状态监测与故障诊断技术

合集下载

机械设备状态监测与故障诊断技术

机械设备状态监测与故障诊断技术
等。
优点与局限性
温度监测技术具有简单 、直观和易于实现的优 点。然而,对于非热力 设备或低温设备,温度 变化可能不明显,需要
采用其他监测方法。
油液分析技术
总结词
油液分析技术是通过分析机械设备的润滑油或液 压油的成分和性能指标,从而判断设备运行状态 的一种方法。
适用范围
油液分析技术适用于各种类型的机械设备,特别 是润滑系统和液压系统,如轴承、齿轮和液压缸 等。
温度监测技术是通过测 量机械设备的温度变化 ,分析其特征参数,从 而判断设备运行状态的 一种方法。
详细描述
温度监测技术主要应用 于热力设备、电机和电 子设备的监测。通过测 量和分析温度信号的变 化趋势、波动幅度和温 差等参数,可以判断设
备的运行状态。
适用范围
温度监测技术适用于各 种类型的热力设备和电 子设备,如锅炉、汽轮 机、变压器和集成电路
技术应用前景
工业4.0
机械设备状态监测与故障诊断技术是工业4.0的重要组成部分,能 够提高生产效率和设备利用率,降低维护成本。
智能制造
在智能制造领域,该技术能够实现设备的远程监控和预测性维护, 提高制造过程的可靠性和效率。
航空航天领域
在航空航天领域,该技术对于保障飞行安全和提高飞行器寿命具有 重要意义。
机械设备状态监测与故障诊断 05 技术的挑战与未来发展
技术挑战
监测设备兼容性
不同品牌和型号的机械设备可能 需要特定的监测设备,导致监测
设备的兼容性成为一大挑战。
数据处理与分析
机械设备产生的数据量庞大,如何 高效地处理和分析这些数据以提取 有价值的信息是一个技术难题。
故障预测准确性
准确预测机械设备故障的发生时间 和部位是一个具有挑战性的任务, 需要不断优化算法和提高预测模型 的精度。

aa全国设备状态监测与故障诊断实用技术培训班

aa全国设备状态监测与故障诊断实用技术培训班

第一节 状态监测与故障诊断的基本知识一、状态监测与故障诊断的意义及发展现状状态监测与故障诊断的意义及发展现状1.状态监测与故障诊断的定义通俗地说,状态监测与故障诊断就是给机器看病。

人不可能不生病,机器在运行过程中出现故障也是不可避免的。

人生了病需要求医就诊,机器出了故障也要找“医生”诊断病因。

医生对病人的诊断是基于体征检查(先看体温,再进行验血、X 光、心电图、B 超、…、甚至CT 等)基础上的分析判断,对机器故障的诊断同样也是基于状态监测(先看总振动值,再求助于频谱、波形、轴心轨迹、趋势图、波德图、全息谱图等)基础上的综合性分析判断。

状态监测状态监测是指通过一定的途径了解和掌握设备的运行状态,包括利用监测与分析仪器(在线的或离线的),采用各种检测、监视、分析和判别方法,对设备当前的运行状态做出评估(属于正常、还是异常),对异常状态及时做出报警,并为进一步进行的故障分析、性能评估等提供信息和数据。

故障故障是指机械设备丧失了原来所规定的性能或状态。

通常把设备在运行中所发生的状态异常、缺陷、性能恶化、以及事故前期的状态统统称为故障,有时也把事故直接归为故障。

而故障诊断故障诊断故障诊断则是根据状态监测所获得的信息,结合设备的工作原理、结构特点、运行参数、历史状况,对可能发生的故障进行分析、预报,对已经或正在发生的故障进行分析、判断,以确定故障的性质、类别、程度、部位及趋势,对维护设备的正常运行和合理检修提供正确的技术支持。

2. 状态监测与故障诊断的意义状态监测与故障诊断技术的由来及发展,与十分可观的故障损失以及设备维修费密切相关,而状态监测与故障诊断的意义状态监测与故障诊断的意义则是有效地遏制了故障损失和设备维修费用有效地遏制了故障损失和设备维修费用有效地遏制了故障损失和设备维修费用。

具体可归纳如下几个方面:(1)及时发现故障的早期征兆,以便采取相应的措施,避免、减缓、减少重大事故的发生;(2)一旦发生故障,能自动纪录下故障过程的完整信息,以便事后进行故障原因分析,避免再次发生同类事故;(3)通过对设备异常运行状态的分析,揭示故障的原因、程度、部位,为设备的在线调理、停机检修提供科学依据,延长运行周期,降低维修费用;(4)可充分地了解设备性能,为改进设计、制造与维修水平提供有力证据。

