的子集有64个,,试确定集合C .1C ∈2024-2025学年河北省唐山市高一上学期10月月考数学质量检测试题考生注意:1.本试卷分第I 卷和第Ⅱ卷两部分,共120分.考试时间90分钟.2.将第I 卷答案用2B 铅笔涂在答题卡上,第Ⅱ卷用蓝黑钢笔或圆珠笔答在答题卡上.第I 卷(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1. 集合,,则( ){1,4,5}A ={21,Z}B xx n n ==+∈∣A B = A. B. C. D. {1,5}{1,4,5}{4}{1}【正确答案】A【分析】根据集合的含义以及交集的概念即可得到答案.B 【详解】集合,其表示所有的奇数,{21,Z}B xx n n ==+∈∣则.{1,5}A B = 故选:A.2. 命题“”的否定是2,220x x x ∃∈++≤R A.B.2,220x x x ∀∈++>R 2,220x R x x ∀∈++≤C. D.2,220x x x ∃∈++>R 2,220x x x ∃∈++≥R 【正确答案】A【分析】根据特称命题的否定是全称命题的知识,选出正确选项.【详解】特称命题的否定是全称命题,注意到要否定结论,故A 选项正确.故选A.本小题主要考查全称命题与特称命题的否定,属于基础题.3. 使 “”成立的必要不充分条件是()2101x x +≥-A. B. 112x -≤≤112x -≤<C. 或 D.或12x ≤-1x ≥12x ≤-1x >【正确答案】A【分析】解不等式,求得,根据必要不充分条件的定义即可得出结果.2101x x +≥-112x -≤<【详解】不等式可化为解得2101x x +≥-(1)(21)0,10,x x x -+≤⎧⎨-≠⎩11.2x -≤<则成立,反之不可以.112x -≤<⇒112x -≤≤所以是成立的必要不充分条件.112x -≤≤2101x x +≥-故选:A4. 下列说法正确的为()A.12x x+≥B. 函数4y =C. 若则最大值为10,x >(2)x x -D. 已知时,,当且仅当即时,取得3a >43+≥-a a 43=-a a 4a =43+-a a最小值8【正确答案】C【分析】利用基本不等式及其对勾函数的性质分别判断即可.【详解】对于选项,只有当时,才满足基本不等式的使用条件,则不正确;A 0x >A 对于选项,,By ===+(t t =≥即在上单调递增,则最小值为,(22y t t t =+≥)+∞min y ==则不正确;B 对于选项,,则正确;C ()()22(2)211111x x x x x -=--++=--+≤C 对于选项,当时,,当且仅当D 3a >44333733a a a a +=-++≥=--时,即,等号成立,则不正确.433a a -=-5a =D 故选.C 5. 已知,则下列说法正确的是( )()0,,a b c a b c >>->∈R A. B.ac bc>c c a b <C.D. a c ab c b +>+a bb c a c<--【正确答案】C【分析】对于AB :根据不等式性质分析判断;对于CD :利用作差法分析判断.【详解】对于选项A :因为,则,所以,故A 错()0,,a b c a b c >>->∈R 0c <ac bc <误;对于选项B :因为,且,()0,,a b c a b c >>->∈R 0c <可得,所以,故B 错误;11a b <c c a b >对于选项C :因为,()()()b a ca c a ab bc ab ac b c b b c b b c b-++---==+++且,,则,()0,,a b c a b c >>->∈R 0c <0,0b a b c -<+>可得,所以,故C 正确;()()0b a ca c abc b b c b-+-=>++a c ab c b +>+对于选项D :因为,()()()()()()22a b a b c a b a ac b bc b c a c b c a c b c a c -+---+-==------且,,则,()0,,a b c a b c >>->∈R 0c <0,0,0,0a b a b c b c a c ->+->->->可得,即,故D 错误;()()()()0a b a b c a bb c a c b c a c -+--=>----a bb c a c >--故选:C.6. 已知实数m ,n ,p 满足,且,则下列说法正确的是244m n m p ++=+210m n ++=()A.B.C. D. n p m≥>p n m≥>n p m >>p n m>>【正确答案】D【分析】根据题意,将所给等式变形,得到,推导出,然后利用作差法2(2)0p n m -=->p n >比较大小,结合二次函数的性质证出,从而得出正确结论.n m >【详解】由,得,210m n ++=211m n =--≤-因为,244m n m p ++=+移项得,244m m p n -+=-所以,2(2)0p n m -=->可得,p n >由,得,210m n ++=21m n =--可得,()2221311024n m n n n n n ⎛⎫-=---=++=++> ⎪⎝⎭可得.n m >综上所述,不等式成立,p n m >>故选:D.7. 设,集合.则“”是“”的( ),R a b ∈{}{}22,1,,1A a a B b b =+=+A B =a b =A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【正确答案】C【分析】利用集合相等的定义得到关于的方程组,推得充分性成立;再简单证得必要性,a b 也成立即可得解.【详解】因为,{}{}22,1,,1A a a B b b =+=+当时,则有,或,A B =2211a ba b =⎧⎨+=+⎩2211a b a b ⎧=+⎨+=⎩若,显然解得;2211a ba b =⎧⎨+=+⎩a b =若,则,整理得,2211a b a b⎧=+⎨+=⎩()2211b b ++=()()22012b b b b -+++=因为,,22131024b b b ⎛⎫+=-+ ⎝⎭->⎪22172024b b b ⎛⎫+=++ ⎝⎭+>⎪所以无解;()()22012bb b b -+++=综上,,即充分性成立;a b =当时,显然,即必要性成立;a b =A B =所以“”是“”的充分必要条件.A B =a b =故选:C.8. 已知不等式对满足的所有正实数a ,b 都成立,则22211612x x a b +≥+-()410a b a +-=正数x 的最小值为()A. B. 1C. D. 21232【正确答案】B【分析】先利用基本不等式证得(此公式也可背诵下来),从而由题()()2222m n m n +≥+设条件证得,结合题意得到,利用二次不等式的解法解之即可得2211612a b +≥21212xx ≥+-到正数的最小值.x 【详解】因为()()()22222222222m n m n m n m n mn +-+=+-++,当且仅当时,等号成立,()22220m n mn m n =+-=-≥m n =所以,()()2222m n m n +≥+因为为正实数,所以由得,即,,a b ()410a b a +-=4a b ab +=411b a +=所以,222221161441221a b a b b a ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+≥+=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦当且仅当,且,即时,等号成立,41b a =4a b ab +=2,8a b ==所以,即,2211621a b ⎛⎫+≥ ⎪⎝⎭2211612a b +≥因为对满足的所有正实数a ,b 都成立,22211612x x a b +≥+-()410a b a +-=所以,即,整理得,2n 2mi 211612x x a b ⎛⎫ ⎪⎝⎭+≥+-21212x x ≥+-2021x x --≥解得或,由为正数得,1x ≥12x ≤-x 1x ≥所以正数的最小值为.x 1故选:B.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图,全集为U ,集合A ,B 是U 的两个子集,则阴影部分可表示为()A. B. ()()U A B A B ⋂⋃⋃ð()()U A B A B ⋃⋂⋂ðC.D.()()()U U A B A B ⎡⎤⋂⋃⋂⎣⎦ðð()()()U U A B A B ⎡⎤⋃⋂⋃⎣⎦ðð【正确答案】AC【分析】由已知韦恩图分析出了阴影部分所表示的集合的元素满足的条件,进而根据集合运算的定义可得答案.【详解】根据图中阴影可知,符合题意,()()U A B A B ð又,∴也符合题意.()()()U U U A B A B ⋃=⋂ððð()A B ()()U U A B ⎡⎤⎣⎦ ðð故选:AC10. 对于给定的实数,关于实数的一元二次不等式的解集可能为(a x ()()10a x a x -+>)A .B.∅{}1-C. D. ,或{1}xa x <<-∣{1xx <-∣}x a >【正确答案】ACD【分析】根据二次方程根的大小分类讨论,即可求解二次不等式的解集.【详解】对于一元二次不等式,则;()()10a x a x -+>0a ≠当时,函数开口向上,与轴的交点为,0a >()()1y a x a x =-+x ,1a -故不等式的解集为,故D 正确;()(),1,x a ∈-∞-+∞ 当时,函数开口向下,若,不等式解集为,故A 正确;0a <()()1y a x a x =-+1a =-∅若,不等式的解集为,10a -<<()1,a -若,不等式的解集为,故C 正确.1a <-(),1a -故选:ACD11. 若关于的不等式的解集为,则x ()2020ax bx c a ≤++≤>{x |−1≤x ≤3}的值可以是( )32a b c ++A. B. C. 2 D. 11232【正确答案】BC【分析】先根据一元二次不等式的解集得到对称轴,然后根据端点得到两个等式和一个不等式,求出的取值范围,最后都表示成的形式即可.a 32a b c ++a 【详解】因为不等式的解集为,()2020ax bx c a ≤++≤>{x |−1≤x ≤3}所以二次函数的对称轴为直线,()2f x ax bx c=++1x =且需满足,即,解得,()()()123210f f f ⎧-=⎪=⎨⎪≥⎩29320a b c a b c a b c -+=⎧⎪++=⎨⎪++≥⎩232b ac a =-⎧⎨=-+⎩所以,所以,123202a b c a a a a ++=--+≥⇒≤10,2a ⎛⎤∈ ⎥⎝⎦所以,故的值可以是和,332326445,42a b c a a a a ⎡⎫++=--+=-∈⎪⎢⎣⎭32a b c ++322故选:BC关键点睛:一元二次不等式的解决关键是转化为二次函数问题,求出对称轴和端点的值,继而用同一个变量来表示求解.第II 卷三、填空题:本题共3小题,每小题5分,共15分.12. 已知集合或,,若B A ,则实数a 的取值范围是{|1A x x =≥2}x £-{}|B x x a =≥________.【正确答案】[)1,+∞【分析】由为的真子集,列出关于的不等式,求出不等式的解集即可.B A a 【详解】因为B A ,所以.1a ≥故[)1,+∞13. 若关于的方程至少有一个负实根,则实数的取值范围是x 2220mx x ++=m ________.