高中数学必修一专题求函数的定义域与值域的常用方法

合集下载

求函数的定义域与值域的常用方法

求函数的定义域与值域的常用方法

求函数的定义域与值域的常用方法在数学中,函数的定义域和值域是非常重要的概念。

定义域是指函数可以接受的输入值的集合,而值域则是函数能够取得的输出值的集合。

正确确定函数的定义域和值域是解决函数相关问题的关键,下面我们将详细介绍求函数定义域和值域的常用方法。

一、函数的定义域的常用方法:1. 显式定义法:对于一些常见的函数,我们可以直接根据其表达式来确定其定义域。

例如,对于一元多项式函数f(x)=ax^n+bx^m+...+c,其定义域可以是实数集或者区间。

2.隐式定义法:对于一些函数可能没有明确的表达式,或者函数的定义域和表达式没有直接的关系,我们可以根据函数的特性和性质来确定其定义域。

例如,对于分式函数f(x)=1/(x-1),我们可以得知分母不能为0,所以其定义域是实数集减去1的那部分实数。

3.已知条件法:有时候我们可以根据函数在一些点的取值情况来确定其定义域。

例如,对于一个连续函数f(x),如果我们知道在一些区间上f(x)恒大于0,那么可以确定该区间为函数的定义域。

4.集合运算法:当函数的定义域可以表示为多个区间或集合的并、交、差等运算时,我们可以利用这些运算来求解函数的定义域。

例如,对于函数f(x)=√(x+1)-√(x-1),我们可以先求出√(x+1)和√(x-1)的定义域,然后求出它们的交集。

二、函数的值域的常用方法:1.考察函数表达式法:对于一些常见的函数,我们可以观察其表达式,根据其中的字母、常数等特性来确定其值域的范围。

例如,对于平方函数f(x)=x^2,我们可以观察到平方函数的输出恒为非负数,所以其值域是[0,+∞)。

2.定义域与函数性质法:当我们已经确定了函数的定义域后,可以根据函数的性质来确定其值域。

例如,对于连续函数f(x)在一些区间上单调增加或者单调减少,我们可以确定函数在该区间上取值范围。

3.极限与极大极小值法:利用函数的极限性质、导数等衍生性质来确定函数的值域。

例如,对于函数f(x)=x^3-3x+2,我们可以求出其导数为f'(x)=3x^2-3,然后根据导数的符号确定函数的单调性和极值点,从而确定其值域。

求函数的定义域与值域的常用方法

求函数的定义域与值域的常用方法

求函数的定义域与值域的常用方法在数学中,函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。

函数的定义域是指所有输入值的集合,也就是函数可以接受的所有输入。

值域是函数所有可能的输出值的集合,也就是函数可以得到的所有输出。

在求函数的定义域和值域时,一般需要注意以下一些常用的方法和技巧:1.分析函数的显式定义式:如果函数的显式定义式直接给出了函数的定义域和值域,那么问题就迎刃而解了。

例如,定义域是实数集合,值域是区间(0,∞)的函数,可以通过观察定义式得出。

2.求解方程或不等式:通过求解方程或不等式,可以确定函数的定义域。

例如,对于函数f(x)=√(x-2),需要解方程x-2≥0,得到x≥2,即定义域为[2,∞)。

对于函数g(x)=1/x,需要解方程x≠0,得到定义域为(-∞,0)∪(0,∞)。

对于值域,可以通过类似的方式求解不等式或方程得到。

3.观察函数的图像:通过观察函数的图像,可以大致判断函数的定义域和值域。

函数在图像上的取值范围和横坐标的取值范围可以提供一些线索。

例如,对于函数f(x)=x^2,通过观察图像可以看出它的定义域为实数集合,值域为[0,∞)。

4.分解复合函数:当函数是由两个或多个函数复合而成时,可以通过分解复合函数的方式求解定义域和值域。

例如,对于函数f(x)=√(3-x^2),可以将其分解为两个函数f(x)=√(3-y)和g(y)=y^2,然后分别求解其定义域和值域。

5. 推导函数的性质和特点:有时候可以根据函数的性质和特点来推导其定义域和值域。

例如,对于比例函数 f(x) = kx,由于比例函数在定义域上的取值范围是全体实数,所以比例函数的值域也是全体实数。

需要注意的是,函数的定义域和值域是相互依存的。

函数的定义域决定了可以输入什么值,而函数的值域决定了可以输出什么值。

因此,在求解函数的定义域和值域时,需要综合考虑函数定义式、方程和不等式的求解、函数图像的观察、复合函数的分解以及函数的性质和特点等多个方面的信息。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)
解:由题意知,此框架围成的面积是由一个矩形和一个半圆组成的图形的面积,如图。
文档大全
实用标准
因为CD=AB=2x,所以CDx,所以
2
L2xxx
y2x

22
LABCDL2xx
AD,
22
(2
)
2
2
x
Lx
根据实际问题的意义知
2x
L
0
2x
2
x
0
0x
L
2
2
故函数的解析式为y(2)xLx
2
五、参数型
,定义域(0,
即为所求的定义域。
2
例3已知f(x)的定义域为[-2,2],求f(x1)
的定义域。
2
解:令2x12
2
,得1x3
2
,即0x3
,因此0|x|3,从而
3x3,故函数的定义域是{x|3x3}。
(2)已知f[g(x)]的定义域,求f(x)的定义域。
其解法是:已知f[g(x)]的定义域是[a,b],求f(x)定义域的方法是:由axb,求
恒成立,解得
3
0k;
4
②当k=0时,方程左边=3≠0恒成立。
综上k的取值范围是
四、实际问题型
3
0k。
4
这里函数的定义域除满足解析式外,还要注意问题的实际意义对自变量的限制,这点要
加倍注意,并形成意识。
例7将长为a的铁丝折成矩形,求矩形面积y关于一边长x的函数的解析式,并求函
数的定义域。
1
解:设矩形一边为x,则另一边长为(a2x)
含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之
一,在求函数的值域中同样发挥作用。

函数定义域、值域求法总结(精彩)

函数定义域、值域求法总结(精彩)

函数定义域、值域求法总结一、定义域是函数y=f(x)中的自变量x 的范围。

求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。

( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。

这些解题思想与方法贯穿了高中数学的始终。

常用的求值域的方法:(1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等三、典例解析 1、定义域问题例1 求下列函数的定义域:①21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 解:①∵x-2=0,即x=2时,分式21-x 无意义,而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x .②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x }另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x⎩⎨⎧≠-≥21x x例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f ③=)(x f x11111++④xx x x f -+=0)1()( ⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或4133≥-≤<--<⇒x x x 或或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧x x x2110-≠-≠≠⎪⎩⎪⎨⎧x x x∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37-或 x>37- ∴定义域为:}37|{-≠x x 例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围解:∵定义域是R,∴恒成立,012≥+-aax ax ∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于例4 若函数)(x f y =的定义域为[1,1],求函数)41(+=x f y )41(-⋅x f 的定义域第一页解:要使函数有意义,必须:43434543434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x ∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。