故障诊断与状态监测

故障诊断与状态监测

详细描述
基于信号处理的故障诊断方法是一种实时监 测和诊断技术,它通过采集设备运行过程中 的各种信号,如振动、声音、温度等,利用 信号处理和分析技术,提取出反映设备状态 的参数和特征,识别出异常模式,判断设备 的运行状态和潜在故障。
03
状态监测技术
振动监测技术
总结词
通过监测设备或结构的振动情况,分析其振 动特征,判断设备或结构的运行状态。
故障树分析
总结词
通过构建故障树,分析系统故障的成因和相互关联,找出导致系统故障的关键因素。
详细描述
故障树分析是一种自上而下的逻辑分析方法,通过构建故障树,将系统故障的成因逐级展开,分析各 因素之间的逻辑关系,找出导致系统故障的关键因素,为改进设计和降低故障概率提供依据。
故障诊断专家系统
总结词
利用专家知识和推理规则进行故障诊断,提供专业化的故障解决方案。
复杂系统与多源异构数据的集成处理
复杂系统
随着工业设备的复杂度增加,故 障诊断与状态监测需要处理来自 不同系统、不同部件的多源异构 数据。
数据集成
为了全面分析设备的运行状态, 需要将不同来源、不同格式的数 据进行集成,形成统一的数据视 图。
数据处理方法
针对多源异构数据的特性,需要 发展新的数据处理方法,包括数 据清洗、融合、转换等,以提取 有价值的信息。
故障诊断与状态监测技术的发展历程
第一季度
第二季度
第三季度
第四季度
初步探索阶段
20世纪50年代以前, 主要依靠人工观察和经 验判断,缺乏科学依据 和技术手段。
初步发展阶段
20世纪50年代至70年 代,开始出现简单的振 动和温度监测技术,初 步形成了基于信号处理 和模式识别的故障诊断