【正确答案】1,2⎛⎤-∞⎥⎝⎦【分析】对和分类讨论求解,结合一元二次方程的根与系数的关系即可求解.0m =0m ≠【详解】当时,方程为,有一个负根,0m =220x +=当时,为一元二次方程,0m ≠2220mx x ++=关于的方程至少有一个负根,设根为,,x 2220mx x ++=1x 2x 当时,即时,方程为,解得,满足题意,480m ∆=-=12m =212202x x ++=2x =-当,即时,且时,480m ∆=->12m <0m ≠若有一个负根,则,解得,1220=<x x m 0m <若有两个负根,则,解得,12122020x x m x x m ⎧+=-<⎪⎪⎨⎪=>⎪⎩102m <<综上所述,则实数的取值范围是,,m (-∞1]2故,.(-∞1214.对于任意正实数x 、y 成立,则k 的范围为______.≤【正确答案】⎫+∞⎪⎪⎭≤2k ≥最大值即可.【详解】易知,,k>k≤.2k ∴≥令,分式上下同除y ,0t =>则,则即可,222221141121221t t t k t t +++⎛⎫≥=+ ⎪++⎝⎭22max 1411221t k t +⎛⎫≥+ ⎪+⎝⎭令,则.411u t =+>14u t -=可转化为:,24121t t ++()28829292u s u u u u u ==≤-++-于是,.()21411311222122t t +⎛⎫+≤+= ⎪+⎝⎭∴,即时,不等式恒成立(当时等号成立).232k ≥k ≥40x y =>故⎫+∞⎪⎪⎭四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知,或.{}3A x a x a =≤≤-+∣{1B xx =<-∣5}x >(1)若,求的取值范围;A B =∅ a (2)若,求的取值范围.A B =R a 【正确答案】(1)[)1,-+∞(2)(],2-∞-【分析】(1)分和两种情况讨论求解即可;A =∅A ≠∅(2)由题意得,从而可求出的取值范围.351a a -+≥⎧⎨≤-⎩a 【小问1详解】①当时,,∴,∴.A =∅AB =∅ 3a a >-+32a >②当时,要使,必须满足,解得.A ≠∅A B =∅ 32351a a a ⎧≤⎪⎪-+≤⎨⎪≥-⎪⎩312a -≤≤综上所述,的取值范围是.a [)1,-+∞【小问2详解】∵,,或,A B =R {}3A x a x a =≤≤-+∣{1B xx =<-∣5}x >∴,解得,351a a -+≥⎧⎨≤-⎩2a ≤-故所求的取值范围为.a (],2-∞-16. 已知正数满足.,ab 2a b ab +=(1)求的最小值;ab (2)求的最小值;a b +(3)求的最小值.2821a ba b +--【正确答案】(1)8 (2)3+(3)18【分析】(1)根据题意直接利用基本不等式即可得最值;(2)由题意可得,利用乘“1”法结合基本不等式运算求解;211a b +=(3)由题意可得,化简整理结合基本不等式运算求解.()()212a b --=【小问1详解】因为,且,0,0a b >>2a b ab +=则.2ab a b =+≥8ab ≥≥当且仅当,即时等号成立,24a b ==4,2a b ==所以的最小值为8.ab 【小问2详解】因为,且,则,0,0a b >>2a bab +=211a b +=可得,()2122133b a a b a b a b a b ⎛⎫+=++=+++≥+=+ ⎪⎝⎭当且仅当,即,即时等号成立,2b aa b =a=21a b =+=+所以的最小值为.a b +3+【小问3详解】因为,且,所以,0,0a b >>2a b ab +=()()212a b --=可得,()()2248182848101018212121a b a b a b a b a b -+-++=+=++≥+=------当且仅当,即时等号成立,4821a b =--3a b ==所以的最小值为18.2821a ba b +--17. 设函数.()21f x mx mx =--(1)若命题:是假命题,求的取值范围;()R,0x f x ∃∈>m (2)若存在成立,求实数的取值范围.()()()24,0,13x f x m x ∈-≥++m 【正确答案】(1)[]4,0-(2)4≥m 【分析】(1)依题意可得是真命题,分和两种情况讨论;()R,0x f x ∀∈≤0m =0m ≠(2)依题意参变分离可得存在使得成立,则只需,()4,0x ∈-4m x x ≥--min 4m x x ⎛⎫≥-- ⎪⎝⎭,利用基本不等式求出即可得解.()4,0x ∈-min 4x x ⎛⎫-- ⎪⎝⎭【小问1详解】若命题:是假命题,则是真命题,()R,0x f x ∃∈>()R,0x f x ∀∈≤即在上恒成立,210mxmx -≤-R 当时,,符合题意;0m =10-<当时,需满足,解得;0m ≠20Δ40m m m <⎧⎨=+≤⎩40m -≤<综上所述,的取值范围为.m []4,0-【小问2详解】若存在成立,()()()24,0,13x f x m x ∈-≥++即存在使得成立,故只需,,()4,0x ∈-4m x x ≥--min 4m x x ⎛⎫≥-- ⎪⎝⎭()4,0x ∈-因为,所以,则,()4,0x ∈-()0,4x -∈()444x x x x--=-+≥=-当且仅当,即时取等号,4x x -=-2x =-所以,所以.min44x x ⎛⎫- ⎪⎝⎭=-4≥m 18. 某蛋糕店推出两款新品蛋糕,分别为薄脆百香果蛋糕和朱古力蜂果蛋糕,已知薄脆百香果蛋糕单价为x 元,朱古力蜂果蛋糕单位为y 元,现有两种购买方案:方案一:薄脆百香果蛋糕购买数量为a 个,朱古力蜂果蛋糕购买数量为b 个,花费记为;1S 方案二:薄脆百香果蛋糕购买数量为b 个,朱古力蜂果蛋糕购买数量为a 个,花费记为.2S (其中)4,4y x b a >>>>(1)试问哪种购买方案花费更少?请说明理由;(2)若a ,b ,x ,y 同时满足关系,求这两种购买方案花4224y x b a a =-=+-费的差值S 最小值(注:差值花费较大值-花费较小值).S =【正确答案】(1)采用方案二;理由见解析 (2)24【分析】(1)列出两种方案的总费用的表达式,作差比较,即可求解;(2)根据题意,得到,利用换元法和基本不等式,即可214((4S S x a a -=-⋅+-求解.【小问1详解】解:方案一的总费用为(元);1S ax by =+方案二的总费用为(元),2S bx ay =+由,21()()()()()S S bx ay ax by a y x b x y y x a b -=+-+=-+-=--因为,可得,所以,4,4y x b a >>>>0,0y x a b ->-<()()0y x a b --<即,所以,所以采用方案二,花费更少.210S S -<21S S <【小问2详解】解:由(1)可知,()()(1244S S y x b a x a a ⎛⎫-=--=-⋅+ ⎪-⎝⎭令,t =24x t =+所以,当时,即时,等号成立,2224(1)33x t t t -=-+=-+≥1t =5x =又因为,可得,4a >40a ->所以,44(4)44844a a a a +=-++≥=--当且仅当时,即时,等号成立,444a a -=-6,14a b ==所以差的最小值为,当且仅当时,等号成立,S 2483=⨯5,8,6,14x y a b ====所以两种方案花费的差值最小为24元.S 19. 已知集合,,,若,,或{}12,,,n A x x x = *N n ∈3n ≥x A ∈y A Îx y A +∈,则称集合A 具有“包容”性.x y A -∈(1)判断集合和集合是否具有“包容”性;{}1,1,2,3-{}1,0,1,2-(2)若集合具有“包容”性,求的值;{}1,,B a b =22a b +(3)若集合C 具有“包容”性,且集合C 的子集有64个,,试确定集合C .1C ∈【正确答案】(1)集合不具有“包容”性,集合具有“包容”性{}1,1,2,3-{}1,0,1,2-(2)1(3),,,{}2,1,0,1,2,3--1131,,0,,1,222⎧⎫--⎨⎬⎩⎭2112,,0,,,13333⎧⎫--⎨⎬⎩⎭或.{}3,2,1,0,1,2---311,1,,0,,1222⎧⎫---⎨⎬⎩⎭【分析】(1)根据“包容”性的定义,逐一判断即可;(2)根据“包容”性的定义,能得到,分类讨论,得出a 和b 的值,即可得出结{}01,,a b ∈果;(3)由集合C 的子集有64个,推出集合C 中共有6个元素,且,再由条件,推0C ∈1C ∈出集合中有正数也有负数,将这几个元素设出来,再通过对正数负数个数的讨论,即可求出结果.【小问1详解】(Ⅰ)集合中的,,{}1,1,2,3-{}3361,1,2,3+=∉-{}3301,1,2,3-=∉-所以集合不具有“包容”性.{}1,1,2,3-集合中的任何两个相同或不同的元素,相加或相减,得到的两数中至少有一个属{}1,0,1,2-于集合,所以集合具有“包容”性.{}1,0,1,2-{}1,0,1,2-【小问2详解】(Ⅱ)已知集合具有“包容”性,记,则,{}1,,B a b ={}max 1,,m a b =1m ≥易得,从而必有,{}21,,m a b ∉{}01,,a b ∈不妨令,则,且,0a ={}1,0,B b =0b ≠1b ≠则,{}{}1,11,0,b b b +-⋂≠∅且,{}{}1,11,0,b b b +-⋂≠∅①当时,若,得,此时具有包容性;{}11,0,b b +∈10b +=1b =-{}1,0,1B =-若,得,舍去;若,无解;11b +=0b =1b b +=②当时,则,由且,可知b 无解,{}11,0,b b +∉{}{}1,11,0,b b b --⊆0b ≠1b ≠故.{}1,0,1B =-综上,.221a b +=【小问3详解】(Ⅲ)因为集合C 的子集有64个,所以集合C 中共有6个元素,且,又,且C 0C ∈1C ∈中既有正数也有负数,不妨设,{}1112,,,,0,,,,k k l C b b b a a a ---- 其中,,,5k l +=10l a a <<< 10k b b <<<L 根据题意,1111{,,}{,,,}l l l k k a a a a b b b ----⊆---L L且,1112112{,,,}{,,,}k k l b b b b b b a a a ----⊆L L 从而或.()(),2,3k l =()3,2①当时,,()(),3,2k l ={}{}313212,,b b b b a a --=并且由,得,由,得,313212{,}{,}b b b b b b -+-+=--312b b b =+2112{,}a a a a -∈212a a =由上可得,并且,2131322111(,)(,)(,)(2,)b b b b b b a a a a =--==31213b b b a =+=综上可知;{}111113,2,,0,,2C a a a a a =---②当时,同理可得.()(),2,3k l =11111{2,,0,,2,3}C a a a a a =--综上,C 中有6个元素,且时,符合条件的集合C 有5个,1C ∈分别是,,,{}2,1,0,1,2,3--1131,,0,,1,222⎧⎫--⎨⎬⎩⎭2112,,0,,,13333⎧⎫--⎨⎬⎩⎭或.{}3,2,1,0,1,2---311,1,,0,,1222⎧⎫---⎨⎬⎩⎭关键点点睛:本题是新定义题型,对于此类问题,要先弄清楚新定义的性质,按照其要求,严格“照章办事”,逐条分析验证。
2024-2025学年辽宁省普通高中高一(上)月考数学试卷(10月份)+答案解析