函数值域定义域方法总结

函数值域定义域方法总结

函数定义域、值域求法总结一、定义域是函数y=f(x)中的自变量x 的范围。

求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)y=tanx 中x ≠k π+π/2; ( 5 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。

常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法)(7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等这些解题思想与方法贯穿了高中数学的始终。

三、典例解析 1、定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=0)1()(⑤373132+++-=x x y例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。

例6已知已知f(x)的定义域为[-1,1],求f(x 2)的定义域。

2、求值域问题利用常见函数的值域来求(直接法)一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠=k xky 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R ,当a>0时,值域为{a b ac y y 4)4(|2-≥};当a<0时,值域为{ab ac y y 4)4(|2-≤}. 例1 求下列函数的值域① y=3x+2(-1≤x ≤1) ②)(3x 1x32)(≤≤-=x f ③ xx y 1+=(记住图像) 二次函数在区间上的值域(最值):例2 求下列函数的最大值、最小值与值域:①142+-=x x y ; ②;]4,3[,142∈+-=x x x y ③]1,0[,142∈+-=x x x y ; ④]5,0[,142∈+-=x x x y ;练习:1、求函数[]5,0,522∈+-=x x x y 的值域 法二:换元法(下题讲)例4 求函数x x y -+=12 的值域例7 求13+--=x x y 的值域例8 求函数[])1,0(239∈+-=x y x x 的值域例9求函数xx y 2231+-⎪⎭⎫⎝⎛= 的值域例10 求函数 )0(2≤=x y x 的值域 例11 求函数21+-=x x y 的值域小结:已知分式函数)0(≠++=c dcx bax y ,如果在其自然定义域(代数式自身对变量的要求)内,值域为⎭⎬⎫⎩⎨⎧≠c a y y ; 例12 求函数133+=x xy 的值域例14 求函数34252+-=x x y 的值域 例15 函数11++=xx y 的值域复合函数单调性一、 函数的单调区间1.一次函数y=kx+b(k ≠0).2.反比例函数y=x k(k ≠0). 3.二次函数y=ax 2+bx+c(a ≠0). 4.指数函数y=ax(a >0,a ≠1). 5.对数函数y=log a x(a >0,a ≠1). 三、复合函数单调性相关定理规律:当两个函数的单调性相同时,其复合函数是增函数;当两个函数的单调性不同时,其复合函数为减函数。

求函数的定义域与值域的常用方法

求函数的定义域与值域的常用方法

求函数的定义域与值域的常用方法函数的定义域和值域是数学中的重要概念,它们描述了函数的输入和输出的范围。

在不同的数学领域和实际应用中,求解函数的定义域和值域有不同的方法和技巧。

函数的定义域是指函数中自变量的取值范围。

换句话说,定义域是使函数有意义的输入值的集合。

下面介绍一些常用方法来求解函数的定义域:1.分式函数:分式函数的定义域通常要求分母不等于零,因此我们需要找到分母为零的点,并将其排除。

求解分母为零的方程,得到函数的定义域。

2.平方根函数:平方根函数的定义域要求根号内的值大于等于零。

因此,需要将根号内的表达式>=0,并求解方程,得到函数的定义域。

3.指数函数和对数函数:指数函数的定义域通常为全体实数,而对数函数的定义域要求基数和真数都大于零。

因此,对于指数函数,不存在特定的求解方法;而对于对数函数,需要使基数和真数大于零,并求解相应的方程。

4.复合函数:复合函数的定义域由内层函数和外层函数的定义域共同确定。

首先求解内层函数的定义域,将其结果作为外层函数的自变量的定义域。

注意需要将两个函数的定义域进行交集运算,得到复合函数的定义域。

5.根式函数:根式函数的定义域需要满足根号内的表达式大于等于零。

求解根号内的方程,得到函数的定义域。

函数的值域是函数在定义域内所有可能的输出值的集合。

下面介绍一些常用方法来求解函数的值域:1.分析法:通过分析函数的特点、性质和图像,推断出函数的值域。

例如,通过观察函数的单调性、奇偶性、对称性、极值等特点,可以确定函数的值域的范围。

2.等式法:通过解方程求函数的值域。

将函数的表达式等于一个未知数,解方程得到未知数的取值范围,即为函数的值域。

3.代数运算法:通过对函数进行代数运算,得到函数的值域。

例如,对于一次函数,通过对其进行线性变换和平移,可以推导出函数的值域的范围。

4.图像法:通过绘制函数的图像,观察函数的上下界,以及是否存在水平渐近线和垂直渐近线,可以推断出函数的值域。

高一函数值域定义域方法总结

高一函数值域定义域方法总结

函数定义域、值域求法总结一、定义域是函数y=f(x)中的自变量x 的范围。

求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。

( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。

常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法)(7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等这些解题思想与方法贯穿了高中数学的始终。

三、典例解析 1、定义域问题例1 求下列函数的定义域:①21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 解:①∵x-2=0,即x=2时,分式21-x 无意义,而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x .②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x }另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x ⇒ ⎩⎨⎧≠-≥21x x 例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=0)1()(⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或4133≥-≤<--<⇒x x x 或或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧xx x ⇒ 2110-≠-≠≠⎪⎩⎪⎨⎧x x x∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37-或 x>37- ∴定义域为:}37|{-≠x x 例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围解:∵定义域是R,∴恒成立,012≥+-aax ax∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域解:要使函数有意义,必须:43434543434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x ∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。

人教A版高中数学必修第一册第三章3.1.1函数定义域和值域的求法课件

人教A版高中数学必修第一册第三章3.1.1函数定义域和值域的求法课件

②∵顶点横坐标23,4],当x=3时 ,y=-2,x =4时 ,y=1
∴在[3,4]上,Ymin =-2,Ymax=1; 值域为[-2,1].
解③略:
解④∵顶点横坐标2 ∈[0,5]当x=0时 ,y=1,x=2 时 ,y=-3, x=5时 ,y=6,∴ 在[0,1]上, Ymin =-3,ymax =6
② y=x²-4x+1 x∈[3,4]
③ y=x²-4x+1 ,x∈[0,1]④y=x²-4x+1 x ∈[0,5]
图 像
解:∵y=x²-4x+1 =(x-2)²-3