电力系统设备状态监测与故障诊断技术分析

电力系统设备状态监测与故障诊断技术分析

一、电力系统设备状态监测的概述在实际应用中,有故障预报、故障诊断和状态监测等几个在内容上相近但存在差别的概念。

故障预报———根据故障征兆,对可能发生故障的时间、位置和程度进行预测。

故障诊断———根据故障特征,对已发生的故障进行定位和对故障发展程度进行判断。

状态监测———对设备的运行状态进行记录、分类和评估,为设备维护、维修提供决策。

以上几个概念的关系它们是按故障发展的时间进程进行分类的。

如果不能对未发生的故障时间、位置进行预测和不能对已发生故障的位置、程度进行准确判断,则不能称为故障预报和故障诊断,其结论应该属于状态监测范围。

对故障的预测或预报必须建模和仿真,而故障诊断也需要对故障的机理进行分析和研究,不能仅仅依靠信号处理的方法,只分析故障的外在表现,因而存在较大的难度。

状态监测主要依据信号处理和模式识别对设备进行评估和判断,相对容易实现。

但是,也不能认为预测或预报是最好的方法,而状态监测只是一种初级的手段。

每一种方法必须适合具体的对象,关键在于准确,要得到准确的结论都是不容易的。

状态监测适合电力系统主设备的现状。

主设备的主要故障,例如绝缘故障、机械故障等的一些故障机理还不清楚,全系统的故障建模和仿真更难,而作为一个产品,其生存期有限,也没有必要进行大量的研究工作。

如果强调对主设备故障的“预报”和“定位”,不仅现有条件下很难达到预期效果,而且容易产生过分的期望和误解,并将影响监测技术的推广和发展。

另外,有些情况需要具体对待,例如对于输电线和电缆的接地故障,用户首先要对故障点定位,这就需要采用故障诊断的方法,而不是状态监测的方法。

状态监测应该包括以下任务:(1)为设备的运行情况积累资料和数据,建立设备运行的历史档案。

(2)对设备运行状态处于正常还是异常做出判断,根据历史档案、运行状态等级和已出现的故障特征或征兆,判断故障的性质和程度。

(3)对设备的运行状态进行评估,并对这种评估进行分类。

当一定的标准形成后,为状态检修的实施提供依据。

风力发电机状态监测和故障诊断技术的研究与进展

风力发电机状态监测和故障诊断技术的研究与进展

风力发电机状态监测和故障诊断技术的研究与进展一、本文概述随着全球能源结构的转型和可再生能源的大力发展,风力发电作为一种清洁、可再生的能源形式,其地位日益凸显。

风力发电机(Wind Turbine,WT)作为风力发电系统的核心设备,其运行状态和性能直接影响到整个风电场的发电效率和经济效益。

因此,对风力发电机进行状态监测和故障诊断技术的研究,对于保障风电系统的安全稳定运行、提高发电效率、延长设备寿命具有重要的理论和实践价值。

本文旨在全面综述风力发电机状态监测和故障诊断技术的研究现状与发展趋势。

文章首先介绍了风力发电机的基本结构和工作原理,分析了风力发电机运行过程中可能出现的故障类型及其成因。

然后,重点阐述了当前风力发电机状态监测和故障诊断的主要技术方法,包括基于振动分析的故障诊断、基于声学信号的故障诊断、基于电气参数的故障诊断等。

对近年来新兴的和大数据技术在风力发电机故障诊断中的应用进行了详细介绍。

本文还总结了风力发电机状态监测和故障诊断技术的发展趋势和挑战,包括技术方法的创新、多源信息融合技术的应用、智能化和自动化水平的提升等。

文章展望了未来风力发电机状态监测和故障诊断技术的发展方向,以期为我国风电行业的健康发展提供理论支持和技术指导。

二、风力发电机的基本原理与结构风力发电机是一种将风能转化为机械能,再进一步转化为电能的装置。

其基本原理基于贝茨定律,即风能转换效率的理论最大值约为16/27,约为3%。

风力发电机主要由风轮、发电机(包括装置)、调向器(尾翼)、塔架、限速安全机构和储能装置等构件组成。

风轮是风力发电机的主要部件,一般由2-3个叶片组成。

风轮受风力作用而旋转,将风能转化为机械能。

风轮的转速随风速的变化而变化,为了保证发电机能够在风速变化的情况下稳定工作,需要通过增速机构提高风轮的转速。

发电机则将风轮旋转的机械能转化为电能。

发电机的类型有很多,如永磁发电机、电励磁发电机等,其选择取决于风力发电机的具体设计需求和运行环境。

设备状态监测与故障诊断

设备状态监测与故障诊断

5 设备状态监测与故障诊断所谓“状态监测与故障诊断”,就是对运行中的设备实施定期或连续监测、有关参数分析、有效地对设备运行状态进行系统自动监测分析或人工分析,读取相应的自诊断状态报告,以便尽早发现潜伏性故障,提出预防性措施,避免发生严重事故,保证设备的安全、稳定和经济运行,并以此指导设备检修。

设备状态监测和故障诊断技术也称为预测维修技术,是新兴的一门包含很多新科技的多学科性综合技术。

简单地说就是通过一些技术手段,对设备的振动、噪声、电流、温度、油质等进行监测和技术分析,掌握设备的运行状态,判断设备未来的发展趋势,诊断故障发生的部位、故障的原因,进而具体指导维修工作。

传统的耳听、手摸等也可以算是其中的一种比较简单的手段。

5.1 设备故障的规律设备故障是一个非常广义的概念。

简单地说,设备故障就是设备系统或其中的元件/部件丧失了规定的功能或精度。

与故障意义相近的还有“失效”的概念,失效通常指的是不可修复的对象;故障指的是可以修复的对象。

早期故障:这种故障的产生可能是设计、加工或材料上的缺陷,在设备投入运行初期暴露出来。

或者是有些零部件如齿轮箱中的齿轮及其他摩擦副需经过一段时期“跑合” , 使工作情况逐渐改善。

这种早期故障经过暴露、处理、完善后,故障率开始下降。

使用期故障:这是产品有效寿命期内发生的故障,这种故障是由于载荷(外因,指运行条件等)和系统特性(内因,指零部件故障、结构损伤等)无法预知的偶然因素引起的。

设备大部分时间处于这种工作状态。

这时的故障率基本上是恒定的。

对这个时期的故障进行监测与诊断具有重要意义。

后期故障(耗散期故障):它往往发生在设备的后期,由于设备长期使用,甚至超过设备的使用寿命后,设备的零部件由于逐渐磨损、疲劳、老化等原因使系统功能退化,最后可能导致系统发生突发性的、危险性的、全局性的故障。

这期间设备故障率是上升趋势,通过监测、诊断,发现失效零部件应及时更换,以避免发生事故。

设备故障的规律可分为以下六种模式。

信息化时代设备状态监测与故障诊断技术的新特点和发展趋势

信息化时代设备状态监测与故障诊断技术的新特点和发展趋势

信息化时代设备状态监测与故障诊断技术的新特点和发展趋势信息化时代设备状态监测与故障诊断技术的新特点和发展趋势随着工业设备的发展,伴随着设备的复杂性和复杂性的增加,设备的状态监测和故障诊断技术也发生了巨大的变化,它的重要性也在增加,从而推动了信息化时代设备状态监测和故障诊断技术的发展。

一、设备状态监测技术的新特点1、设备状态监测技术具有实时性、可靠性和高效性设备状态监测技术能够实时、准确的收集、监测不同设备的状态,及时发现不同设备的故障,以便采取相应措施,及时解决问题。

2、实现智能化管理设备状态监测技术可以有效地将传感器中采集到的信息进行采集、处理、分析,以实现设备的智能化管理。

3、功能多样性设备状态监测技术可以根据客户需求,根据工况和工艺条件,提供不同的功能,以满足客户的不同需求。

二、故障诊断技术的新特点1、改进故障诊断精度故障诊断技术可以有效地改进故障诊断的精度,减少故障诊断的时间。

2、可视化监测故障诊断技术结合可视化技术,实现视觉的可视化监测,更加直观、准确的诊断故障。

3、系统集成故障诊断系统可以通过多层次的系统接口,与工厂管理系统、ERP系统及其他相关系统实现整合,从而实现故障信息的实时上报,便于统一管理。

三、信息化时代设备状态监测和故障诊断技术的发展趋势1、以网络技术为基础随着互联网技术的不断发展,设备状态监测和故障诊断系统也越来越依赖于网络技术,以提高系统的实时性、可靠性以及安全性。