2024-2025学年辽宁省普通高中高一(上)月考数学试卷(10月份)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.命题“,”的否定为()A.,B.,C.,D.,2.若集合,,且,则()A.0或2B.2C.0D.3.三星堆博物馆位于全国重点文物保护单位三星堆遗址东北角,是中国一座现代化的专题性遗址博物馆.该馆常设“世纪逐梦”、“巍然王都”、“天地人神”3个展厅,则甲在三星堆博物馆是甲在“世纪逐梦”展厅的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件4.将12写成两个正数的积,则这两个正数的和的最小值为()A.7B.C.D.5.已知集合,,则图中阴影部分表示的集合是()A.或B.或C.或D.或6.若,,,则()A. B. C. D.7.在平面直角坐标系中,O为坐标原点,,,P,Q均是平面内的动点,集合,,则的元素个数为()A.1B.4C.2D.88.对任意的,关于x的不等式恒成立,则a的取值范围为()A. B. C. D.二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得2分,有选错的得0分。
9.若AD为的一条中线,则“是等腰三角形”的一个充分不必要条件可以是()A. B.C. D.10.已知关于x的不等式的解集为,则()A. B. C. D.11.我们将数集S的任意一个非空子集中的各元素之和称为S的一个子集和若S的子集只有一个元素,则该元素为S的一个子集和若有限数集S中的元素均为正整数,且S的任何两个子集和均不相等,则称S 为异和型集,下列结论正确的是()A.集合的一个子集和可能为5B.存在含有4个元素的异和型集N,其元素均小于9C.集合为异和型集D.任意一个含有n个元素的异和型集S,其元素之和不小于三、填空题:本题共3小题,每小题5分,共15分。
12.方程组的解集为______.13.9月10日,在第10届女子世界消防救援锦标赛女子手拾机动泵出水打靶比赛中,中国女队首次夺得冠军.深受中国夺冠女队的影响,某消防队为提高消防员的业务水平,举行了全员手拾机动泵出水打靶训练.该训练分为水泵启动、水带连接、水枪射击3项.已知参与水带连接的有14人,参与水枪射击的有7人,同时参与水带连接和水枪射击的有4人,参与水泵启动的有3人,且这3人不参与其他2项训练,则该消防队共有______人.14.已知关于x的不等式对恒成立,且,则______,的最小值是______.四、解答题:本题共5小题,共77分。
2024-2025学年高一上学期第二次月考(10月)数学试题
2024级高一数学试题总分:150分 时间:120分钟一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“,”的否定为( )x ∀∈R 2210x x -+>A., B.,x ∀∈R 2210x x -+<x ∀∉R 2210x x -+>C., D.,x ∃∈R 2210x x -+≥x ∃∈R 2210x x -+≤2.定义集合运算.设,,则集合的真子{},,A B c c a b a A b B ==+∈∈◇{}0,1,2A ={}2,3,4B =A B ◇集个数为( )A.32B.31C.30D.153.设集合,,那么下面的4个图形中,能表示集合到集合且{}02M x x =≤≤{}02N y y =≤≤M N 以集合为值域的函数关系的有( )NA ①②③④ B.①②③C.②③D.②4.已知函数.下列结论正确的是( )()223f x x x =-++A.函数的减区间()f x ()(),11,3-∞- B.函数在上单调递减()f x ()1,1-C.函数在上单调递增()f x ()0,1D.函数的增区间是()f x ()1,3-5.已知函数,则下列关于函数的结论错误的是( )()22,1,12x x f x x x +≤-⎧=⎨-<<⎩()f xA. B.若,则()()11f f -=()3f x =x C.的解集为 D.的值域为()1f x <(),1-∞()f x (),4-∞6.已知函数的定义域和值域都是,则函数的定义域和值域分别为( )()f x []0,1fA.和B.和⎡⎣[]1,0-⎡⎣[]0,1C.和D.和[]1,0-[]1,0-[]1,0-[]0,17.设函数;若,则实数的取值范围是( )()()()4,04,0x x x f x x x x +≥⎧⎪=⎨--<⎪⎩()()231f a f a ->-a A. B.()(),12,-∞-+∞ ()(),21,-∞-+∞ C. D.()(),13,-∞-+∞ ()(),31-∞-+∞ 8.已知函数满足,则( )()f x ()111f x f x x ⎛⎫+=+⎪-⎝⎭()2f =A. B. C. D.34-343294二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9.设集合,集合,若,则实数的值可以为( {}2280A x x x =--={}40B x mx =-=A B =∅R m )A. B. C.0 D.12-1-10.已知对任意的,不等式恒成立,则下列说法正确的是( )0x <()()240ax x b -+≥A. B.0a >0b <C.的最小值为8 D.的最小值为2a b -1b a +16411.已知,均为正实数.则下列说法正确的是( )x y A.的最大值为22xy x y +128.若,则的最大值为84x y +=22x y +C.若,则的最小值为21y x+=1x y +3+D.若,则的最小值为22x y x y +=-12x y x y +++169三、填空题:本题共3小题,每小题5分,共15分.12.函数______()f x =13.已知函数满足对任意实数,都有成立,()25,1,1x ax x f x a x x⎧-+≤⎪=⎨>⎪⎩12x x ≠()()()21210x x f x f x --<⎡⎤⎣⎦则实数的取值范围是______a 14.记为,,中最大的数.设,,则的最小值为______.{}max ,,abc a b c 0x >0y >13max ,,y x x y ⎧⎫+⎨⎬⎩⎭四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)(1)已知是一次函数,且,求的解析式;()f x ()()94ff x x =+()f x (2)已知函数.求的解析式;()24212f x x x +=-()f x (3)已知函数满足,求函数的解析式.()f x ()1222f x f x x ⎛⎫-++= ⎪⎝⎭()y f x =16.(本小题满分15分)已知定义在的函数,,满足对,等式()0,+∞()f x ()21f =(),0,x y ∀∈+∞恒成立且当时,.()()()f xy f x f y =+1x >()0f x >(1)求,的值;()1f 14f ⎛⎫ ⎪⎝⎭(2)若,解关于的不等式:.()21f =x ()()64f x f x +-≤17.(本小题满分15分)已知函数()21,1,1x ax x f x ax x ⎧-++≤=⎨>⎩(1)若,用定义法证明:为递增函数;3a =()f x (2)若对任意的,都有,求实数的取值范围.x ()22f x x >-a 18.(本小题满分17分)两县城和相距20km ,现计划在县城外以为直径的半圆弧(不含A B AB AB 两点)上选择一点建造垃圾处理站,其对城市的影响度与所选地点到城市的距离有关,垃圾处理厂AB C 对城的影响度与所选地点到城的距离的平方成反比,比例系数为4;对城的影响度与所选地点到城A A B 的距离的平方成反比,比例系数为,对城市和城市的总影响度为城市和城市的影响度之和,B K A B A B 记点到城市的距离为,建在处的垃圾处理厂对城和城的总影响度为,统计调查表明:当C A x C A B y 垃圾处理厂建在的中点时,对城和城的总影响度为0.065.AB AB (1)将表示成的函数;y x(2)判断弧上是否存在一点,使得建在此处的垃圾处理厂对城市和城的总信影响度最小?若存AB A B 在,求出该点到坡的距离;若不存在,说明理由.A 19.(本小题满分17分)已知集合,其中,由中元{}()12,,2k A a a a k =⋅⋅⋅⋅⋅⋅≥()1,2,i a Z i k ∈=⋅⋅⋅⋅⋅⋅A 素可构成两个点集和:,.P Q (){},,,P x y x A y A x y A =∈∈+∈(){},,,Q x y x A y A x y A =∈∈-∈其中中有个元素,中有个元素.新定义一个性质:若对任意的,,则称集合具P m Q n G x A ∈x A -∉A 有性质G(1)已知集合与集合和集合,判断它们是否具有性{}0,1,2,3J ={}1,2,3K =-{}222L y y x x ==-+质,若有,则直接写出其对应的集合、;若无,请说明理由;G P Q (2)集合具有性质,若,求:集合最多有几个元素?A G 2024k =Q (3)试判断:集合具有性质是的什么条件并证明.A G m n =。
南京市中华中学2023-2024学年高一上数学10月月考试卷(含答案)
中华中学2023—2024学年度第一学期学情调研(二)高一数学本卷调研时间:120分钟总分:150分一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合衣有限公司在暑假期间加班生产提供(](0,20)x x ∈(万元)的专项补贴.该制衣有限公司在收到市政府x (万元)补贴后,产量将增加到(3)t x =+(万件).同时该制衣有限公司生产t (万件)产品需要投入成本为36(73)t x t ++(万元),并以每件42(8)t+元的价格将其生产的产品全部售出.注:收益=销售金额+政府专项补贴-成本.(1)求该制衣有限公司暑假期间,加班生产所获收益y (万元)关于专项补贴x (万元)的表达式,并求当加班生产所获收益不低于35万元时,实数x 的取值范围;(2)南京市政府的专项补贴为多少万元时,该制衣有限公司假期间加班生产所获收益y (万元)最大?【解析】(1)4236873y t x t x t t ⎛⎫⎛⎫=+⋅+-++ ⎪⎪⎝⎭⎝⎭36422t x t =+--.因为3t x =+,所以363634224533y x x x x x =++--=--++.................................................3分由35y ≥,得3645353x x --+≥,即2760x x -+≤,所以16x ≤≤,又020x <≤,所以实数x 的取值范围是[1,6]..........................................6分(2)因为36453y x x =--+()363483x x ⎡⎤=-+++⎢⎥+⎣⎦.(020x <≤)..........................8分又因为(]0,20x ∈,所以3630,03x x +>>+,所以()363123x x ++≥=+(当且仅当36333x x x +==+即时取“=”)所以124836y ≤-+=,即当3x =万元时,y 取最大值36万元............................................11分答:南京市政府的专项补贴为3万元时,该制衣有限公司假期间加班生产所获收益最大....12分22.(12分)已知函数2()3f x x ax =++,Ra ∈(1)若函数)(1x f y =的定义域为R ,求实数a 的取值范围;(2)若当[]2,2x ∈-时,函数a x f y -=)(有意义,求实数a 的取值范围.