∴顶点为(2,-3),顶点横坐标为2 . (对称轴x=2)
①∵抛物线的开口向上,函数的定义域R
∴x=2时,Ymin=-3 ,无最大值;函数的值域是{yly≥-3 }.
1.2.函数定义域和值域的求法
函数
y=f(x )
因变量
对应法则
自变量
自变量的取值范围为
因变量的取值范围为
定义域
值域
对应法则一般为
函数的解析式
1:在初中我们学习了哪几种函数?函数表达式是 什么?它们的定义域值域各是什么?
一次函数: y=ax+b(a≠0) 定义域为R
反比例函数:
≠0) 定义域为{x|x≠0}
当 - 1<x≤1 时 ,y=(x+1)+(x-1)=2x
当 x>1 时 ,y=(x+1) 一(x-1)=2




由图知: -2≤y≤2

故函数的值域为
[-2,3]
课堂小结
求函数的值域的方法:
(1) 视察法; (2) 图象法;

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)

高中函数界说域和值域的求法总结之南宫帮珍创作一、惯例型即给出函数的解析式的界说域求法, 其解法是由解析式有意义列出关于自变量的不等式或不等式组, 解此不等式(或组)即得原函数的界说域.例1 求函数8|3x |15x 2x y 2-+--=的界说域. 解:要使函数有意义, 则必需满足 由①解得 3x -≤或5x ≥. ③ 由②解得 5x ≠或11x -≠④③和④求交集得3x -≤且11x -≠或x>5.故所求函数的界说域为}5x |x {}11x 3x |x {>-≠-≤ 且.例2 求函数2x 161x sin y -+=的界说域. 解:要使函数有意义, 则必需满足 由①解得Z k k 2x k 2∈π+π≤≤π,③ 由②解得4x 4<<-④由③和④求公共部份, 得故函数的界说域为]0(]4(ππ--,,评注:③和④怎样求公共部份?你会吗? 二、笼统函数型笼统函数是指没有给出解析式的函数, 不能惯例方法求解, 一般暗示为已知一个笼统函数的界说域求另一个笼统函数的解析式, 一般有两种情况.(1)已知)x (f 的界说域, 求)]x (g [f 的界说域.(2)其解法是:已知)x (f 的界说域是[a, b ]求)]x (g [f 的界说域是解b )x (g a ≤≤, 即为所求的界说域.例3 已知)x (f 的界说域为[-2, 2], 求)1x (f 2-的界说域. 解:令21x 22≤-≤-, 得3x 12≤≤-, 即3x 02≤≤, 因此3|x |0≤≤, 从而3x 3≤≤-, 故函数的界说域是}3x 3|x {≤≤-.(2)已知)]x (g [f 的界说域, 求f(x)的界说域.其解法是:已知)]x (g [f 的界说域是[a, b ], 求f(x)界说域的方法是:由b x a ≤≤, 求g(x)的值域, 即所求f(x)的界说域.例4 已知)1x 2(f +的界说域为[1, 2], 求f(x)的界说域.解:因为51x 234x 222x 1≤+≤≤≤≤≤,,. 即函数f(x)的界说域是}5x 3|x {≤≤. 三、逆向型即已知所给函数的界说域求解析式中参数的取值范围.特别是对已知界说域为R, 求参数的范围问题通常是转化为恒成立问题来解决.例5 已知函数8m mx 6mx y 2++-=的界说域为R 求实数m 的取值范围.分析:函数的界说域为R, 标明0m 8mx 6mx 2≥++-, 使一切x ∈R 都成立, 由2x 项的系数是m, 所以应分m=0或0m ≠进行讨论.解:当m=0时, 函数的界说域为R ;那时0m ≠, 08m mx 6mx 2≥++-是二次不等式, 其对一切实数x 都成立的充要条件是综上可知1m 0≤≤.评注:很多学生容易忽略m=0的情况, 希望通过此例解决问题. 例6 已知函数3kx 4kx 7kx )x (f 2+++=的界说域是R, 求实数k 的取值范围.解:要使函数有意义, 则必需3kx 4kx 2++≠0恒成立, 因为)x (f 的界说域为R, 即03kx 4kx 2=++无实数①当k ≠0时, 0k 34k 162<⨯-=∆恒成立, 解得43k 0<<;②当k=0时, 方程左边=3≠0恒成立.综上k 的取值范围是43k 0<≤.四、实际问题型这里函数的界说域除满足解析式外, 还要注意问题的实际意义对自变量的限制, 这点要加倍注意, 并形成意识.例7 将长为a 的铁丝折成矩形, 求矩形面积y 关于一边长x 的函数的解析式, 并求函数的界说域. 解:设矩形一边为x, 则另一边长为)x 2a (21-于是可得矩形面积.ax 21x 2+-=. 由问题的实际意义, 知函数的界说域应满足2a x 0<<⇒.故所求函数的解析式为ax21x y 2+-=, 界说域为(0, 2a ).例8 用长为L 的铁丝弯成下部为矩形上部为半圆的框架, 如图, 若矩形底边长为2x, 求此框架围成的面积y 与x 的函数关系式, 并求界说域.解:由题意知, 此框架围成的面积是由一个矩形和一个半圆组成的图形的面积, 如图.因为CD=AB=2x, 所以x CD π=⋂, 所以2xx 2L 2CD AB L AD π--=--=⋂,故2x 2x x 2L x 2y 2π+π--⋅= 根据实际问题的意义知故函数的解析式为Lxx )22(y 2+π+-=, 界说域(0, 2L +π).五、参数型对含参数的函数, 求界说域时, 必需对分母分类讨论.例9 已知)x (f 的界说域为[0, 1], 求函数)a x (f )a x (f )x (F -++=的界说域.解:因为)x (f 的界说域为[0, 1], 即1x 0≤≤.故函数)x (F 的界说域为下列不等式组的解集:⎩⎨⎧≤-≤≤+≤1a x 01a x 0, 即⎩⎨⎧+≤≤-≤≤-a1x a a 1x a即两个区间[-a, 1-a ]与[a, 1+a ]的交集, 比力两个区间左、右端点, 知(1)那时0a 21≤≤-, F (x )的界说域为}a 1x a |x {+≤≤-;(2)那时21a 0≤≤, F (x )的界说域为}a 1x a |x {-≤≤;(3)当21a >或21a -<时, 上述两区间的交集为空集, 此时F(x )不能构成函数.六、隐含型有些问题从概况上看其实不求界说域, 可是不注意界说域, 往往招致错解, 事实上界说域隐含在问题中, 例如函数的单调区间是其界说域的子集.因此, 求函数的单调区间, 必需先求界说域. 例10 求函数)3x 2x (log y 22++-=的单调区间.解:由03x 2x 2>++-, 即03x 2x 2<--, 解得3x 1<<-.即函数y 的界说域为(-1, 3). 函数)3x 2x (log y 22++-=是由函数3x 2x t t log y 22++-==,复合而成的.4)1x (3x 2x t 22+--=++-=, 对称轴x=1, 由二次函数的单调性,可知t 在区间]1(,-∞上是增函数;在区间)1[∞+,上是减函数, 而t log y 2=在其界说域上单调增; 3)[1)[1)31(]11(]1()31(,,,,,,,=∞+--=-∞- , 所以函数)3x 2x (log y 22++-=在区间]11(,-上是增函数, 在区间)31[,上是减函数. 函数值域求法十一种1. 直接观察法对一些比力简单的函数, 其值域可通过观察获得. 例1. 求函数x 1y =的值域.解:∵0x ≠∴0x 1≠显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域. 解:∵0x ≥故函数的值域是:]3,[-∞ 2. 配方法配方法是求二次函数值域最基本的方法之一. 例3. 求函数]2,1[x ,5x 2xy 2-∈+-=的值域.解:将函数配方得:4)1x (y 2+-= ∵]2,1[x -∈由二次函数的性质可知:当x=1时, 4y min =, 那时1x -=, 8y max = 故函数的值域是:[4, 8] 3. 判别式法例4. 求函数22x 1x x 1y +++=的值域.解:原函数化为关于x 的一元二次方程 (1)那时1y ≠, R x ∈解得:23y 21≤≤ (2)当y=1时, 0x =, 而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域.解:两边平方整理得:0y x )1y (2x 222=++-(1) ∵R x ∈ ∴0y 8)1y (42≥-+=∆解得:21y 21+≤≤-但此时的函数的界说域由0)x 2(x ≥-, 得2x 0≤≤由0≥∆, 仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根, 而不能确保其实根在区间[0, 2]上, 即不能确保方程(1)有实根, 由 0≥∆求出的范围可能比y 的实际范围年夜, 故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21.可以采用如下方法进一步确定原函数的值域. ∵2x 0≤≤21y ,0y min +==∴代入方程(1)解得:]2,0[22222x 41∈-+=即那时22222x 41-+=,原函数的值域为:]21,0[+注:由判别式法来判断函数的值域时, 若原函数的界说域不是实数集时, 应综合函数的界说域, 将扩年夜的部份剔除. 