2、智能化未来设备状态监测和故障诊断系统将越来越智能化,能够实现自我监测,自我诊断,自动处理和解决问题,从而大大降低设备的维护费用。

3、可视化可视化技术可以有效的简化设备状态监测和故障诊断的步骤,大大提高设备的管理效率。

总结:信息化时代设备状态监测与故障诊断技术在发展过程中具有实时性、可靠性和高效性,可以智能化管理和功能多样性。

它改善了故障诊断的精度,支持可视化监控,系统集成,智能化,可视化等多种发展趋势,从而使设备状态监测和故障诊断技术的发展更加全面、准确。

电气设备状态监测与故障诊断技术

电气设备状态监测与故障诊断技术

电气设备状态监测与故障诊断技术1 前言1.1 状态监测与故障诊断技术的含义电气设备在运行中受到电、热、机械、环境等各种因素的作用,其性能逐渐劣化,最终导致故障。

特别是电气设备中的绝缘介质,大多为有机材料,如矿物油、绝缘纸、各种有机合成材料等,容易在外界因素作用下发生老化。

电气设备是组成电力系统的基本元件,一旦失效,必将引起局部甚至广大地区的停电,造成巨大的经济损失和社会影响。

“监测”一词的含义是为了特殊的目的而进行的注视、观察与校核。

设备的状态监测是利用各种传感器和测量手段对反映设备运行状态的物理、化学量进行检测,其目的是为了判明设备是否处于正常状态。

“诊断”一词原是一医学名词,指医生对收集到的病人症状(包括医生的感观所感觉到的、病人自身主观陈述以及各种化验检测所得到的结果)进行分析处理、寻求患者的病因、了解疾病的严重程度及制订治疗措施与方案的过程。

设备的“故障诊断”借用了上述概念,其含义是指这样的过程:专家根据状态监测所得到的各测量值及其运算处理结果所提供的信息,采用所掌握的关于设备的知识和经验,进行推理判断,找出设备故障的类型、部位及严重程度,从而提出对设备的维修处理建议。

简言之,“状态监测”是特征量的收集过程,而“故障诊断”是特征量收集后的分析判断过程。

广义而言,“诊断”的含义概括了“状态监测”和“故障诊断”:前者是“诊”;后者是“断”。

1.2 状态监测与故障诊断技术的意义电气设备特别是大型高压设备发生突发性停电事故,会造成巨大的经济损失和不良的社会影响。

提高电气设备的可靠性,一种办法是提高设备的质量,选用优质材料及先进工艺,优化设计,合理选择设计裕度,力求在工作寿命内不发生故障。

但这样会导致制造成本增加。

此外,设备在运行中,总会逐渐老化,而大型设备不可能象一次性工具那“用过即丢”。

因此,另一方面,必须对设备进行必要的检查和维修,这构成了电力运行部门的重要工作内容。

早期是对设备使用直到发生故障,然后维修,称为事故维修。

设备状态监测与故障诊断技术PPT课件-02-设备故障诊断的基本概念

设备状态监测与故障诊断技术PPT课件-02-设备故障诊断的基本概念

2.按诊断参数分类
★ 振动:适用于旋转机械、往复机械、轴承、齿轮等。 ★ 温度(红外):适用于工业炉窑、热力机械、电机、电器等。 ★ 声学:适用于压力容器、往复机械、轴承、齿轮等。 ★ 光学:适用于探测腔室和管道内部的缺陷。如光学探伤法。 ★ 油液(污染) :适用于齿轮箱、设备润滑系统、电力变压器等。 ★ 无损检测:采用物理化学方法,用于关键零部件的故障检测。 ★ 压力:适用于液压系统、流体机械、内燃机和液力耦合器等。 ★ 强度:适用于工程结构、起重机械、锻压机械等。 ★ 表面形貌:适用于设备关键零部件表面检查和管道内孔检查等。 ★ 工况参数:适用于流程工业和生产线上的主要设备等。 ★ 电参数:适用于电机、电器、输变电设备、电工仪表等。
工作途径
确定诊断范围
了解诊断对象
确定诊断方案
建立监测数据库
分析数据
回放数据
采集数据
设置巡检路线
判断故障
作出诊断决策
择时检修
检查验证
在具体实践中,可以综合运用比较法:一方面,通过对同类设备 的同样部位进行测量,运用横向比较的方法分析问题;一方面,通过 在不同日期进行测量,运用纵向比较的方法分析问题;一方面,就不 同的测点方向(水平、径向、轴向)、参数(位移、速度、加速度、 峰值能量)进行比较分析;一方面,从几种典型故障如不平衡、不对 中、松动、齿轮故障、轴承故障等所表现出的不同频谱特征作出更加 细致的判断。
东风汽车公司
状态检测:三、五、七
状态检测三必测:
固定周期必测 修前修后必测 工艺变更必测
状态检测五确保:
确保测量数据准确(含测点正确,测量正确, 测量过程正确)。 确保数据分析正确,数据归档及时。 确保会用会管仪器。 确保报表及时正确。 确保信息传递及时。

