电力拖动大作业概要

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前言

双闭环直流调速系统是目前直流调速系统中的主流设备,具有调速范围宽、平稳性好、稳速精度高等优点。在理论和实践方面都是比较成熟的系统,在电力拖动领域中发挥着及其重要的作用。

由于直流电机双闭环调速是各种电机调速系统的基础,本人就直流电机调速进行了比较系统的研究,从直流电机的基本特性到单闭环调速系统,再进行双闭环直流电机设计方案的研究,用实际系统进行工程设计,并用所学的MATLAB进行仿真,分析了双闭环调速系统的工程设计方法中由于忽略和简化造成的误差。

在双闭环直流调速系统中,转速和电流调节器的结构选择与参数设计需从动态校正的需要来解决,设计每个调节器是,都必须先求该闭环的原始系统开环对数频率特性,再根据性能指标确定校正后系统的预期特性,对于经常正反转运动的系统,尽量缩短启、制动过程的时间是提高生产率的重要因素。为此,在电机最大允许电流和转矩受到限制的条件下,应该充分利用电机的过载能力,最好是在过渡过程中始终保持电流为允许的最大值,是电力拖动系统以最大的加速度启动,到达稳定转速时,立即让电流降下来,使转矩马上与负载相平衡,从而装入稳态运行。

转速、电流双闭环直流调速系统是一种应用广泛,经济,适用的电力传动系统。它具有动态响应快、抗干扰能力强优点。反馈闭环控制系统具有良好的抗扰性,它对于被反馈环的前向通道上的一切扰动作用都能有效的加以抑制。采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。但如果对系统的动态性能要求较高,例如要求起制动、突加负载动态速降小等等,单闭环系统就难以满足要求。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程的电流或转矩。在单闭环系统中,只有电流截至负反馈环节是专门用来控制电流的。但它只是在超过临界电流值以后,强烈的负反馈作用限制电流得冲击,并不能很理想的控制电流的动态波形。在实际工作中,我们希望在电机最大电流受限的条件下,充分利用电机的允许过载能力,最好是在过度过程中始终保持电流、转矩为允许最大值,使电力拖动系统尽可能用最大的加速度起动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。这时,启动电流成方波形,而转速是线性增长的。这是在最

大电流、转矩首相的条件下调速系统所能得到的最快的起动过程。

实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值得恒流过程,按照反馈控制规律,电流负反馈就能得到近似的恒流过程。问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,电流负反馈不发挥主作用,因此我们采用双闭环调速系统。这样就能做到既存在转速和电流两种负反馈作用又能使它们作用不同的阶段。

在设计过程中,为了实现转速和电流两种负反馈分别起作用,需要设置两个调节器,分别调节转速和电流,二者之间实行串级连接,即把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置从闭环结构上看,电流调节环在里面,叫内环;转速环在外面,叫外环。这样就形成了转速、电流双闭环调速系统。

第一章系统总体设计方

图1-1 转速、电流双闭环直流调速系统结构

ASR—转速调节器 ACR—电流调节器 TG—测速发电机 TA—电流互感器 UPE—电力电子变换器

图中,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成了转速、电流双闭环调速系统。

1.1 系统电路结构

若采用双闭环调速系统,则可以近似在电机最大电流、转矩受限的条件下,充分利用电机的允许过载能力,使电力拖动系统尽可能用最大的加速度起动,到达稳态转速后,又可以让电流迅速降低下来,使转矩马上与负载相平衡,从而转入稳态运行,此时起动电流近似呈方形波,而转速近似是线性增长的,这是在最大电流、转矩受到限制的条件下调速系统所能得到的最快的起动过程。采用转速电流双闭环调速系统,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串级联接,这样就可以实现在起动过程中只有电流负反馈,而它和转速负反馈不同时加到一个调节器的输入端,到达稳态转速后,只靠转速负反馈,不靠电流负反馈发挥主要的作用,这样就能够获得良好的静、动态性能。所以选用转速电流双闭环系统结构

为了获得良好的静、动态性能,转速和电流两个调节器一般都采用 P I 调

节器,这样构成的双闭环直流调速系统的电路原理图示于图1-2。图中标出了两个调节器输入输出电压的实际极性,它们是按照电力电子变换器的控制电压U c 为正电压的情况标出的,并考虑到运算放大器的倒相作用。

1.2 两个调节器的作用

电流调节器的选择:

图1-2表明,电流环的控制对象是双惯性型的,要校正成典型 I 型系统,显然应采用PI 型的电流调节器,其传递函数可以写成

为了让调节器零点与控制对象的大时间常数极点对消,选择

则电流环的动态结构图便成为图1-3所示的典型形式,其中

s

s K s W i i i ACR )1()(ττ+=

l

T =i τR

K K K i s i I τβ=

图1-2 小惯性环节近似处理

图1-3 动态结构图

转速调节器的选择

为了实现转速无静差,在负载扰动作用点前面必须有一个积分环节,它应该包含在转速调节器 ASR 中,现在在扰动作用点后面已经有了一个积分环节,因此转速环开环传递函数应共有两个积分环节,所以应该设计成典型 Ⅱ 型系统,这样的系统同时也能满足动态抗扰性能好的要求。

由此可见,ASR 也应该采用PI 调节器,其传递函数为

s

s K s W n n n ASR )1()(ττ+=

第二章整体电路分析

2.1电流环设计

电流环参数的计算

1.确定时间常数

1)整流装置滞后时间常数Ts=0.00167s

2)电流滤波时间常数Toi=0.005s

3)电流环小时间常数之和T∑i = T s + T oi =0.00667s

2.选择电流调节器的结构

根据设计要求σ

i

%=5%,并保证稳态电流无差,可以按典Ⅰ型系统设计电流调节器。电流环控制对象是双惯性的,因此可用PI型电流调节器。

(1)确定常数时间

整流装置滞后时间常数Ts=0.0016s,电流滤波时间Toi=0.005s,电枢回路电

磁时间T

l

=0.028s,常数电流环小时间常数Tσi=Ts+Toi=0.00667s

(2) 选择电流调节器结构

根据设计要求:σ

i

%=5%,且==4.197<10,可以选择I型设计,电流调节器可以选择PI型。

(3)选择电流调节器参数环开环时间

ACR超前时间常数ζ

i =T

l

=0.028s,电流增益==74.96

ACR的比例系数===2.15

(4)校验近似条件

电流环截止频率==74.96

(a)晶闸管装置传递函数近似条件

==199.6,满足近似条件。

(b)忽略反电动势对电流环影响的条件

3==28.97满足近似条件。

相关文档
最新文档