4. 反函数法直接求函数的值域困难时, 可以通过求其原函数的界说域来确定原函数的值域.例6. 求函数6x 54x 3++值域.解:由原函数式可得:3y 5y 64x --=则其反函数为:3x 5y 64y --=, 其界说域为:53x ≠故所求函数的值域为:⎪⎭⎫ ⎝⎛∞-53, 5. 函数有界性法直接求函数的值域困难时, 可以利用已学过函数的有界性, 反客为主来确定函数的值域.例7. 求函数1e 1e y xx +-=的值域.解:由原函数式可得:1y 1y e x -+=∵0e x >∴01y 1y >-+解得:1y 1<<-故所求函数的值域为)1,1(-例8. 求函数3x sin xcos y -=的值域.解:由原函数式可得:y 3x cos x sin y =-, 可化为:即1y y 3)x (x sin 2+=β+∵R x ∈∴]1,1[)x (x sin -∈β+即11y y 312≤+≤-解得:42y 42≤≤-故函数的值域为⎥⎥⎦⎤⎢⎢⎣⎡-42,42 6. 函数单调性法例9. 求函数)10x 2(1x log 2y 35x ≤≤-+=-的值域. 解:令1x log y ,2y 325x 1-==-则21y ,y 在[2, 10]上都是增函数 所以21y y y +=在[2, 10]上是增函数 当x=2时,8112log 2y 33min =-+=-当x=10时, 339log 2y 35max =+=故所求函数的值域为:⎥⎦⎤⎢⎣⎡33,81 例10. 求函数1x 1x y --+=的值域.解:原函数可化为:1x 1x 2y -++=令1x y ,1x y 21-=+=, 显然21y ,y 在],1[+∞上为无上界的增函数所以1y y =, 2y 在],1[+∞上也为无上界的增函数所以当x=1时, 21y y y +=有最小值2, 原函数有最年夜值222=显然0y >, 故原函数的值域为]2,0( 7. 换元法通过简单的换元把一个函数酿成简单函数, 其题型特征是函数解析式含有根式或三角函数公式模型, 换元法是数学方法中几种最主要方法之一, 在求函数的值域中同样发挥作用. 例11. 求函数1x x y -+=的值域. 解:令t 1x =-, )0t (≥ 则1t x 2+=∵43)21t (1t t y 22++=++= 又0t ≥, 由二次函数的性质可知那时0t =, 1y min = 那时0t →, +∞→y 故函数的值域为),1[+∞例12. 求函数2)1x (12x y +-++=的值域.解:因0)1x (12≥+-即1)1x (2≤+故可令],0[,cos 1x π∈ββ=+∴1cos sin cos 11cos y 2+β+β=β-++β= ∵π≤π+β≤π≤β≤4540,0故所求函数的值域为]21,0[+例13. 求函数1x 2x x x y 243++-=的值域.解:原函数可变形为:222x 1x 1x 1x 221y +-⨯+⨯=可令β=tg x , 则有β=+-β=+2222cos x 1x 1,2sin x 1x 2那时82k π-π=β,41y max =那时82k π+π=β,41y min -= 而此时βtan 有意义. 故所求函数的值域为⎥⎦⎤⎢⎣⎡-41,41 例14. 求函数)1x )(cos 1x (sin y ++=, ⎥⎦⎤⎢⎣⎡ππ-∈2,12x 的值域.解:)1x )(cos 1x (sin y ++=令t x cos x sin =+, 则)1t (21x cos x sin 2-=由)4/x sin(2x cos x sin t π+=+=且⎥⎦⎤⎢⎣⎡ππ-∈2,12x可得:2t 22≤≤∴那时2t =,223y max +=, 那时22t =,2243y +=故所求函数的值域为⎥⎥⎦⎤⎢⎢⎣⎡++223,2243. 例15. 求函数2x 54x y -++=的值域.解:由0x 52≥-, 可得5|x |≤故可令],0[,cos 5x π∈ββ=∵π≤β≤0那时4/π=β, 104y max += 那时π=β, 54y min -=故所求函数的值域为:]104,54[+- 8. 数形结合法其题型是函数解析式具有明显的某种几何意义, 如两点的距离公式直线斜率等等, 这类题目若运用数形结合法, 往往会更加简单, 一目了然, 赏心悦目.例16. 求函数22)8x ()2x (y ++-=的值域. 解:原函数可化简得:|8x ||2x |y ++-=上式可以看成数轴上点P (x )到定点A (2), )8(B -间的距离之和. 由上图可知, 当点P 在线段AB 上时, 10|AB ||8x ||2x |y ==++-=当点P 在线段AB 的延长线或反向延长线上时, 10|AB ||8x ||2x |y =>++-=故所求函数的值域为:],10[+∞ 例17. 求函数5x 4x 13x 6x y 22++++-=的值域. 解:原函数可变形为:上式可看成x 轴上的点)0,x (P 到两定点)1,2(B ),2,3(A --的距离之和, 由图可知当点P 为线段与x 轴的交点时,43)12()23(|AB |y 22min =+++==,故所求函数的值域为],43[+∞例18. 求函数5x 4x 13x 6x y 22++-+-=的值域. 解:将函数变形为:2222)10()2x ()20()3x (y -++--+-=上式可看成定点A (3, 2)到点P (x, 0)的距离与定点)1,2(B -到点)0,x (P 的距离之差. 即:|BP ||AP |y -=由图可知:(1)当点P 在x 轴上且不是直线AB 与x 轴的交点时, 如点'P , 则构成'ABP ∆, 根据三角形两边之差小于第三边, 有26)12()23(|AB |||'BP ||'AP ||22=-++=<-即:26y 26<<-(2)当点P 恰好为直线AB 与x 轴的交点时, 有26|AB |||BP ||AP ||==-综上所述, 可知函数的值域为:]26,26(-注:由例17, 18可知, 求两距离之和时, 要将函数式变形, 使A 、B 两点在x 轴的两侧, 而求两距离之差时, 则要使A, B 两点在x 轴的同侧.如:例17的A, B 两点坐标分别为:(3, 2), )1,2(--, 在x 轴的同侧;例18的A, B 两点坐标分别为(3, 2), )1,2(-, 在x 轴的同侧. 9. 不等式法利用基本不等式abc 3c b a ,ab 2b a 3≥++≥+)R c ,b ,a (+∈, 求函数的最值, 其题型特征解析式是和式时要求积为定值, 解析式是积时要求和为定值, 不外有时需要用到拆项、添项和两边平方等技巧.例19. 求函数4)x cos 1x (cos )x sin 1x (sin y 22-+++=的值域.解:原函数变形为: 当且仅当x cot x tan =即那时4k x π±π=)z k (∈, 等号成立 故原函数的值域为:),5[+∞例20. 求函数x 2sin x sin 2y =的值域. 解:x cos x sin x sin 4y = 当且仅当x sin 22x sin 22-=, 即那时32x sin 2=, 等号成立.由2764y 2≤可得:938y 938≤≤- 故原函数的值域为:⎥⎥⎦⎤⎢⎢⎣⎡-938,938 10. 一一映射法原理:因为)0c (d cx bax y ≠++=在界说域上x 与y 是一一对应的.故两个变量中, 若知道一个变量范围, 就可以求另一个变量范围. 例21. 求函数1x 2x31y +-=的值域. 解:∵界说域为⎭⎬⎫⎩⎨⎧->-<21x 21x |x 或 由1x 2x 31y +-=得3y 2y 1x +-=故213y 2y 1x ->+-=或213y 2y 1x -<+-=解得23y 23y ->-<或 故函数的值域为⎪⎭⎫⎝⎛+∞-⎪⎭⎫ ⎝⎛-∞-,2323, 11. 多种方法综合运用 例22. 求函数3x 2x y ++=的值域.解:令)0t (2x t ≥+=, 则1t 3x 2+=+(1)那时0t >, 21t1t 11t t y 2≤+=+=, 当且仅当t=1, 即1x -=时取等创作时间:二零二一年六月三十日创作时间:二零二一年六月三十日 号, 所以21y 0≤< (2)当t=0时, y=0.综上所述, 函数的值域为:⎥⎦⎤⎢⎣⎡21,0注:先换元, 后用不等式法例23. 求函数42432x x 21x x x 2x 1y ++++-+=的值域. 解:4234242x x 21x x x x 21x x 21y +++++++-= 令2tan x β=, 则β=⎪⎪⎭⎫ ⎝⎛+-2222cos x 1x 1 ∴那时41sin =β,1617y max = 那时1sin -=β, 2y min -= 此时2tan β都存在, 故函数的值域为⎥⎦⎤⎢⎣⎡-1617,2注:此题先用换元法, 后用配方法, 然后再运用βsin 的有界性. 总之, 在具体求某个函数的值域时, 首先要仔细、认真观察其题型特征, 然后再选择恰当的方法, 一般优先考虑直接法, 函数单调性法和。