电力设备的状态监测与故障诊断

电力设备的状态监测与故障诊断

电力设备的状态监测与故障诊断电力设备作为现代工业和生活的基石之一,其正常运行对于社会经济的发展至关重要。

然而,电力设备的长期使用不可避免地会出现各种各样的问题,例如电气故障、设备老化以及不当操作等。

为了确保电力系统的稳定运行,状态监测与故障诊断技术被广泛应用。

一、状态监测技术电力设备状态监测技术是通过实时数据采集、分析和处理,对设备的运行状态进行监测和评估的一种技术。

它可以帮助工程师及时发现设备的异常状况,预测设备可能出现的故障,并采取相应的维修措施,避免设备停机造成的经济损失。

1.1 无线传感技术无线传感技术是一种监测设备状态的有效手段。

传统的有线监测系统需要铺设大量的电缆,不仅造成空间上的限制,还增加了安装和维护的成本。

而无线传感技术则可以通过传感器直接读取设备的参数,并通过无线通信将数据传输到监测中心。

这种技术不仅提高了监测的灵活性和可靠性,还节省了大量的成本。

1.2 数据分析与处理状态监测技术采集到的数据需要经过一系列的分析和处理才能转化为有用的信息。

利用数据分析算法,我们可以提取出设备的特征参数,对数据进行特征提取和降维,以减少数据量和提高分析效率。

同时,对数据进行故障诊断和预测,可以帮助工程师及时发现设备的异常行为,预测设备的寿命并制定相应的维修计划。

二、故障诊断技术故障诊断技术是通过对设备运行过程中的各种故障进行分析和判断,找出故障原因,并提出相应的维修和保养方案。

故障诊断技术主要包括以下几个方面:2.1 特征提取与分析特征提取是故障诊断的基础。

通过对设备运行数据进行分析,我们可以提取出与故障相关的特征参数。

例如,电机轴承的振动信号可以反映出轴承的磨损程度,而电力变压器的温度可以反映出变压器的负载情况。

通过对这些特征参数的提取和分析,可以准确判断设备是否存在故障。

2.2 故障诊断方法故障诊断方法是指根据特定的故障特征和模式,对设备的故障进行判断和鉴定的方法。

常用的故障诊断方法包括模式识别、人工智能、神经网络等。

高速列车运行状态监测与故障诊断

高速列车运行状态监测与故障诊断

高速列车运行状态监测与故障诊断随着科技的发展,高速列车已经成为现代化交通工具的重要组成部分,大大提高了人们的出行效率和舒适度。

然而,为了确保高速列车的安全运行,对其运行状态进行监测和故障诊断变得尤为重要。

本文将探讨高速列车运行状态监测与故障诊断的相关技术和方法。

一、高速列车运行状态监测技术1. 基于传感器的监测技术:高速列车运行过程中产生大量的运行状态数据,如速度、加速度、振动等。

利用各种传感器,如加速度传感器、温度传感器、压力传感器等,可以实时监测列车的运行状态。

这些传感器可以安装在列车的不同部位,如车轮、轴承、车架等,用于监测车辆的振动和温度,从而了解车辆的运行状况。

2. 图像识别技术:高速列车的车厢内设施繁多,如座椅、门窗、仪表等。

通过安装摄像头,利用图像识别算法可以实时监测车厢内设施的状态,如座椅的磨损程度、门窗的打开情况等。

同时,还可以利用图像识别技术对轨道进行监测,检测轨道的损坏程度和杂物等。

3. 音频识别技术:高速列车运行时会产生各种各样的声音,通过安装麦克风,利用音频识别技术可以实时监测列车的运行状态。

这些声音包括列车的发动机声、轮轴的摩擦声、风力的声音等。

通过分析这些声音的特征,可以判断列车是否存在异常情况,如轮轴是否磨损、发动机是否正常等。

二、高速列车故障诊断技术1. 基于数据挖掘的诊断技术:高速列车的运行状态监测数据包含了大量的信息,通过采用数据挖掘技术,可以从这些数据中提取出有用的信息,用于故障的诊断和预测。

常用的数据挖掘技术包括聚类分析、分类算法、关联规则挖掘等。

利用这些技术,可以建立故障预警模型,提前判断列车可能出现的故障,并采取相应的维修措施。

2. 专家系统诊断技术:专家系统是一种基于知识的智能系统,可以模拟人类专家的思维过程,用于进行故障诊断。

通过将专家的知识和经验转化为规则和推理规则,建立专家系统模型,可以对高速列车的故障进行准确诊断。

这些知识和规则可以包括列车运行状态的特征、常见的故障类型以及相应的解决方法等。

故障诊断与状态监测

故障诊断与状态监测

声发射监测技术具有非接触 性、实时性等优点。
详细描述
声发射监测技术可以通过传 感器非接触地采集声音信号, 实时监测结构的声发射事件, 并通过数据采集和分析系统 进行远程监测和诊断。
红外监测技术
总结词
红外监测技术通过测量物体或结构的红外辐射来评估其运行状态。
详细描述
红外监测技术广泛应用于电力设备、化工设备、航空航天等领域,可以检测出设备的过 热、泄漏等情况,通过分析红外辐射的特征,可以判断设备的故障类型和严重程度。
故障诊断与状态监测
目录
• 故障诊断与状态监测概述 • 故障诊断技术与方法 • 状态监测技术与应用 • 故障诊断与状态监测的挑战与未来发展 • 案例分析与实践
01
故障诊断与状态监测概 述
定义与目的
定义
故障诊断与状态监测是针对设备或系统的运行状态进行检测、评估和预测的技 术,旨在及时发现潜在故障、分析故障原因,并采取相应的措施进行维修和预 防。
详细描述
油液监测技术可以直接检测润滑 油或液压油的性能和状态,通过 定期取样和分析,可以实时了解 机械设备的润滑和液压系统的工 作状态,及时发现潜在的故障和 问题。
声发射监测技术
总结词
声发射监测技术通过采集和 分析物体或结构在受力时发 出的声音信号来评估其运行 状态。
详细描述
总结词
声发射监测技术广泛应用于 压力容器、管道、桥梁等结 构的监测,可以检测出结构 的裂纹、腐蚀、疲劳等情况, 通过分析声发射信号的特征, 可以判断结构的损伤程度和 故障类型。
故障诊断的准确性与实时性要点一 Nhomakorabea总结词
要点二
详细描述
故障诊断的准确性和实时性是关键,需要不断提高诊断算 法的精度和响应速度,以满足工业应用的需求。