(3)若函数a x a x f x g +--=)2()()(,函数)]([x g g y =的最小值是5,求实数a 的值.【解析】由)(1x f y =定义域为R ,则2()3f x x ax =++的值域大于0,所以2120a ∆=-<,所以(a ∈-........................................2分(2)由[2,2],x y ∈-=有意义,即()0f x a -≥恒成立,令2()()3,[2,2]h x f x a x ax a x =-=++-∈-最小值非负,221()(3,[2,2].24a h x x a a x =+--+∈-①当22a-<-即4a >时,()h x 在[2,2]-单调递增,min ()(2)73h x h a =-=-,所以4477303a a a a >⎧>⎧⎪⇒⎨⎨-≤≤⎩⎪⎩,所以a φ∈;................................4分②当222a-≤-≤即44a -≤≤时,()h x 在[2,2]-先单调递减后递增,2min1()()324a h x h a a =-=--+,所以224444441623041204a a a a a a a a -≤≤⎧-≤≤-≤≤⎧⎧⎪⇒⇒⎨⎨⎨-≤≤--+≥+-≤⎩⎩⎪⎩,所以[4,2]a ∈-;......6分③当22a->即4a <时,()h x 在[2,2]-单调递减,min ()(2)7h x h a ==+,所以44707a a a a <-<-⎧⎧⇒⎨⎨+≤≥-⎩⎩,所以[7,4)a ∈--综上:[7,2]a ∈-...............................................................8分(3)222()3(2)23(1)22g x x ax a x a x x a x a a =++--+=+++=+++≥+.令22()2,[()]23(1)2t g x a y g g x t t a t a =≥+==+++=+++....................9分①当21a +<-,即3a <-,min 25y a =+=,所以25333a a a a +==⎧⎧⇒⎨⎨<-<-⎩⎩无解;.....10分②当21a +≥-,即3a ≥-,2min (2)2(2)35y a a a =+++++=,所以231(2)3(2)40a a a a ≥-⎧⇒=-⎨+++-=⎩;.....................................11分综上: 1.a =-...............................................................12分。
甘肃省兰州2024-2025学年高一上学期10月月考试题 数学含答案
兰州2024-2025-1学期10月月考试题高一数学(答案在最后)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.答案写在答题卡上,交卷时只交答题卡.第Ⅰ卷(选择题)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.《生于忧患,死于安乐》由我国古代著名思想家孟子所作,文中写到“故天将降大任于斯人也,必先苦其心志,劳其筋骨,饿其体肤”,根据文中意思可知“苦其心志,劳其筋骨,饿其体肤”是“天将降大任于斯人也”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.已知集合{}{}2230,1,2,3,4A xx x B =-->=∣,则A B = ()A.{}1,2 B.{}1,2,3 C.{}3,4 D.{}43.已知命题:0p x ∃>,32x x =,:q x ∀∈R ,40x >,则()A.p 和q 都是真命题B.p 和q ⌝都是真命题C.p ⌝和q 都是真命题D.p ⌝和q ⌝都是真命题4.函数211x y x -=-的定义域是()A.[)4,-+∞ B.()4,-+∞C.[)()4,00,-+∞ D.[)()4,11,-+∞ 5.设集合{}21,Z M x x n n ==+∈,{}31,Z N x x n n ==+∈,{}61,Z P x x n n ==+∈,则()A.M P⊆ B.N P ⊆ C.P M N=⋂ D.M N ⋂=∅6.下列说法正确的是()A.“a b <”是“11a b>”的必要不充分条件B.“0x >”是“2x >”的充分不必要条件C.若不等式20ax bx c ++>的解集为()12,x x ,则必有0a <D.命题“x ∃∈R ,使得210x +=.”的否定为“x ∀∉R ,使得210x +≠.”7.已知命题2:,230p x ax x ∀∈++>R 为真命题,则实数a 的取值范围是()A.1|02a a ⎧⎫<≤⎨⎩⎭B.1|03a a ⎧⎫<<⎨⎬⎩⎭C.1|3a a ⎧⎫≥⎨⎬⎩⎭D.1|3a a ⎧⎫>⎨⎬⎩⎭8.已知函数()()()1,012,0x x f x f x f x x +≤⎧=⎨--->⎩,则()2f =()A.2- B.1- C.0D.1二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若集合A ,B ,U 满足()U A B ⋂=∅ð,则下列结论一定正确的是()A.A B U⋃= B.A B⊆ C.A B A= D.()U A B U È=ð10.若0a b >>,则下列结论一定成立的是()A.11a b> B.2b a a b +>C.2121a ab b ++>++ D.11a b b a+>+11.若正实数,x y 满足21x y +=,则下列说法正确的是()A.xy 有最大值为18B.14x y+有最小值为6+C.224x y +有最小值为12D.()1x y +有最大值为12第Ⅱ卷(非选择题)三、填空题:本大题共3小题,每小题5分,共15分.12.命题“[]1,4x ∃∈,使220x x λ+->成立”的否定命题是______.13.已知315:15210x p x ->⎧⎨>->⎩,:211q m x m -<<+.若p 是q 的必要不充分条件,则实数m 的取值范围是______.14.已知实数,a b 满足40a b ab +-=,且0ab >,若关于t 的不等式253a b t t +≥++恒成立,则实数t 的取值范围是__________.四、解答题:本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.已知集合{|M x y ==,2{|21,R}N y y x x x ==--∈,求:(1)M N ⋂,M N ⋃;(2)(,)A a =+∞,M A ⊆,求a 的取值范围.16.已知二次函数2()(0)f x ax bx c a =++≠满足(1)()21f x f x x +-=-,且(1)4f =-.(1)求()f x 的解析式;(2)集合{(2)0}(,){12}A xf m x B x x x =++<=-<<∣∣,若B A ⊆,求实数m 的取值范围.17.某公园为了美化游园环境,计划修建一个如图所示的总面积为7502m 的矩形花园.图中阴影部分是宽度为1m 的小路,中间,,A B C 三个矩形区域将种植牡丹、郁金香、月季(其中,B C 区域的形状、大小完全相同).设矩形花园的一条边长为m x ,鲜花种植的总面积为2m S .(1)用含有x 的代数式表示a ,并写出x 的取值范围;(2)当x 的值为多少时,才能使鲜花种植的总面积最大?18.已知函数()()()211R f x m x mx m m =+-+-∈.(1)若不等式()0f x <的解集为∅,求m 的取值范围;(2)当2m >-时,解不等式()f x m ≥;(3)对任意的[]1,1x ∈-,不等式()21f x x x ≥-+恒成立,求m 的取值范围.19.已知集合{}()122k A a a a k =≥ ,,,其中()Z 1,2,i a i k ∈= ,由A 中元素可构成两个点集P 和Q :(){},,,P x y x A y A x y A =∈∈+∈,(){},,,Q x y x A y A x y A =∈∈-∈,其中P 中有m 个元素,Q中有n 个元素.新定义1个性质G :若对任意的x A ∈,必有x A -∉,则称集合A 具有性质G(1)已知集合{}0,1,2,3J =}与集合{}1,2,3K =-和集合{}222L y y x x ==-+,判断它们是否具有性质G ,若有,则直接写出其对应的集合P ,Q ;若无,请说明理由;k=,求:集合Q最多有几个元素?(2)集合A具有性质G,若2024=的什么条件并证明.(3)试判断:集合A具有性质G是m n兰州2024-2025-1学期10月月考试题高一数学说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.答案写在答题卡上,交卷时只交答题卡.第Ⅰ卷(选择题)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】B【2题答案】【答案】D【3题答案】【答案】B【4题答案】【答案】D【5题答案】【答案】C【6题答案】【答案】C【7题答案】【答案】D【8题答案】【答案】C二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BC【10题答案】【答案】BD【11题答案】【答案】ABC第Ⅱ卷(非选择题)三、填空题:本大题共3小题,每小题5分,共15分.【12题答案】【答案】“[]1,4x ∀∈,220x x λ+-≤”【13题答案】【答案】3[,)2+∞.【14题答案】【答案】[]6,1-四、解答题:本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.【15题答案】【答案】(1)[1,3]M N ⋂=,[2,)M N ⋃=-+∞(2)(,1)-∞【16题答案】【答案】(1)2()23f x x x =--;(2)122m -<<-.【17题答案】【答案】(1)3753,32502a x x =-<<(2)当25m x =时,才能使鲜花种植的总面积最大【18题答案】【答案】(1),3∞⎡⎫+⎪⎢⎪⎣⎭;(2)答案见解析;(3)3,3∞⎡⎫+⎪⎢⎪⎣⎭.【19题答案】【答案】(1)集合,J L 不具有性质G ;集合K 具有性质G ,对应集合()(){}1,3,3,1P =--,()(){}2,1,2,3Q =-;(2)2047276;(3)充分不必要条件.。
北京首都师范大学附属中学2023-2024学年高一上学期10月月考数学试题及答案