高中数学求解函数的定义域和值域的基本方法(附例题)

高中数学求解函数的定义域和值域的基本方法(附例题)

求解函数定义域和值域的基本方法(附例题)一、求解函数的定义域函数定义域,即函数自变量的取值范围。

在具体题目中,有求解具体函数和抽象函数的定义域两类。

针对不同类型的题目,解题方法也不相同。

1、求解具体函数的定义域在给定函数的定义域求解过程中,要善于挖掘题目中的隐含条件,并以此求解得出正确答案。

一般隐含条件有以下几点: (1)整式函数的定义域为:R (全体实数) (2)分式函数中,分母不等于0(3)含偶次根式的函数中,被开方数大于或等于零 (4)指数函数的定义域:R(5)对数函数的定义域:(0,+∞)(6)幂函数中,当指数为-1、0时,底数不得为零[)∞+≥≥≥--=,的定义域为综上所述,解得:有意义,要使解:的定义域函数求示例一:2)(2,1log 01log )(1log )(222x f x x x x f x x f解题步骤:①列出使函数有意义的不等式(组) ②解不等式(组)③若为不等式组,在取交集时借助数轴,表明是否取端点值④汇总,写成集合形式(注意区间的开闭) 练习一:的定义域求函数321)2(log 1)(21-+-=x x x f2、抽象函数的定义域一直以来 ,抽象函数是高考热点。

抽象函数中,内层函数的值域是外层函数的定义域,在计算抽象函数的定义域时,一定要多留意。

[]⎥⎦⎤⎢⎣⎡-≤≤-≤+≤+3,21)(3219322)32(,9,2)(的定义域为综上所述,解得:由题意可知:解:的定义域求的定义域为若函数示例二:x f x x x f x f解题步骤:1、若已知y= f(x) 的定义域 [a,b] , 则复合函数 y=f[g(x)] 的定义域由 a ≤g(x)≤b 解得2、若已知复合函数 y=f[g(x)] 的定义域为 [a,b] ,则y= f(x) 的定义域为函数g(x)在 [a,b]上的值域 练习二:[]的定义域,求的定义域为已知函数1)2()(g 2,0)(2-=x x f x x f3、求自变量取值范围在一定条件下,求自变量取值范围,是基于定义域上的一类考题。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)