设备状态检测与故障诊断

设备状态检测与故障诊断
设备状态检测与故障诊断
• 设备状态监测的对象一般以重点设备为主。 目前,设备状态监测方法主要有两种:
•(1)由维修人员凭感官和普通测量仪,对设备的技 术状态进行检查、判断,这是目前在 机械设备监 测中最普遍采用的一种简易监测方法。 (2)利用各种监测仪器,对整体设备或其关键部位 进行定期、间断或连续监测,以获得技术状态的 图像、参数等确切信息,这是一种能精确测定劣 化和故障信息的方法。
设备状态检测与故障诊 断
2020/12/8
设备状态检测与故障诊断
一、设备状态监测与诊断技术
的基本概念
设备状态监测,是指用人工或专用的 仪器工具,按照规定的监测点进行间断 或连续的监测,掌握设备运行所处于的 状态,有压力、流量、温度、振动与噪 声等等。所谓的设备诊断技术,是指在 设备运行中或基本不拆卸的情况下,根 据设备的运行技术状态,判断故障的部 位和原因,并预测设备今后的技术状态 变化。
a、 生产设备关键性(A类)指大型、高速、检修费用昂贵,采用在 线监测系统、连续检测(投入费用较大)
b、 重要性生产设备(B类)采用离线状态监测仪器,配置便携式简 易或精密检测分析仪器(数采),定期采集数据进行分析,(投 入费用是可以接受的)
c、 一般性生产设备(C类)采用离线简易检测仪器,定一个标准来 进行评判,也是比较普遍采用的一种常规做法。投入费用低,易 掌握,便于普及。
设备状态检测与故障诊断
B: “定人”
设备状态检测,一般都采用离线数据采集 器,因此数据的真实性,在很大程度上也取决 于检测人员的综合素质,从事该工作应该有比 较强的责任心,因为离线检测仪器的传感器与 被检测的设备是分离的,其位置发生改变,得 到的数据会有很大区别,为了保证分析结果的 可信度,数据检测应该由“专人”负责,即 “定人”。

电力系统设备状态监测与故障诊断技术

电力系统设备状态监测与故障诊断技术

电力系统设备状态监测与故障诊断技术电力系统设备状态监测与故障诊断技术是电力系统中最重要的技术之一。

这项技术可以帮助电力系统管理和运营人员监测设备健康状态并预测可能发生的故障。

随着电力系统规模的不断扩大,设备数量的增加和运行环境的复杂性,使得电力系统设备的状态监测和故障诊断变得越来越困难。

但国内外研究人员正在不断探索新的技术手段,采用先进的信息与通信技术、数据挖掘技术、人工智能技术等来解决这些问题。

电力系统设备状态监测与故障诊断技术主要包括以下几个方面:1、设备健康状态监测监测电力系统的各种设备,包括发电机、变压器、开关等的健康状态。

设备的健康状态是通过一些关键指标进行监测,如温度、电压、电流、振动、噪音等。

这些指标可以帮助运营人员及时发现设备健康状况变化并采取预防措施,避免设备故障对系统带来的影响。

2、故障诊断在设备出现异常或故障时,进行诊断并确定故障所在地点、原因和影响程度。

在电力系统中,故障通常分为高压故障、低压故障、地故障和光闸故障等。

运营人员可以利用现代信息技术,结合各种传感器采集的数据,进行诊断,提高诊断准确率。

3、设备寿命评估电力设备的工作寿命在一定程度上可以确定,但由于设备使用环境的变化、外部因素的影响,设备的寿命不一定能够完全预测。

因此,对设备的寿命进行评估非常重要。

评估方法通常包括统计学方法、模型预测法、故障模式与效果分析法等。

4、智能维护利用先进的技术手段,通过大数据分析和人工智能算法等,对设备进行智能化维护。

运营人员可以根据设备的维护历史和健康状况,智能判断设备的应该进行哪些维护工作,以及何时进行。

电力系统设备状态监测与故障诊断技术的发展,为电力系统管理和运营带来了极大的便利与提高。

相关技术还在不断发展,未来将会有更多新的技术手段涌现,帮助电力系统管理人员更好地维护设备并提高系统运行效率。

状态监测与故障诊断

状态监测与故障诊断
啮合频率
多级变速箱特征频率
输出速度的计算需要考虑每一个齿轮的作用,齿轮啮合频率等于齿数和齿轮转速的乘积,对于多级变速箱同时我们还必须考虑中间轴的作用。
小结
归纳一下特征频率的计算步骤: 首先确定每个轴的相对转速; 分析各个轴上的元件并计算它们的扰动频率(如轴承频率、叶片通过频率和齿轮啮合频率等)。同时不要忘记考虑轴的转速。
设备监控与故障诊断
点击此处添加副标题
李宏坤 沈鼓研究院-大连分院
202X
设备的重要性
设备为何发生故障
设备维护的重要性
常用的设备维护体制
状态监测技术
状态监测的发展趋势
第一章 设备维护概述
现代工业的特点:大型化、连续化、高速化和自动化 现代工业对设备的依赖程度 设备发生故障而停工造成的损失巨大,维修费用大幅上升;同时可能招致重大事故。
常用的设备维护体制
预测性维修 预测性维修也被称为“基于状态的维修” 它的维修理念是:如果没有出现故障,就不检修。
4.主动维修
常用的设备维护体制
主动维修也称为“精确 维护”、“基于可靠性 的维护”。 其维修理念是:一旦 维修,就进行精确维 修 。
状态监测介绍 简介 正如其名,状态监测就是监测设备状态的技术, 我们通过它来了解设备的健康状况,判断设备是 处于稳定状态或正在恶化。
能发生的故障类型和位置,以及机器的内部情
07
况,你就能够找到正确的监测手段。
状态监测技术
我们将诊断分析分为四个阶段:检测是否有故障,分析故障的严重性,查找故障根源以及维修后检验。
状态监测技术
诊断软件的首要任务是监测设备是否有故障。软件中包含的专家系统,能够将所测得的振动水平与一系列预设的报警值进行比较。用户则需 要仔细分析你所提供的“异 常报告”,从而确定哪台机 器可能有故障。