北京首都师范大学附属中学2023-2024学年高一上学期10月月考数学试题一、单选题1.下列各式:①{}10,1,2∈;②{}0,1,2∅⊆;③{}{}10,1,2∈;④{}{}0,1,22,0,1=,其中错误的个数是()A .1个B .2个C .3个D .4个2.命题“2x ∃<,220x x -<”的否定是()A .2x ∃≤,220x x -≥B .2x ∀≥,02x <<C .2x ∃<,220x x -≥D .2x ∀<,0x ≤或2x ≥3.将下列多项式因式分解,结果中不含因式()2x +的是()A .224x x +B .2312x -C .26x x +-D .()()228216x x -+-+4.若集合{}{3},21,Z A xx B x x n n =<==+∈∣∣,则A B = ()A .()1,1-B .()3,3-C .{}1,1-D .{}3,1,1,3--5.如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是()A .()M P SB .()M P SC .()M P SD .()M P S6.已知p :111x <+,q :()10x x +<,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.下列结论成立的是()A .若ac bc <,则a b >B .若a b >,则22a b >C .若a b >,则11a b<D .若110a b<<,则0b a <<8.设集合11,Z ,,Z 3663k k M x x k N x x k ⎧⎫⎧⎫==+∈==+∈⎨⎬⎨⎬⎩⎭⎩⎭||,则()A .M N=B .MN C .N MD .M N ⋂=∅9.若,,A B C 为三个集合,A B B C ⋃=⋂,则一定有()A .A C⊆B .C A⊆C .A C¹D .A ≠∅10.设()C M 表示非空集合M 中元素的个数,已知非空集合,A B .定义()(),()()()(),()()C A C B C A C B A B C B C A C A C B -≥⎧⊗=⎨-<⎩,若{}1,2A =,()(){}2220B x x ax x ax =+++=且1A B ⊗=,则实数a 的所有取值为()A .0B .0,-C .0,D .-,0,二、填空题11.方程组322327x y x y +=⎧⎨-=⎩的解集用列举法表示为.12.若“25x m >-”是“|x |<1”的必要不充分条件,则实数m 的取值范围是13.设a ,b ∈R ,集合{}2,0,1{,,0}a a b -=,则a b +的值是.14.已知集合{}|3A x a x =≤≤,{}|0B x x =<,若A B =∅ ,则实数a 的取值范围是.15.当两个集合中有一个集合为另一个集合的子集时,称两个集合之间构成“全食”;当两个集合有公共元素,但互不为对方子集时,称两个集合之间构成“偏食”,对于集合11,,12A ⎧⎫=-⎨⎬⎩⎭,{}2B x x a ==|.若A 与B 构成“全食”,则a 的取值范围是;若A 与B 构成“偏食”,则a的取值范围是.三、解答题16.已知全集R U =,集合{R |211}A x x =∈-≤,集合{R |12}B x x =∈-<≤.(1)求集合A B ⋂及()U A B ⋃ð;(2)若集合{|2,0}=∈≤<>C x R a x a a ,且C B ⊆,求实数a 的取值范围.17.已知关于x 的一元二次方程()22230x m x m +-+=有两个实数根1x ,2x .(1)求实数m 的取值范围;(2)若12126x x x x +=-,求m 的值.18.已知全集R U =,812x A xx ⎧⎫+=>⎨⎬-⎩⎭,{}22240B x x mx m =-+-<,{}14C x x =-<<,在①U x A ∈ð;②x A C ∈ ;③x A C ∈⋃;这三个条件中任选一个补充到下列问题中并作答.问题:设p :______,q :x B ∈,是否存在实数m ,使得p 是q 的必要不充分条件?若实数m 存在,求m 的取值范围;若实数m 不存在,说明理由.19.已知集合{}1,2,,A n =⋅⋅⋅(3n ≥),A 表示集合A 中的元素个数,当集合A 的子集i A 满足2i A =时,称i A 为集合A 的二元子集,若对集合A 的任意m 个不同的二元子集1A ,2A ,…,m A ,均存在对应的集合B 满足:①B A ⊆;②B m =;③1i B A ≤ (1i m ≤≤),则称集合A 具有性质J .(1)当3n =时,若集合A 具有性质J ,请直接写出集合A 的所有二元子集以及m 的一个取值;(2)当6n =,4m =时,判断集合A 是否具有性质J ?并说明理由.参考答案:题号12345678910答案ADCCCDDBAD1.A【分析】根据集合与集合的关系,元素与集合的关系即可求解.【详解】由元素与集合的关系可知{}10,1,2∈正确,{}{}10,1,2∈不正确,由集合之间的关系知{}0,1,2∅⊆正确,由集合中元素的无序性知{}{}0,1,22,0,1=正确,故错误的个数为1,故选:A【点睛】本题主要考查了元素与集合的关系,集合的子集,集合的相等,属于容易题.2.D【分析】根据存在量词命题的否定是全称量词命题即可得到结果.【详解】命题“2x ∃<,220x x -<”是存在量词命题,又22002x x x -<⇒<<,所以其否定为全称量词命题,即为“2x ∀<,0x ≤或2x ≥”.故选:D.3.C【分析】利用提取公因式法判断A ,利用公式法判断B ,利用十字相乘法判断C 、D.【详解】对于A.原式()22x x =+,不符合题意;对于B.原式()()()234322x x x =-=+-,不符合题意;对于C.原式()()23x x =-+,符合题意;对于D.原式()()22242x x =-+=+,不符合题意.故选:C.4.C【分析】解绝对值不等式得A ,根据交集的定义计算即可.【详解】解3x <得33x -<<,即()3,3A =-,B 为奇数集,故{}1,1A B =- .故选:C 5.C【分析】根据Venn 图表示的集合运算作答.【详解】阴影部分在集合,M P 的公共部分,但不在集合S 内,表示为()⋂⋂M P S ,故选:C .6.D【分析】分别求出,p q ,再分析出,p q 的推导关系.【详解】()11110010111x x x x x x -<⇒-<⇒<⇒+>+++,所以:0p x >或1x <-,而:10q x -<<,所以p 是q 的既不充分也不必要条件,故选:D 7.D【分析】根据不等式的性质或举出反例对各选项逐一判断即可.【详解】选项A :当0c >时,若ac bc <,则a b <,当0c <时,若ac bc <,则a b >,故A 说法错误;选项B :若1a =,2b =-满足a b >,此时22a b <,故B 说法错误;选项C :当0a b >>或0a b >>时,11a b<,当0a b >>时,11a b >,故C 说法错误;选项D :当110a b<<时,0ab >,所以不等式同乘ab 可得0b a <<,故D 说法正确;故选:D 8.B【分析】根据集合,M N 的表达式,可求出集合M 是16的奇数倍,N 是16的整数倍,即可得出,M N 的关系.【详解】由()11,Z 21,Z 366k M x x k x x k k ⎧⎫⎧⎫==+∈==+∈⎨⎬⎨⎬⎩⎭⎩⎭||可知,集合M 表示的是16的奇数倍;由()11,Z 2,Z 636k N x x k x x k k ⎧⎫⎧⎫==+∈==+∈⎨⎬⎨⎬⎩⎭⎩⎭||可知,集合N 表示的是16的整数倍;即可知M 是N 的真子集,即M N .故选:B 9.A【分析】由已知等式可推导得到A B C ⊆⊆,由此可依次判断各个选项得到结果.【详解】A B B C ⋃=⋂ ,A B B ∴⊆ ,B B C ⊆ ,A B ∴⊆,B C ⊆,即A B C ⊆⊆;对于A ,A B C ⊆⊆ ,A C ∴⊆,A 正确;对于B ,当且仅当A B C ==时,C A ⊆,B 错误;对于C ,当A B C ==时,满足A B C ⊆⊆,C 错误;对于D ,当A =∅时,满足A B C ⊆⊆,D 错误.故选:A.10.D【分析】由题意可得集合B 中的元素个数为1个或3个,分集合B 中的元素个数为1和集合B 中的元素个数为3两种情况,再结合一元次方程根的个数求解即可.【详解】解:由()()2220x ax x ax +++=可得20x ax +=或220x ax ++=,又因为{}1,2A =,1A B ⊗=,所以集合B 中的元素个数为1个或3个,当集合B 中的元素个数为1时,则20x ax +=有两相等的实数根,且220x ax ++=无解,所以22080a a ⎧=⎨-<⎩,解得0a =;当集合B 中的元素个数为3时,则20x ax +=有两不相等的实数根,且220x ax ++=有两个相等且异于方程20x ax +=的根的解,所以20Δ80a a ≠⎧⎨=-=⎩,解得a =a =-综上所述,0a =或a =a =-故选:D.【点睛】关键点睛:本题的关键是根据题意得出集合B 中的元素个数为1个或3个.11.(){}3,7-【分析】首先根据方程组求出其解,然后运用列举法表示出对应的解集即可(以有序数对(),a b 的形式表示元素).【详解】因为322327x y x y +=⎧⎨-=⎩,所以37x y =⎧⎨=-⎩,所以列举法表示解集为:(){}3,7-.故答案为(){}3,7-.【点睛】本题考查二元一次方程组解集的列举法表示,难度较易.二元一次方程组的解用列举法表示时,可将元素表示成有序数的形式:(),x y .12.(],2-∞【分析】根据题意得到(1,1)-(25,+)m -∞,再利用数轴得到不等式,解出不等式即可.【详解】||<1,1<<1x x ∴- >25x m - 是||1x <的必要不充分条件,(1,1)∴-(25,+)m -∞,251,2m m ∴-≤-∴≤,∴实数m 的取值范围是(,2]-∞,故答案为:(,2]-∞.13.0【分析】由集合相等的含义,分类讨论元素对应关系即可.【详解】由集合元素互异性:0a ≠,又{}2,0,1{,,0}a a b -=,则21a a b ⎧=⎨=-⎩或21a ba ⎧=⎨=-⎩,解得11a b =⎧⎨=-⎩或11a b =-⎧⎨=⎩,故0a b +=故答案为:014.0a ≥【分析】分别讨论A =∅和A ≠∅两种情况求解.【详解】因为A B =∅ ,若3a >,则A =∅,满足题意;若3a ≤,则应满足0a ≥,所以03a ≤≤,综上,0a ≥.故答案为:0a ≥.15.{|0a a <或}1a =14⎧⎫⎨⎬⎩⎭【分析】分情况解集合B ,再根据“全食”与“偏食”的概念分析集合中元素满足的关系列式求解即可.【详解】由{}2B x x a ==|可知,当0a <时,B =∅,此时B A ⊆;当0a =时,{}0B =,此时A B =∅ ,当0a >时,{B =;又11,,12A ⎧⎫=-⎨⎬⎩⎭,若A 与B 构成“全食”,则B A ⊆,当0a <时,满足题意;当0a =时,不合题意;当0a >时,要使B A ⊆,则{}1,1B =-1=,解得1a =;综上,A 与B 构成“全食”时,a 的取值范围是{|0a a <或}1a =;若A 与B 构成“偏食”时,显然0a ≤时,不满足题意,当0a >时,由A B ≠∅ ,所以11,22B ⎧⎫=-⎨⎬⎩⎭12=,解得14a =,此时a 的取值范围是14⎧⎫⎨⎬⎩⎭.故答案为:{|0a a <或}1a =;14⎧⎫⎨⎬⎩⎭16.(1)(1,1]A B ⋂=-,(1,)U A B ⋃=-+∞ð;(2)(0,1]【分析】(1)解一元一次不等式求集合A ,再应用集合的交并补运算求A B ⋂及()U A B ⋃ð.(2)由集合的包含关系可得2a ≤2,结合已知即可得a 的取值范围.【详解】(1)由211x -≤得:1x ≤,所以(,1]A ∞=-,则(1,)U A =+∞ð,由(1,2]B =-,所以(1,1]A B ⋂=-,(1,)U A B ⋃=-+∞ð.(2)因为C B ⊆且0a >,所以2a ≤2,解得1a ≤.所以a 的取值范围是(0,1].17.(1)34m ≤(2)1m =-【分析】(1)根据根的判别式列不等式,然后解不等式即可;(2)根据韦达定理得到1223x x m +=-+,212x x m =,然后代入求解即可.