平面向量典型例题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量经典例题:
1.已知向量a=(1,2),b=(2,0),若向量λa+b与向量c=(1,-2)共线,则实数λ等于()
A.-2B.-1
3
C.-1 D.-2
3
[答案] C
[解析]λa+b=(λ,2λ)+(2,0)=(2+λ,2λ),∵λa+b与c共线,∴-2(2+λ)-2λ=0,∴λ=-1.
2.(文)已知向量a=(3,1),b=(0,1),c=(k,3),若a+2b与c垂直,则k=()
A.-1 B.- 3
C.-3 D.1
[答案] C
[解析]a+2b=(3,1)+(0,2)=(3,3),
∵a+2b与c垂直,∴(a+2b)·c=3k+33=0,∴k=-3.
(理)已知a=(1,2),b=(3,-1),且a+b与a-λb互相垂直,则实数λ的值为()
A.-6
11B.-
11
6
C.6
11 D.
11
6
[答案] C
[解析]a+b=(4,1),a-λb=(1-3λ,2+λ),∵a+b与a-λb垂直,
∴(a+b)·(a-λb)=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=6 11.
3.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则向量a、b间的夹角为()
A.150°B.120°
C.60°D.30°
[答案] B
[解析]如图,在▱ABCD中,
∵|a|=|b|=|c|,c=a+b,∴△ABD为正三角形,∴∠BAD=60°,
∴〈a,b〉=120°,故选B.
(理)向量a,b满足|a|=1,|a-b|=
3
2,a与b的夹角为60°,则|b|=()
A.1
2 B.
1
3
C.1
4 D.
1
5
[答案] A
[解析]∵|a-b|=
3
2,∴|a|
2+|b|2-2a·b=
3
4,∵|a|=1,〈a,b〉=60°,
设|b|=x,则1+x2-x=3
4,∵x>0,∴x=
1
2.
4.
若AB →·BC →+AB →2=0,则△ABC 必定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形
[答案] B
[解析] AB →·BC →+AB →2=AB →·(BC →+AB →)=AB →·AC →=0,∴AB →⊥AC →, ∴AB ⊥AC ,∴△ABC 为直角三角形.
5. 若向量a =(1,1),b =(1,-1),c =(-2,4),则用a ,b 表示c 为( ) A .-a +3b B .a -3b C .3a -b D .-3a +b
[答案] B
[解析] 设c =λa +μb ,则(-2,4)=(λ+μ,λ-μ), ∴⎩⎨⎧ λ+μ=-2λ-μ=4,∴⎩⎨⎧
λ=1μ=-3
,∴c =a -3b ,故选B. 在平行四边形ABCD 中,AC 与BD 交于O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC
→=a ,BD →=b ,则AF →
等于( )
A.14a +12b
B.23a +1
3b C.12a +14b D.13a +23
b [答案] B
[解析] ∵E 为OD 的中点,∴BE →=3ED →, ∵DF ∥AB ,∴
|AB ||DF |=|EB |
|DE |
,
∴|DF |=13|AB |,∴|CF |=23|AB |=2
3|CD |,
∴AF →=AC →+CF →=AC →+23CD →
=a +23(OD →-
OC →
)=a +23(12b -12a )=23a +13b .
6.
若△ABC 的三边长分别为AB =7,BC =5,CA =6,则AB →·BC →的值为( ) A .19 B .14 C .-18 D .-19 [答案] D
[解析] 据已知得cos B =72+52-622×7×5=1935,故AB →·BC →=|AB →|×|BC →|×(-cos B )=7×5×()
-1935=-19.
7.
若向量a =(x -1,2),b =(4,y )相互垂直,则9x +3y 的最小值为( ) A .12 B .2 3 C .3 2 D .6 [答案] D
[解析] a ·b =4(x -1)+2y =0,∴2x +y =2,∴9x +3y =32x +3y ≥232x +
y =6,等号在x =12,y =1时成立.
8.
若A ,B ,C 是直线l 上不同的三个点,若O 不在l 上,存在实数x 使得x 2OA →+xOB →+BC →
=0,实数x 为( ) A .-1 B .0 C.
-1+5
2
D.1+5
2
[答案] A
[解析] x 2OA →+xOB →+OC →-OB →=0,∴x 2OA →+(x -1)OB →+OC →
=0,由向量共线的充要条件及A 、B 、C 共线知,1-x -x 2=1,∴x =0或-1,当x =0时,BC →
=0,与条件矛盾,∴x =-1. 9.
(文)已知P 是边长为2的正△ABC 边BC 上的动点,则AP →·(AB →+AC →
)( ) A .最大值为8 B .最小值为2 C .是定值6 D .与P 的位置有关
[答案] C
[解析] 以BC 的中点O 为原点,直线BC 为x 轴建立如图坐标系,则B (-1,0),C (1,0),A (0,3),AB →+AC →=(-1,-3)+(1,-3)=(0,-23),
设P (x,0),-1≤x ≤1,则AP →
=(x ,-3),
∴AP →·(AB →+AC →)=(x ,-3)·(0,-23)=6,故选C.
(理)在△ABC 中,D 为BC 边中点,若∠A =120°,AB →·AC →=-1,则|AD →
|的最小值是( )
A.12
B.32
C. 2
D.22
[答案] D
[解析] ∵∠A =120°,AB →·AC →=-1,∴|AB →|·|AC →
|·cos120°=-1, ∴|AB →|·|AC →|=2,∴|AB →|2+|AC →|2≥2|AB →|·|AC →|=4,∵D 为BC 边的中点,
∴AD →=12(AB →+AC →),∴|AD →|2=14(|AB →|2+|AC →|2+2AB →·AC →)=14(|AB →|2+|AC →|2-2)≥14(4-2)=12,
∴|AD →
|≥22
.
10. 如图,一直线EF 与平行四边形ABCD 的两边AB ,AD 分
别交于E 、F 两点,且交其对角线于K ,其中AE →=13AB →,AF
→
=12
AD →,AK →=λAC →
,则λ的值为( )