实用标准高中函数定义域和值域的求法总结一、常规型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。

例 1求函数 y x 22x15| x 3 |8的定义域。

解:要使函数有意义,则必须满足x 22x150①| x 3 |8 0②由①解得x3或 x 5 。

③由②解得x5或 x11④③和④求交集得x3且 x11或x>5。

故所求函数的定义域为{ x | x 3且x11}{ x | x5} 。

例 2求函数 y sin x1的定义域。

16x 2解:要使函数有意义,则必须满足sin x0①16x 20②由①解得2k x2k,k Z③由②解得 4 x4④由③和④求公共部分,得4x或 0x故函数的定义域为(4, ](0, ]评注:③和④怎样求公共部分?你会吗?二、抽象函数型抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。

( 1)已知f (x )的定义域,求f [ g(x )]的定义域。

( 2)其解法是:已知 f (x) 的定义域是[a,b]求 f [g(x)] 的定义域是解a g(x) b ,即为所求的定义域。

例 3已知 f (x) 的定义域为[-2, 2],求f ( x 21) 的定义域。

解:令 2 x21 2 ,得 1 x2 3 ,即0 x 23,因此0| x | 3 ,从而3 x 3 ,故函数的定义域是{ x | 3 x3} 。

( 2)已知f [g( x)]的定义域,求f(x) 的定义域。

其解法是:已知 f [g(x )] 的定义域是[a,b],求f(x)定义域的方法是:由a x b,求g(x) 的值域,即所求f(x) 的定义域。

例 4已知 f (2x1) 的定义域为[1,2],求f(x)的定义域。

解:因为 1 x2,22x4,32x 1 5 。

即函数 f(x) 的定义域是{ x | 3x5} 。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)高中函数定义域和值域的求法总结一、常规型常规型是指已知函数的解析式,求函数的定义域和值域。

解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。

例如,对于函数 $y=\frac{x^2-2x-15}{|x+3|-8}$,要使函数有意义,则必须满足 $x^2-2x-15\geq 0$ 且 $|x+3|\neq 8$。

解得$x\leq -3$ 或 $x\geq 5$,且 $x\neq -11$ 或 $x\neq 5$。

将两个条件求交集得 $x\leq -3$ 且 $x\neq -11$ 或 $x>5$,即函数的定义域为 $\{x|x\leq -3\text{ 且 }x\neq -11\}\cup\{x|x>5\}$。

二、抽象函数型抽象函数型是指没有给出解析式的函数,需要根据已知条件求解。

一般有两种情况:1)已知 $f(x)$ 的定义域,求 $f[g(x)]$ 的定义域。

解法是:已知 $f(x)$ 的定义域为 $[a,b]$,则 $f[g(x)]$ 的定义域为解$a\leq g(x)\leq b$。

例如,已知 $f(x)$ 的定义域为 $[-2,2]$,求 $f(x^2-1)$ 的定义域。

令 $-2\leq x^2-1\leq 2$,得 $-1\leq x^2\leq 3$,即 $-|x|\leq x\leq |x|$。

因此,$-3\leq x\leq 3$,即函数的定义域为$\{x|-3\leq x\leq 3\}$。

2)已知 $f[g(x)]$ 的定义域,求 $f(x)$ 的定义域。

解法是:已知 $f[g(x)]$ 的定义域为 $[a,b]$,则 $f(x)$ 的定义域为$g(x)$ 的值域。

例如,已知 $f(2x+1)$ 的定义域为 $[1,2]$,求 $f(x)$ 的定义域。

因为 $1\leq x\leq 2$,所以 $2\leq 2x\leq 4$,$3\leq2x+1\leq 5$。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)

高中函数定义域和值域的求法总结一、常规型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。

例1 求函数8|3x |15x 2x y 2-+--=的定义域。

解:要使函数有意义,则必须满足⎩⎨⎧≠-+≥--②①8|3x |015x 2x 2 由①解得 3x -≤或5x ≥。

③ 由②解得 5x ≠或11x -≠ ④③和④求交集得3x -≤且11x -≠或x>5。

故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤Y 且。

例2 求函数2x161x sin y -+=的定义域。

解:要使函数有意义,则必须满足⎩⎨⎧>-≥②①0x 160x sin 2由①解得Z k k 2x k 2∈π+π≤≤π, ③由②解得4x 4<<-④由③和④求公共部分,得 π≤<π-≤<-x 0x 4或 故函数的定义域为]0(]4(ππ--,,Y 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。

(1)已知)x (f 的定义域,求)]x (g [f 的定义域。

(2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。

例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。

解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而3x 3≤≤-,故函数的定义域是}3x 3|x {≤≤-。

(2)已知)]x (g [f 的定义域,求f(x)的定义域。

其解法是:已知)]x (g [f 的定义域是[a ,b ],求f(x)定义域的方法是:由b x a ≤≤,求g(x)的值域,即所求f(x)的定义域。

函数定义域值域求法全十一种

函数定义域值域求法全十一种
②当k=0时,方程左边=3≠0恒成立。
综上k的取值范围是 。
四、实际问题型
这里函数的定义域除满足解析式外,还要注意问题的实际意义对自变量的限制,这点要加倍注意,并形成意识。
例7将长为a的铁丝折成矩形,求矩形面积y关于一边长x的函数的解析式,并求函数的定义域。
解:设矩形一边为x,则另一边长为 于是可得矩形面积。
6. 函数单调性法
例9. 求函数 的值域。
解:令
则 在[2,10]上都是增函数
所以 在[2,10]上是增函数
当x=2时,
当x=10时,
故所求函数的值域为:
例10. 求函数 的值域。
解:原函数可化为:
令 ,显然 在 上为无上界的增函数
所以 , 在 上也为无上界的增函数
所以当x=1时, 有最小值 ,原函数有最大值
对于一些比较简单的函数,其值域可通过观察得到。
例1. 求函数 的值域。
解:∵

显然函数的值域是:
例2. 求函数 的值域。
解:∵
故函数的值域是:
2. 配方法
配方法是求二次函数值域最基本的方法之一。
例3. 求函数 的值域。
解:将函数配方得:

由二次函数的性质可知:当x=1时, ,当 时,
故函数的值域是:[4,8]