【详解】(1)因为有两个实根,所以()222341290m m m ∆=--=-+≥,解得34m ≤.(2)由题意得()122323x x m m +=--=-+,212x x m =,所以2236m m -+=-,整理得()()310m m -+=,解得3m =或-1,因为34m ≤,所以1m =-.18.答案见解析【分析】分别求解集合,A B ,并求解三个条件的集合,再根据必要不充分条件,转化为集合的包含关系,即可列式求解.【详解】不等式8831100222x x x x x x +++>⇔->⇔<---,即()()320x x +-<,解得:32x -<<,即=−3<<2,()()22240220x mx m x m x m -+-<⇔---+<⎡⎤⎡⎤⎣⎦⎣⎦,解得:22m x m -<<+,即{}22B x m x m =-<<+,若选①,{3U A x x =≤-ð或2}x ≥,:p {3U x A x x ∈=≤-ð或2}x ≥,{}:22q x B x m x m ∈=-<<+,若p 是q 的必要不充分条件,则BU A ð,即23m +≤-或22m -≥,解得:5m ≤-或4≥m ;所以存在实数m ,使得p 是q 的必要不充分条件,m 的范围为5m ≤-或4≥m ;若选②,{}12A C x x ⋂=-<<,:p {}12x A C x x ∈⋂=-<<,{}:22q x B x m x m ∈=-<<+,若p 是q 的必要不充分条件,则B()A C ,则2122m m -≥-⎧⎨+≤⎩,解集为∅;所以不存在实数m ,使得p 是q 的必要不充分条件;若选③,{}34A C x x ⋃=-<<,:p {}34x A C x x ∈⋃=-<<,{}:22q x B x m x m ∈=-<<+,若p 是q 的必要不充分条件,则B()A C ,则2324m m -≥-⎧⎨+≤⎩,解得:12m -≤≤;所以存在实数m ,使得p 是q 的必要不充分条件,m 的取值范围为12m -≤≤;19.(1)答案见解析(2)不具有,理由见解析【分析】(1)根据集合A 具有性质J 的定义即可得出答案;(2)当6n =,4m =时,利用反证法即可得出结论.【详解】(1)当3n =时,{}1,2,3A =,集合A 的所有二元子集为{}{}{}1,2,1,3,2,3,则满足题意得集合B 可以是{}1或{}2或{}3,此时1m =,或者也可以是{}1,2或{}1,3或{}2,3,此时2m =;(2)当6n =,4m =时,{}1,2,3,4,5,6A =,假设存在集合B ,即对任意的()1234,,,,4,114i A A A A B B A i =⋂≤≤≤,则取{}{}{}{}12341,2,3,4,5,6,2,3A A A A ====,(4A 任意构造,符合题意即可),此时由于4B =,若121,1A B A B ≤≤ ,则B 中必有元素5,6,此时32A B = ,与题设矛盾,假设不成立,所以集合A 是不具有性质J .【点睛】关键点点睛:此题对学生的抽象思维能力要求较高,特别是对数的分析,在解题时注意对新概念的理解与把握是解题的关键.。
湖南省长沙市长郡中学2024-2025学年高一上学期10月月考数学试题
湖南省长沙市长郡中学2024-2025学年高一上学期10月月考数学试题一、单选题1.已知集合{}26A x x =≤<,{}240B x x x =-<,则A B =I ( )A .()0,6B .()4,6C .[)2,4D .()[),02,-∞⋃+∞2.命题“x ∃∈R ,2220x x -+≤”的否定是( ) A .x ∃∈R ,2220x x -+≥ B .x ∃∈R ,2220x x -+> C .x ∀∈R ,2220x x -+≤ D .x ∀∈R ,2220x x -+>3.设a ∈R ,则“1a >”是“11a<”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.下列各组函数中,表示同一个函数的是( )A .2(),()x f x x g x x ==B .()(),()()f x x x R g x x x Z =∈=∈C .,0(),(),0x x f x x g x x x ≥⎧==⎨-<⎩D .2(),()f x x g x ==5.函数1xy x=+的大致图象是( ) A . B .C .D .6.若x A ∈且1A x ∈就称A 是伙伴关系集合,集合111,0,,,1,2,3,432M ⎧⎫=-⎨⎬⎩⎭的所有非空子集中,具有伙伴关系的集合个数为( ) A .15B .16C .64D .1287.某班有学生56人,同时参加了数学小组和英语小组的学生有32人,同时参加了英语小组和语文小组的学生有22人,同时参加了数学小组和语文小组的学生有25人.已知该班学生每人至少参加了1个小组,则该班学生中只参加了数学小组、英语小组和语文小组中的一个小组的人数最多是( ) A .20B .21C .23D .258.已知集合P ,Q 中都至少有两个元素,并且满足下列条件:①集合P ,Q 中的元素都为正数;②对于任意(),a b Q a b ∈≠,都有aP b∈;③对于任意(),a b P a b ∈≠,都有ab Q ∈;则下列说法正确的是( )A .若P 有2个元素,则Q 有3个元素B .若P 有2个元素,则P Q ⋃有4个元素C .若P 有2个元素,则P Q ⋂有1个元素D .存在满足条件且有3个元素的集合P9.如果0a b <<,那么下列不等式成立的是( ) A .11a b< B .2ab b < C .2ab a -<-D .11a b-<-二、多选题10.已知关于x 的不等式20ax bx c ++≥的解集为{}34x x -≤≤∣,则下列说法正确的是( )A .0a <B .不等式20cx bx a -+<的解集为1143xx ⎧⎫-<<⎨⎬⎩⎭∣ C .0a b c ++< D .2342cb ++的最小值为4- 11.已知0x >,0y >且3210x y +=,则下列结论正确的是( )A.xy 的最大值为625B C .32x y +的最小值为52D .22x y +的最大值为10013三、填空题12.若函数f (x )=-x 2-2(a +1)x +3在区间(-∞,3]上是增函数,则实数a 的取值范围是.13.已知函数()f x =R ,则实数a 的取值范围是.14.已知函数()()2462f x x a x a =-++-,若集合(){}N 0A x f x =∈<中有且只有两个元素,则实数a 的取值范围是四、解答题15.已知集合{}121A x m x m =-≤≤-,集合()(){}230B x x x =-+<. (1)若2m =,求A B U ; (2)若A B ⊆,求实数m 的范围.16.如图所示,某学校要建造一个一面靠墙的无盖长方体垃圾池,垃圾池的容积为360m ,为了合理利用地形,要求垃圾池靠墙一面的长为6m ,如果池底每平方米的造价为200元,池壁每平方米的造价为180元(不计靠墙一面的造价),设垃圾池的高为m x ,墙高5m ,(1)试将垃圾池的总造价y (元)表示为(m)x 的函数,并指出x 的取值范围; (2)怎样设计垃圾池能使总造价最低?最低总造价是多少? 17.已知()24xf x x =+,()2,2x ∈-. (1)求证:函数()f x 在区间()2,2-上是增函数; (2)求函数()f x 在区间()2,2-上的值域. 18.已知函数()11mx f x =++,()()21g x x x a =++. (1)当0a =,1m =-时,解关于x 的不等式()()f x g x ≥;(2)当0m =时,对任意[)1,x ∞∈+,关于x 的不等式()()f x g x ≤恒成立,求实数m 的取值范围;(3)当0m <,0a <时,若点()111,P x y ,()222,P x y 均为函数()y f x =与函数()y g x =图象的公共点,且12x x ≠,求证:()1221223a x x --<+<.19.已知集合A 为非空数集.定义:{}|,,,{|,,}S x x a b a b A T x x a b a b A ==+∈==-∈ (1)若集合{1,3}A =,直接写出集合S ,T ;(2)若集合{}12341234,,,,,A x x x x x x x x =<<<且T A =.求证:423x x =;(3)若集合{}|02024,N ,A x x x S T ⊆≤≤∈⋂=∅,记A 为集合A 中元素的个数,求A 的最大值.。
黑龙江省哈尔滨市第九中学校2024-2025学年高一上学期10月月考 数学试卷(含答案)
哈九中2024级高一学年10月月考数学试卷(时间:120分钟 满分:150分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列表示正确的是()A. B. C.2.若集合,则应满足()A. B. C. D.3.对于集合,若不成立,则下列理解正确的是()A.集合的任何一个元素都属于B.集合的任何一个元素都不属于C.集合中至少有一个元素属于D.集合中至少有一个元素不属于4.设,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件5.若命题是假命题,则实数的取值范围是()A.B.C. D.6.若函数的定义域是,则函数的定义域是( )A. B. C. D.7.《几何原本》中的几何代数法是以几何方法研究代数问题,这种方法是后西方数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称之为无字证明.下图是我国古代数学家赵爽创作的弦图,弦图由四个全等的直角三角形与一个小正方形(边长可以为0)拼成的一个大正方形.若直角三角形的直角边长分别为和,则该图形可以完成的无字证明为( )*0∈N 12∈Z π∈Q R{},A x x =-x 0x >0x <0x =0x ≤,A B B A ⊆B AB AB AB Ax ∈R 05x <<01x <<2:,40p x x x a ∃∈++=R a 04a <<4a >0a <4a ≥()y f x =[]1,2y f=[]1,2⎡⎣[]1,4[]2,4a bA.B.8.若函数的部分图象如图所示,则( )A. B. C. D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分.9.下列各组函数表示不同函数的是()A.B.C.D.)0,02a b a b +≥>>()2220,0a b ab a b +≥>>()20,011a b a b ≥>>+()0,02a b a b +≥>>()22f x ax bx c=++()1f =23-112-16-13-()()0,f x g x ==+()()01,f x g x x==()()f x g x x==()()211,1x f x x g x x -=+=-10.已知,则下列命题正确的是( )A.若且,则B.若,则C.若,则D.若且,则11.已知集合,则可能是( )A. B.C.或 D.三、填空题:本题共3小题,每小题5分,共15分.12.已知集合,则__________.13.若正数满足,则的最小值是__________.14.表示不大于的最大整数,例,则的的取值范围__________,方程的解集是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本题13分)已知集合(1)求;(2)若,求实数的取值范围.16.