铁路道岔设备状态监测与故障诊断

铁路道岔设备状态监测与故障诊断

铁路道岔设备状态监测与故障诊断铁路交通是现代社会中重要的基础设施之一,而道岔设备作为铁路线路中的重要组成部分,其状态的监测与故障的诊断对于保证铁路运行的安全和可靠具有重要意义。

本文将探讨铁路道岔设备状态监测与故障诊断的技术和方法。

一、状态监测技术1. 传感器技术传感器技术是铁路道岔设备状态监测的重要手段之一。

通过在道岔设备上布置各种传感器,如加速度传感器、应变传感器等,可以实时监测道岔设备的振动、变形等相关参数,并将数据传输给监测系统进行分析和判断。

2. 红外测温技术红外测温技术可以实现对道岔设备温度的非接触式测量。

通过红外测温仪器,可以及时获取道岔设备各个部位的温度数据,从而判断设备是否存在异常情况,如过热、过冷等。

3. 声学信号分析技术声学信号分析技术是一种较为先进的状态监测技术。

通过对道岔设备运行时所产生的声音进行实时分析和处理,可以判断设备是否存在异常,如摩擦、磨损等问题。

二、故障诊断方法1. 数据分析法数据分析法是道岔设备故障诊断的常用方法之一。

通过对监测系统采集到的数据进行统计和分析,可以发现设备的运行趋势和异常情况,进而进行故障的判断和诊断。

2. 专家系统法专家系统是一种基于人工智能技术的故障诊断方法。

通过建立道岔设备故障模型和知识库,将专家的经验和知识进行编码,从而实现对设备故障的判断和诊断。

3. 图像识别技术图像识别技术可以通过对道岔设备的照片或视频进行处理和分析,实现对设备状态的判断和故障的诊断。

通过比对设备的正常状态和异常状态的图像特征,可以发现设备存在的问题。

三、挑战与展望目前,我国铁路道岔设备状态监测与故障诊断技术还存在一些挑战和问题。

首先,传感器技术的精度和可靠性还有待提高,需要更加稳定和准确的数据采集。

其次,对于大规模、复杂的铁路网,监测系统需要具备快速响应和大数据处理能力。

最后,也需要进一步完善设备故障的诊断算法和故障模型。

未来,随着信息技术的不断发展和应用,铁路道岔设备状态监测与故障诊断技术将迎来新的发展机遇。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5)故障诊断方法的分类 诊断对象:旋转、往复、电气设备、机械零件、工程结构。 诊断目的和要求:在线和离线、功能和运行、定期和连续、间接和 直接、常规和特殊。 诊断手段:振动、声学、温度、强度 压力等。 诊断的完善程度:简易、精密、系统综合。 辨识故障模式:统计识别、函数识别、逻辑识别、模糊识别、灰色 识别、神经网络。
• 在20世纪60年以后,故障诊断技术真正作为一门学 科发展起来。美国自1961年开始执行阿波罗计划后, 出现了一系列因设备故障而造成的事故,导致1967 年在美国国家宇航局(NASA)倡导下,创立了美国 机械故障预防小组(MEPG),从事故障诊断技术的 研究;英国在20世纪60~70年代,以 Collaபைடு நூலகம்ott为 首的英国机器保健和状态监测协会最先开始研究故 障诊断技术;日本的新日铁自1971年开始研究故障 诊断技术,1976年达到实用化程度。
巡回检测
运行维护
停机检修
治理预防
故障诊断是在状态监测与信号分析处理的基础上 进行的。故障诊断需要根据状态监测与信号分析处理 所提供的能反映设备运行状态的征兆或特征参数的变 化情况,有时还需要进一步与某些故障特征参数(模 式)进行比较,以识别设备是运转正常还是存在故障。 若存在故障,则要诊断故障的性质和程度、产生原因 或发生部位,并预测设备的性能和故障发展趋势。
• (2)设备的成本和维修费用激剧增加。美、日两国企业 生产设备的年平均维修费用分别占企业固定资产的4%~ 8.5%和2.6%~12%,而我国的这个比例为12%~25%。
• 故障诊断技术的重要意义表现在以下三个方面:
• (1)从安全生产角度考虑,运用故障诊断技术可以快速、准确、及 时地诊断是否出现故障,以及故障的类型、原因和部位,还能够发现 设备的潜在危险,保证设备安全运行。(实例:赵固二矿风机)
1.国外故障诊断发展概况
设备的故障诊断自有工业生产以来就已经存在,不同的 时期故障诊断具有不同的特点。
在19世纪,设备的技术水平和复杂程度都很低,这一时 期主要采用事后维修方式;