由,定义域为(0, )。
例8用长为L的铁丝弯成下部为矩形上部为半圆的框架,如图,若矩形底边长为2x,求此框架围成的面积y与x的函数关系式,并求定义域。
解:由题意知,此框架围成的面积是由一个矩形和一个半圆组成的图形的面积,如图。
因为CD=AB=2x,所以 ,所以 ,
故所求函数的定义域为 。
例2求函数 的定义域。

高中数学必修一函数 解题方法

高中数学必修一函数 解题方法

函数习题课(I) 函数定义域和值域的求法一、求函数定义域的方法(一) 直接法求定义域关注一些特殊函数的定义域或关注一些特殊的取值,从而使得函数有意义,直接限制自变量的取值范围。

一般需要关注的解题要点:(1)分母不为零 (2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。

( 6 )0x 中x 0≠例1 求下列函数定义域①21)(-=x x f ②xx x f -++=211)( ③0)32(2)3lg()(-++-=x x x x f ④2143)(2-+--=x x x x f ⑤373132+++-=x x y(二)解题时要关注定义域函数的三要素是定义域,值域和对应关系。

其中定义域是规定函数自变量取值范围的关键,是题目限制条件的体现。

由于常常被忽略,因此是命题人常将隐含条件设计于其中。

若想正确地解决函数相关问题,必须在解题时关注定义域,把它明确地写出来。

例2 已知函数)91(log 2)(3≤≤+=x x x f ,求函数[])()(22x f x f +的最大值。

例3 求函数x x x f a 2log )(2-= )10(≠>a a 且的单调增区间。

(三)有关抽象函数的定义域问题抽象函数的自变量始终是x(或其他字母),但是由于对应法则所作用的x 形式不同(如x+2,x 2 等),于是就有了有关抽象函数的定义域问题。

解决抽象函数的定义域问题需要紧紧抓住一点:括号里面的所有代数式的取值范围是相同的。

例4 已知函数)(x f 的定义域为[0,2],求)12(+x f 的定义域。

例5 已知函数)12(+x f 的定义域为(-1,5],求)(x f 的定义域。

例6 已知函数)1(+x f 的定义域为[0,2],求)3(2x x f +的定义域。

二、求函数值域的方法(一)层层分析法(直接法)这种方法适合值域明显的复合函数或多个值域明显的函数相加减得到的函数求值域。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)

高中函数定义域和值域的求法总结一、常规型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式〔或组〕即得原函数的定义域。

例1 求函数8|3x |15x 2x y 2-+--=的定义域。

解:要使函数有意义,那么必须满足⎩⎨⎧≠-+≥--②①8|3x |015x 2x 2 由①解得 3x -≤或5x ≥。

③ 由②解得 5x ≠或11x -≠ ④③和④求交集得3x -≤且11x -≠或x>5。

故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。

例2 求函数2x161x sin y -+=的定义域。

解:要使函数有意义,那么必须满足⎩⎨⎧>-≥②①0x 160x sin 2由①解得Z k k 2x k 2∈π+π≤≤π, ③由②解得4x 4<<-④由③和④求公共局部,得 π≤<π-≤<-x 0x 4或 故函数的定义域为]0(]4(ππ--,, 评注:③和④怎样求公共局部?你会吗? 二、抽象函数型抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。

(1))x (f 的定义域,求)]x (g [f 的定义域。

(2)其解法是:)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。

例3 )x (f 的定义域为[-2,2],求)1x (f 2-的定义域。

解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而3x 3≤≤-,故函数的定义域是}3x 3|x {≤≤-。

〔2〕)]x (g [f 的定义域,求f(x)的定义域。

其解法是:)]x (g [f 的定义域是[a ,b ],求f(x)定义域的方法是:由b x a ≤≤,求g(x)的值域,即所求f(x)的定义域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的定义域与值域的常用方法(一)求函数的解析式1、函数的解析式表示函数与自变量之间的一种对应关系,是函数与自变量建立联系的一座桥梁,其一般形式是y=f(x),不能把它写成f(x,y)=0;2、求函数解析式一般要写出定义域,但若定义域与由解析式所确定的自变量的范围一致时,可以不标出定义域;一般地,我们可以在求解函数解析式的过程中确保恒等变形;3、求函数解析式的一般方法有:(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y。

(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值;(3)换元法:若给出了复合函数f[g(x)]的表达式,求f(x)的表达式时可以令t=g(x),以换元法解之;(4)构造方程组法:若给出f(x)和f(-x),或f(x)和f(1/x)的一个方程,则可以x代换-x(或1/x),构造出另一个方程,解此方程组,消去f(-x)(或f(1/x))即可求出f(x)的表达式;(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。

(二)求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y=f[g(x)]的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;(三)求函数的值域1、函数的值域即为函数值的集合,一般由定义域和对应法则确定,常用集合或区间来表示;2、在函数f:A→B中,集合B未必就是该函数的值域,若记该函数的值域为C,则C是B的子集;若C =B,那么该函数作为映射我们称为“满射”;3、分段函数的值域是各个区间上值域的并集;4、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述;5、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集;6、求函数值域的方法十分丰富,应注意总结;(四)求函数的最值1、设函数y=f(x)定义域为A,则当x∈A时总有f(x)≤f(x o)=M,则称当x=x o时f(x)取最大值M;当x∈A时总有f(x)≥f(x1)=N,则称当x=x1时f(x)取最小值N;2、求函数的最值问题可以化归为求函数的值域问题;3、闭区间的连续函数必有最值。

【典型例题】考点一:求函数解析式1、直接法:由题给条件可以直接寻找或构造变量之间的联系。

例1. 已知函数y=f(x)满足xy<0,4x2-9y2=36,求该函数解析式。

解:由4x2-9y2=36可解得:333xyx⎧>⎪⎪=±=⎨⎪<-⎪⎩。

说明:这是一个分段函数,必须分区间写解析式,不可以写成y=的形式。

2、待定系数法:由题给条件可以明确函数的类型,从而可以设出该类型的函数的一般式,然后再求出各个参变量的值。

例2. 已知在一定条件下,某段河流的水流量y与该段河流的平均深度x成反比,又测得该段河流某段平均水深为2m时,水流量为340m3/s,试求该段河流水流量与平均深度的函数关系式。

解:设kyx=,代入x,y的值可求得反比例系数k=780m3/s,故所求函数关系式为780,0y xx=>。

3、换元法:题目给出了与所求函数有关的复合函数表达式,可将内函数用一个变量代换。

例3. 已知2211()x x xfx x+++=,试求()f x。

解:设1xtx+=,则11xt=-,代入条件式可得:2()1f t t t=-+,t≠1。

故得:2()1,1f x x x x=-+≠。

说明:要注意转换后变量范围的变化,必须确保等价变形。

4、构造方程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出另一个方程,联立求解。

例4. (1)已知21()2()345 fx f x xx+=++,试求()f x;(2)已知2()2()345f x f x x x+-=++,试求()f x;解:(1)由条件式,以1x代x,则得2111()2()345f f xx x x+=++,与条件式联立,消去1fx⎛⎫⎪⎝⎭,则得:()222845333xf x xx x=+--+。