(本题15分)已知函数的解析式(1)求(2)画出的图像,并写出函数的单调区间和值域(直接写出结果即可).,,a b c ∈R 0ab ≠a b <11a b >01a <<2a a<0a b >>11b b a a+>+c b a <<0ac <22bc ac <(){}{}2110,1,0A x ax a x a B x x =-++><=>∣∣A B ⋂10x x a ⎧⎫<<⎨⎬⎩⎭{01}x x <<∣{01x x <<∣1x a ⎫>⎬⎭11x x a ⎧⎫<<⎨⎬⎩⎭{}{}2340,230A xx x B x x =+-<=+≥∣∣A B ⋂=,x y 35x y xy +=34x y +[]x x ][2.32, 5.66⎡⎤=-=-⎣⎦[]2x =x []22x x ={}20,21,2x A xB x a x a a x ⎧⎫-=≤=≤≤+∈⎨⎬+⎩⎭R ∣A B A ⊆a ()f x ()350501281x x f x x x x x +≤⎧⎪=+<<⎨⎪-+>⎩12f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭()f x(3)若,求的值.17.(本题15分)(1)已知关于的不等式的解集为,求的解集;(2)若不等式对于任何实数恒成立,求实数的取值范围.18.(本题17分)已知函数,且(1)求的解析式;(2)已知:当时,不等式恒成立;:当时,是单调函数,若和只有一个是真命题,求实数的取值范围.19.(本题17分)若存在实数使得,则称是区间的一内点.(1)若是区间的一内点,求的值;(2)求证:的充要条件是存在,使得是区间的一内点;(3)给定实数,若对于任意区间是区间的一内点,是区间的一内点,且不等式和不等式对于任意都恒成立,求证:()2f a =a x 220ax x c ++>11,32⎛⎫- ⎪⎝⎭220cx x a -+->()()()211310m x m x m +--+->x m ()2f x x bx c =++()()()11,02f x f x f +=-=-()f x ,a p ∈R 01x <<()32f x x a +<+q []2,2x ∈-()()g x f x ax =-p q a ()0,1λ∈()1x a b λλ=+-x (),()a b a b <λ2x =()1,3λλ(),x a b ∈()0,1λ∈x (),a b λ()0,1ω∈()1,(),a b a b x <1λ2x 2λ()22211x a b ωω≤+-()22221x a b ωω≤-+a b ∈R 、121λλ+=答案1-8DADB BCBD9.ABD 10.BCD11.BC 12. 13.5 14.;15.(1)由题意得,解得,则.(2)因为,当时,,解得,满足题意,当时,因为,所以,解得,综上所述,实数的取值范围为.16.【详解】(1)解:因为,所以,则.(2)解:如图所示,当时,函数最大值为6,无最小值,所以值域为单调递增区间,单调递减区间最大值无法取到(3)解:当时,,解得;当时,,解得,不符合题意;当时,,解得,综上所述,或3.17.(1)由题意得:是方程的两个根,3,12⎡⎫-⎪⎢⎣⎭[)2,3{}2()()22020x x x ⎧-+≤⎨+≠⎩22x -<≤{22}A xx =-<≤∣B A ⊆B =∅21a a >+1a <-B ≠∅B A ⊆212212a a a a ≤+⎧⎪>-⎨⎪+≤⎩112a -≤≤a 1,2∞⎛⎤- ⎥⎝⎦1012<<111122f ⎛⎫=> ⎪⎝⎭11111283222f f f ⎛⎫⎛⎫⎛⎫==-⨯+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1x =(),6∞-(],1∞-[)1,∞+0a ≤()352f a a =+=1a =-01a <≤()52f a a =+=3a =-1a >282a -+=3a =1a =-11,32-220ax x c ++=所以,解得,所以不等式即为,即,解得,所以不等式的解集为.(2)因为不等式对任何实数恒成立,①当即时,不等式为,不满足题意,舍去,②当时,则解得,综上所述,实数的取值范围为.18.(1)因为,则的对称轴是,解得,又因为,所以.(2)若为真,,则对任意的恒成立,可知的图象开口向上,对称轴为,可知在内单调递减,且,则;若为真,,可知的图象开口向上,对称轴为,因为在内是单调函数,则或,解得或;120931104a c a c ⎧-+=⎪⎪⎨⎪++=⎪⎩122a c =-⎧⎨=⎩220cx x a -+->222120x x -++>()()2230x x -+->23x -<<{23}xx -<<∣()()()211310m x m x m +--+->x 10m +=1m =-260x ->1m ≠-()()210Δ(1)12110m m m m +>⎧⎨=--+-<⎩1m >m ()1,∞+()()11f x f x +=-()f x 12b x =-=2b =-()02f c ==-()222f x x x =--p ()32f x x a +<+()22341a f x x x x >-+=-+()0,1x ∈()241h x x x =-+2x =()241h x x x =-+()0,1()01h =1a ≥q ()()()222g x f x ax x a x =-=-+-()g x 22a x +=()g x []2,2-222a +≤-222a +≥6a ≤-2a ≥若与真假性相反,则或,解得或,所以实数的取值范围为或.19.解:(1)(2)①若是区间的一内点,则存在实数使得,,则,②若,取,则,且,则是区间的一内点,故的充要条件是存在,使得是区间的一内点;(3)因为是区间的一内点,则,则恒成立,则恒成立,当时,上式不可能恒成立,因此,所以,即,即同理,故.p q 162a a ≥⎧⎨-<<⎩162a a a <⎧⎨≤-≥⎩或6a ≤-12a ≤<a 6a ≤-12a ≤<12λ=x (),()a b a b <λ()0,1λ∈()1x a b λλ=+-()()()1,x a b a b b a b λλλ=+-=-+∈(),x a b ∈b x b a λ-=-()1x a b λλ=+-01b x b a b a b a--<<=--x (),()a b a b <λ(),x a b ∈()0,1λ∈x (),a b λ1x 1λ()1111x a b λλ=+-()()2221111a b a b λλωω⎡⎤+-≤+-⎣⎦()()()2222211111220a ab b ωλλλλλω---+-+-≥210ωλ-≤210ωλ->()()()222211111Δ4420λλωλλλω=----+-≤()210λω-≤1,λω=21λω=-121λλ+=。
安徽省多校联盟2024-2025学年高一上学期10月月考数学试题(含答案)
安徽省多校联盟2024-2025学年高一上学期10月月考数学试题2024~2025学年高一第一学期10月联考数学试题考生注意:1.满分150分,考试时间120分钟.2.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.3.本卷命题范围:人教版必修第一册第二章结束.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列不正确的是( )A B. C. D.2. 已知命题,,则命题p 的否定为( )A. , B. ,C , D. ,3. 已知集合,,则( )A. B. C. D.4. 已知,,则p 是q 的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5. 满足的集合M 的个数是( )A 6B. 7C. 8D. 156. 设,,且,则xy 的最大值是( )A.B.C.D. 100...N ⊇∅{}∅=∅1R 2-∈πQ∉:R p x ∃∈29304x x -+≤R x ∃∈29304x x -+>R x ∃∈29304x x -+<R x ∀∈29304x x -+≤R x ∀∈29304x x -+>{}2,1,0,1,2A =--{}12B x x =-≤A B = {}1,2{}0,1,2{}1,0,1-{}1,0,1,2-:10p x -<<:2q <{}0,1,2M ⊆n {}0,1,2,3,4,50x >0y >430x y +=225412544527. 已知集合,若,则,则称为集合“亮点”,若,则集合的所有“亮点”之和为( )A. B. C. D. 8. 关于x 的不等式恰有3个整数解,则实数a 的取值范围是( )A. 或B. 或C. 或D. 或 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知全集,集合,,则图中阴影部分所表示的集合为( )A. B. C. D. 10. 已知二次函数的图象开口向上且零点为和,则( )A. 且B. C. 不等式的解集为D. 不等式的解集为11. 若a ,b 均为正实数,且满足,则( )A. 最大值为B. 的最小值为4C.的最小值为4 D.的最小值为三、填空题:本题共3小题,每小题5分,共15分.的的M a M ∈11a M a +∈-a M 6Z16M x x ⎧⎫=∈≥⎨⎬-⎩⎭M 3456()2214ax x -<7934a a ⎧-≤<-⎨⎩9743a ⎫<≤⎬⎭7934a a ⎧-≤≤-⎨⎩9743a ⎫≤≤⎬⎭7934a a ⎧-<≤-⎨⎩9743a ⎫≤<⎬⎭7934a a ⎧-<<-⎨⎩9743a ⎫<<⎬⎭{}2,1,0,1,2,3,4U =--{}2Z 6A x x x =∈-<{}2,0,1,3B =-{}1,2-()A B B⋃ð()U A B⋂ð()()U U A B⋂ðð2y ax bx c =++2-30b >0c <24b a c=+20bx c +<{}3x x >-20cx bx a -+>1123x x ⎧⎫-<<⎨⎬⎩⎭21a b +=ab 1811416a b a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭1aa b+1421a b ++9212. 在中,“”是“为锐角三角形”的______条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)13. 已知,,设,则的取值范围是______.14. 二次函数的最大值记为,最小值记为,其中常数.若实数满足,则______,的最小值为__________四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15. 设集合,.(1)若,命题:,命题,若命题都为真命题,求实数的取值范围;(2)若,求的取值范围.16. (1)若关于x 的方程的两个根为,,且,求实数m的取值范围;(2)若关于x 的不等式在R 上恒成立,求实数b 的取值范围.17. (1)设,,比较与的大小;(2)求关于的不等式的解集.18. 2024年8月16日,商务部等7部门发布《关于进一步做好汽车以旧换新工作的通知》.根据通知,对符合《汽车以旧换新补贴实施细则》规定,报废旧车并购买新车的个人消费者,补贴标准由购买新能源乘用车补1万元、购买燃油乘用车补7000元,分别提高至2万元和1.5万元,某新能源汽车配件公司为扩大生产,计划改进技术生产某种组件.已知生产该产品的年固定成本为2000万元,每生产百件,需另投入成本万元,且时,;当时,,由市场调研知,该产品每件的售价为5万元,且全年内生产的该产品当年能全部销售完.