进入20世纪后,设备的技术复杂程度有了提高,设备故 障或事故对 生产的影响显著增加,这样就出现了定期预防维 修方式,故障诊断技术处于孕育时期。故障诊断主要依靠人 工经验判断,缺乏自动监测技术。
• (2)从经济效益和社会效益角度考虑,尽管设备的故障诊断系统需 要一定的初始投资,但是对于大型设备来说,投资与一次设备故障的 损失相比要小得多。同时,故障诊断系统投入使用能够保证安全生产、 提高生产效率和产品质量,从而降低生产成本和维修费用,给企业带 来巨大的经济效益。例如,英国人1984年发表文章认为,对大型汽轮 发电机组进行振动监视,获利与投资之比为17:1。(实例:梨园矿提 升机)
(2)分析诊断。分析诊断实际上包括两方面的内容:信 号分析处理、故障诊断。
信号分析处理的目的是把获得的信息通过一定的方法进 行变换处理,从不同的角度提取最直观、最敏感、最有用的 特征信息。分析处理可用专门的分析仪器或计算机进行。
图谱识别
设备 传感器 信号采集、数据显示 分析处理、状态识别 故障诊断、决策
表1-1 故障诊断方法分类
分类依据 诊断对象
诊断目的和要求
诊断手段(信号物理特性)
分类内容
①旋转机械故障诊断 ②往复机械故障诊断 ③机械零件故障诊断 ④工程结构故障诊断 ⑤电气设备故障诊断
①在线诊断和离线诊断 ②功能诊断和运行诊断 ③定期诊断和连续诊断 ④直接诊断和间接诊断 ⑤常规诊断和特殊诊断
①振动诊断 ②声学诊断 ③温度诊断 ④强度诊断 ⑤污染诊断
• (1)故障的危害程度增大。一旦某一部件发生故障,就 可能引起“链式反应”,导致整个生产系统不能正常运行, 从而造成巨大的经济损失,严重的设备故障还会造成灾难 性的事故和人员伤亡,产生不良的社会影响。例如,20世 纪80年代,对全国14个省45个矿务局112个矿井抽样调查, 因矿井提升机发生故障引起停工停产,甚至造成人员伤亡 的事故,共有126例,伤亡272人,经济损失达七千万元。
4.按故障持续时间分类 (1)间断性故障 (2)持续性故障
5.按故障的程度分类 (1)局部故障 (2)完全故障
6.按故障造成的后果分类 (1)一般故障 (2)轻微故障 (3)严重故障 (4)恶性故障
二、状态监测与故障诊断技术
状态监测与故障诊断的三个阶段:状态监测、分析诊断、 治理预防。
(1)状态监测。状态监测是在设备运行中,对特定的特 征信号进行检测、变换、记录、分析处理并显示、记录,是 对设备进行故障诊断的基础工作。
第一章 绪 论
• 设备故障是指“设备功能失常”,也就是设备不能达到预 期的工作状态,无法满足应有的性能、功能。产生故障的 原因通常是设备的构造处于不正常状态(劣化状态)。判 断故障的准则是:在给定的工作状态下,设备的功能与约 束条件不能满足正常运行或原设计期望的要求。
• 故障诊断技术是一门集数理统计、力学、计算机工程、信 号处理、模式识别、人工智能等多学科于一体的、生命力 旺盛的新兴学科。它是一种了解和掌握设备在使用过程中 的工作状态,确定其整体或者局部是否正常,及时发现故 障及其原因,预报故障发展趋势的技术。故障诊断的目的 是保证可靠地、高效地发挥设备的应有功能,其最根本的 任务是通过监测设备的信息来识别设备的工作状态。
• (3)从生产管理和维修管理角度考虑,运用故障诊断技术能积累原 始资料、预测设备运行的趋势,为生产和维修决策提供强有力的支持。
第一节 故障诊断的基础知识(掌握)
一、故障的分类 1.按故障的性质分类 (1)人为故障 (2)自然故障 2.按故障产生的原因分类 (1)先天性故障 (2)使用性故障 3.按故障发展速度分类 (1)突发性故障 (2)渐进性故障
诊断手段(信号物理特性)
⑥光学诊断 ⑦电参数诊断 ⑧压力诊断 ⑨金相诊断
诊断方法的完善程度 识别故障模式
①简易诊断 ②精密诊断 ③系统综合诊断
①统计识别诊断 ②函数识别诊断 ③逻辑识别诊断 ④模糊识别诊断 ⑤灰色识别诊断 ⑥神经网络识别诊断
第二节 故障诊断技术的发展与应用(掌握)
一、故障诊断的发展与应用概况
(3)治理预防。根据设备故障情况,治理预防措 施行巡回监测、监护运行、立即停机检修三种。
(4)设备状态监测与故障诊断的区别与联系。设备状态监测与故障 诊断既有区别又有联系,在生产实际中,有时又将二者统称为设备故障 诊断。实际上,没有监测就没有诊断,诊断是目的,监测是手段;监测 是诊断的基础和前提,诊断是监测的最终结果。
相关文档
最新文档