(2)由条件式,以-x代x则得:2()2()345f x f x x x-+=-+,与条件式联立,消去()f x-,则得:()2543f x x x=-+。

说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数的定义域由解析式确定,不需要另外给出。

5、实际问题中的函数解析式:这是高考的一个热点题型,一般难度不大,所涉及知识点也不多,关键是合理设置变量,建立等量关系。

例5. 动点P从边长为1的正方形ABCD的顶点B出发,顺次经过C、D再到A停止。

设x表示P行驶的路程,y表示PA的长,求y关于x的函数。

解:由题意知:当x∈[0,1]时:y=x;当x∈(1,2)时:21y x=+当x∈(2,3)时:()231y x=-+故综上所述,有[]()22,0,11,(1,2]31,(2,3]x xy x xx x⎧∈=+∈-+∈考点二:求函数定义域1、由函数解析式求函数定义域:由于解析式中不同的位置决定了变量不同的范围,所以解题时要认真分析变量所在的位置;最后往往是通过解不等式组确定自变量的取值集合。

例6.求34x y x +=-的定义域。

解:由题意知:204x x +>⎧⎪⎨≠⎪⎩,从而解得:x>-2且x ≠±4.故所求定义域为:{x|x>-2且x ≠±4}。

2、求分段函数的定义域:对各个区间求并集。

例7. 已知函数由下表给出,求其定义域3、求与复合函数有关的定义域:由外函数f (u )的定义域可以确定内函数g(x )的范围,从而解得x ∈I1,又由g (x )定义域可以解得x ∈I 2.则I 1∩I 2即为该复合函数的定义域。

也可先求出复合函数的表达式后再行求解。

()()(())f x g x y f g x ===例8已知求的定义域.解:()3()33f x x g x =≥⇒≥⇒≥*由又由于x 2-4x +3>0 ** 联立*、**两式可解得:1313x x x x x ≤<<≤⎧⎪≤<<≤⎨⎪⎪⎩⎭或故所求定义域为或例9. 若函数f (2x )的定义域是[-1,1],求f (log 2x )的定义域。

解:由f (2x )的定义域是[-1,1]可知:2-1≤2x ≤2,所以f (x )的定义域为[2-1,2],故log 2x ∈[2-1,2]4x ≤≤,故定义域为⎤⎦。

4、求解含参数的函数的定义域:一般地,须对参数进行分类讨论,所求定义域随参数取值的不同而不同。

例10.求函数()f x =解:若0a =,则x ∈R ; 若0a >,则1x a ≥-; 若0a <,则1x a≤-; 故所求函数的定义域:当0a =时为R ,当0a >时为1|x x a ⎧⎫≥-⎨⎬⎩⎭,当0a <时为1|x x a ⎧⎫≤-⎨⎬⎩⎭。

说明:此处求定义域是对参变量a 进行分类讨论,最后叙述结论时不可将分类讨论的结果写成并集的形式,必须根据a 的不同取值范围分别论述。

考点三:求函数的值域与最值求函数的值域和最值的方法十分丰富,下面通过例题来探究一些常用的方法;随着高中学习的深入,我们将学习到更多的求函数值域与最值的方法。

1、分离变量法例11. 求函数231x y x +=+的值域。

解:()2112312111x x y x x x +++===++++,因为101x ≠+,故y≠2,所以值域为{y|y≠2}。

说明:这是一个分式函数,分子、分母均含有自变量x ,可通过等价变形,让变量只出现在分母中,再行求解。

2、配方法例12. 求函数y =2x 2+4x 的值域。

解:y =2x 2+4x =2(x 2+2x +1)-2=2(x +1)2-2≥-2,故值域为{y|y≥-2}。

说明:这是一个二次函数,可通过配方的方法来求得函数的值域。

类似的,对于可以化为二次函数的函数的值域也可采用此方法求解,如y =af 2(x )+bf (x )+c 。

3、判别式法例13. 求函数2223456x x y x x ++=++的值域。

解:2223456x x y x x ++=++可变形为:(4y -1)x 2+(5y -2)x +6y -3=0,由Δ≥0可解得:26632663,y ⎡⎤-+∈⎢⎥⎣⎦。

说明:对分子分母最高次数为二次的分式函数的值域求解,可以考虑采用此法。

要注意两点:第一,其定义域一般仅由函数式确定,题中条件不再另外给出;如果题中条件另外给出了定义域,那么一般情况下就不能用此法求解值域;第二,用判别式法求解函数值域的理论依据是函数的定义域为非空数集,所以将原函数变形为一个关于x 的一元二次方程后,该方程的解集就是原函数的定义域,故Δ≥0。

4、单调性法 例14. 求函数23y x-=+,x ∈[4,5]的值域。

解:由于函数23y x -=+为增函数,故当x =4时,y min =25;当x =5时,y max =513,所以函数的值域为513,25⎡⎤⎢⎥⎣⎦。

5、换元法例15. 求函数241y x x =+-的值域。

解:令10t x =-≥,则y =-2t 2+4t +2=-(t -1)2+4,t≥0,故所求值域为{y|y ≤4}。

6、分段函数的值域:应为各区间段上值域的并集。

例16. 求函数2,[1,2],(2,3]21,(3,4]x x y x x x x ∈⎧⎪=∈⎨⎪-∈⎩的值域。

解:当x ∈[1,2]时,y ∈[1,2];当x ∈(2,3]时,y ∈(4,9];当x ∈(3,4]时,y ∈(5,7]。

综上所述,y ∈[1,2]∪(3,9]。

7、图像法:例17设f (x )=2,2,,<1,x x x x ⎧⎪⎨⎪⎩≥若f (g (x ))的值域是[0,+∞),则函数y =g (x )的值域是 ( )A.(-∞,-1]∪[1,+∞)B.(-∞,-1]∪[0,+∞)C.[0,+∞)D.[1,+∞)解析:如图为f (x )的图象,由图象知f (x )的值域为(-1,+∞),若f (g (x ))的值域是[0,+∞),只需g (x )∈(-∞,-1]∪[0,+∞). 故选B.8、反函数法:利用函数和它的反函数的定义域与值域的互逆关系,通过求反函数的定义域,得到原函数的值域。

相关文档
最新文档