(1)分别写出与时,年利润y (万元)与年产量x (百件)的关系式(利润=销售收入-成本);(2)当该产品的年产量为多少百件时,公司所获年利润最大?最大年利润是多少?19. 对于正整数集合,如果对于M 中的任意两个元素x ,y ,都有,则称M 为“好集合”.ABC V 90A B ∠+∠>︒ABC V 23x y -<-<34x y <+<23t x y =-t 24(4814)y x x k x =--+≤≤A a 0k <T {}{}(1)(7)11(9)1k k a A k T a A --<-⊆⋅-<+A a -=T {}43A x x =-≤≤{}312B x m x m =-<<+1m =:p x A ∈:q x B ∈,p q x A B A = m ()210x m x m +-+=1x 2x 12402x x -<<<<()()2212110b x b x ----≤22p m m =-+212q m m =++p 4q x ()22120ax a x +-->*(N )x x ∈()W x 045x <<()23260W x x x =+45x ≥4900()501495020W x x x =+-+045x ≤<45x ≥*12{,,,}(N ,2)n M a a a n n =∈≥ 2x y ->(1)试判断集合和是否为“好集合”?并说明理由;(2)若集合,证明:C 不可能是“好集合”;(3)若,D 是S 的子集,且D 是“好集合”,求D 所含元素个数的最大值.{}5,7,9,13A ={}2,5,8,11B ={}{}1212,,,1,2,,18C a a a =⊆ }1,2,3,2{,026S =⋯2024~2025学年高一第一学期10月联考数学试题考生注意:1.满分150分,考试时间120分钟.2.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.3.本卷命题范围:人教版必修第一册第二章结束.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】B【2题答案】【答案】D【3题答案】【答案】D【4题答案】【答案】A【5题答案】【答案】B【6题答案】【答案】A【7题答案】【答案】C【8题答案】【答案】C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】ABC【10题答案】【答案】BC 【11题答案】【答案】ACD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】必要不充分【13题答案】【答案】【14题答案】【答案】①.②. 四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.【15题答案】【答案】(1)(2)或【16题答案】【答案】(1);(2)【17题答案】【答案】(1);(2)答案见解析【18题答案】【答案】(1)答案见解析;(2)年产量为50百件时,该企业所获年利润最大,最大年利润是2830万元【19题答案】【答案】(1)集合A 不是“好集合”, 集合B 是“好集合”,理由见解析 (2)证明见解析(3){}|76t t -<<46-23x <<{11m m -≤≤32m ⎫≥⎬⎭203-<<m {}01b b ≤≤4p q ≥676。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新津中学高2020级(高一)10月月考数学试题一、选择题(每小题5分,共12个)1. 设{1A -⋃,1}{0=,1-,1},则满足条件的集合A 共有( )个. A .1B .2C .3D .42.如下图所示,对应关系f 是从A 到B 的映射的是 ( )3.设集合A={x|x 2﹣4x+3≥0},B={x|2x ﹣3≤0},则A ∪B=( ) A .(﹣∞,1]∪[3,+∞) B .[1,3] C . D .4.已知A={x|x ≥k},B={x|<1},若A ⊆B ,则实数k 的取值范围为( )A .(1,+∞)B .(﹣∞,﹣1)C .(2,+∞)D .[2,+∞)5.已知{}1≥=x x A ,⎭⎬⎫⎩⎨⎧-≤≤=1221a x x B ,若A ∩B ≠∅,则实数a 的取值范围是( ) A .[1,+∞)B .C .D .(1,+∞)6.判断下列各组中的两个函数是同一函数的为( )(1)21)52(-=x y ,522-=x y (2)x y =1,332x y =;(3)111-+=x x y ,)1)(1(2-+=x x y ;(4)3)5)(3(1+-+=x x x y ,52-=x y ;(5)x y =1,22x y =。
A.(1),(2)B.(2)C. (3),(4)D. (3),(5)7. 设1,0()2,0x x x f x x ⎧≥⎪=⎨<⎪⎩,则((2))f f -=( )A .1-B .14C .12D .328.已知x ∈[0, 1],则函数的值域是( ) A .B .C .D .9.⎩⎨⎧≥-<+-=1,1,4)13()(x ax x a x a x f 是定义在(﹣∞,+∞)上是减函数,则a 的取值范围是( )A .[,)B .[0,]C .(0,)D .(﹣∞,]10. 已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离S 表示为时间t (小时)的函数表达式是 ( ) A .S=60t B .S=60t+50tC .S=⎩⎨⎧>-≤≤)5.3(,50150)5.20(,60t t t tD .S=⎪⎩⎪⎨⎧≤<--≤<≤≤)5.65.3(),5.3(50150)5.35.2(,150)5.20(,60t t t t t11. f (x )满足对任意的实数a ,b 都有f (a+b )=f (a )•f (b ),且f (1)=2,则=( )A .1006B .2020C .2013D .100812.已知函数224,0()2,0x x x f x x x x ⎧-+≥⎪=⎨+<⎪⎩,则不等式(())2()3f f x f x ≤-的解集为( )A.[3,1][3,)-+∞B.(,3][1,3]-∞-C.(,3][1,)-∞-+∞D.(,1][3,)-∞+∞二、填空题(每题5分,共4个题)13.若},3,2,1{},2,1,0{==B A 则=B A ________,=B A ________ 14.设f(x)的定义域为[0,2],则函数f(x 2)的定义域是________15.若函数f (x )=﹣x 2+2ax 与函数g (x )=在区间[1,2]上都是减函数,则实数a 的取值范围是 . 16.的递增区间为函数32)(2--=x x x f三.解答题(17题10分,其他题每题12分) 17. 已知函数f(x)=|x 2-2x|.(1)画出该函数的大致图象.(2)在同一坐标系中做出y=x 的图像,观察图像写出不等式f(x)>x 的解集。
18.已知函数f (x )=的定义域为集合A ,B={x ∈Z|2<x <10},C={x ∈R|x <a 或x >a+1} (1)求A ,(∁R A )∩B ;(2)若A ∪C=R ,求实数a 的取值范围.19. 已知f (x-2)=x-1. (1)求函数f (x )的解析式; (2)当x ∈[﹣1,8]时,求函数的值域.20.已知函数f (x )=ax 2+bx+c (a ≠0)(a 、b 、c 为常数),满足f (0)=1,f (1)=-4,且关于x= -2对称。
(1)求f (x )的解析式;(2)求f (x )在区间[a ﹣1,2a+1]的最小值。
21.函数()f x 满足:对定义域内任意12x x ≠,都有1212()(()())0x x f x f x --<成立。
(1)若()f x 的定义域为[0,)+∞,且有2(1)(22)f a f a ->+成立,求a 的范围;(2)已知()f x 的定义域为R ,求关于x 的不等式2(2)(2)f mx mx f x +<+的解集。
22.已知函数xpx x f 32)(2+-=,且35)2(f -=.(1)判断函数()f x 在)1,0(上的单调性,并加以证明.的范围)上恒成立,求0,-在(01)(若)2(a xax f ∞>+-新津中学高2020级(高一)10月月考数学答案1.D2.C3.B4.A5.B6.B7.B8.C9.A10.D11.A12.B 13.80143 14.22⎡⎤-⎣⎦, 15.(0,1] 16.()+∞,317.⎪⎪⎩⎪⎪⎨⎧>-=<==-=+=-><==)0(1)0.(..........0)0(1--)(1--)(-)()(1)(,0-00)0(0x 2222x x x x x x x x f xx x f x f x f xx x f x x f 为奇函数,所以因为时,当时,当 18.【解答】解:(1)由题意,解得7>x ≥3,故A={x ∈R|3≤x <7},B={x ∈Z|2<x <10}═{x ∈Z|3,4,5,6,7,8,9}, ∴(C R A )∩B{7,8,9}(2)∵A ∪C=R ,C={x ∈R|x <a 或x >a+1} ∴解得3≤a <6实数a 的取值范围是3≤a <619.解:(1)对于一切x ∈R 恒有f (﹣2+x )=f (﹣2﹣x )成立, 故f (x )的对称轴是x=﹣2,即﹣=﹣2,函数f (x )=ax 2+bx+c (a ≠0)(a 、b 、c 为常数), 满足f (0)=1,f (1)=0,∴,解得:;故f (x )=﹣x 2﹣x+1;(2)由(1)得:f(x)的对称轴是:x=﹣2,若f(x)在区间[a﹣1,2a+1]上不单调,得,a﹣1<﹣2<2a+1,解得:﹣<a<﹣1.20.(1)由题意函数f(x)是一次函数,设f(x)=kx+b,在R上单调递增,当x∈[0,3]时,值域为[1,4].故得,解得:b=1.k=1,∴函数f(x)的解析式为f(x)=x+1、(2)函数=2x﹣,令:t=,则x=t2﹣1.∵x∈[﹣1,8],∴0≤t≤3.∴函数g(x)转化为h(t)=当t=时,函数h(t)取得最小值为,当t=3时,函数h(t)取得最大值为13.故得函数h(t)的值域为[],即函数g(x)的值域为[],21.【解答】解:函数f(x)的对称轴为①当即a≤0时f min(x)=f(0)=a2﹣2a+2=3解得a=1±a≤0∴②当0<<2即0<a<4时解得∵0<a<4故不合题意③当即a≥4时f min(x)=f(2)=a2﹣10a+18=3解得∴a≥4∴综上:或22.解:(1)又∵35)2(f -=,∴3562p 4)2(f -=-+=, 解得p=2∴所求解析式为x32x 2)x (f 2-+=(2)由(1)可得x 32x 2)x (f 2-+==)x1x (32+-,设1021<<<x x , 则由于)]x 1x 1()x x [(32)]x 1x ()x 1x [(32)x (f )x (f 1212112221-+-=+-+=- =2121212*********x x x x 1)x x (32)1x x 1)(x x (32]x x x x )x x [(32-⨯-=--=-+-因此,当1x x 021≤<<时,1x x 021<<,从而得到0)x (f )x (f 21<-即,)x (f )x (f 21<∴]1,0(是f(x)的递增区间。
(3)322332230-033220-0)(3332213221)()(2222-≥∴-≥∴+-->∞<+---∞>+---=+-+-=+-=a a x x a x a x x g xx a x xa x x x a x f x g )上恒成立,在()上恒成立,即:,在(令。