2018年中考反比例函数专题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年中考反比例函数专题

1.如图,在平面直角坐标系中,已知点A(8,1),B(0,﹣3),反比例函数y=kx(x>0)的图象经过点A,动直线x=t(0<t<8)与反比例函数的图象交于点M,与直线AB交于点N.

(1)求k的值。

(2)求△BMN面积的最大值。

(3)若MA⊥AB,求t的值。

2.如图,在矩形OABC中,OA=3,OC=5,分别以OA、OC所在直线为x 轴、y 轴,建立平面直角坐标系,D是边CB上的一个动点(不与C、B重合),反比例函数y=kx(k>0)的图象经过点D且与边BA交于点E,连接DE.

(1)连接OE,若△EOA的面积为2,则k=________

(2)连接CA,DE与CA是否平行?请说明理由:

(3)是否存在点D,使得点B关于DE的对称点在OC上?若存在,求出点D的坐标;若不存在,请说明理由:

3.平面直角坐标系中,点P (x ,y )的横坐标x 的绝对值表示为|x|,纵坐标y 的绝对值表示为|y|,我们把点P (x ,y )的横坐标与纵坐标的绝对值之和叫做点P (x ,y )的勾股值,记为「P 」,即「P 」=|x|+|y|.(其中的“+”是四则运算中的加法)例如:如果A (-1,3),那么「A 」=|-1|+|3|=4.

(1)点M 在反比例函数y= ;

的图象上,且「M 」=4,求点M 的坐标;

(2)求满足条件「N 」=3的所有点N 围成的图形的面积.

4.如图①,O 为坐标原点,点B 在x 轴的正半轴上,四边形OACB 是平行四边形,sin ∠AOB= 45 ,反比例函数y= kx (k >0)在第一象限内的图象经过点A ,与BC 交于点F .

(1)若OA=10,求反比例函数解析式;

(2)若点F 为BC 的中点,且△AOF 的面积S=12,求OA 的长和点C 的坐标;

(3)在(2)中的条件下,过点F 作EF ∥OB ,交OA 于点E (如图②),点P 为直线EF 上的一个动点,连接PA ,PO .是否存在这样的点P ,使以P 、O 、A 为顶点的三角形是直角三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.

x 3

5.如图1所示,已知y= 6x (x>0)图象上一点P,PA⊥x轴于点A(a,0),点B坐标为(0,b)(b>0),动点M是y轴正半轴上B点上方的点,动点N在射线AP上,过点B作AB 的垂线,交射线AP于点D,交直线MN于点Q连接AQ,取AQ的中点为C.

(1)如图2,连接BP,求△PAB的面积;

(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为2 3 ,求此时P点的坐标;

(3)当点Q在射线BD上时,且a=3,b=1,若以点B,C,N,Q为顶点的四边形是平行四边形,求这个平行四边形的周长.

6.在平面直角坐标系xOy中,对于双曲线y= (m>0)和双曲线y= (n>0),如果

m=2n,则称双曲线y= (m>0)和双曲线y= (n>0)为“倍半双曲线”,双曲线y= (m>0)是双曲线y= (n>0)的“倍双曲线”,双曲线y= (n>0)是双曲线y= (m >0)的“半双曲线”,

(1)请你写出双曲线y= 的“倍双曲线”是________;双曲线y= 的“半双曲线”是________;

(2)如图1,在平面直角坐标系xOy中,已知点A是双曲线y= 在第一象限内任意一点,过点A与y轴平行的直线交双曲线y= 的“半双曲线”于点B,求△AOB的面积;

(3)如图2,已知点M是双曲线y= (k>0)在第一象限内任意一点,过点M与y轴平行的直线交双曲线y= 的“半双曲线”于点N,过点M与x轴平行的直线交双曲线y= 的“半双曲线”于点P,若△MNP的面积记为S△MNP,且1≤S△MNP≤2,求k的取值范围.

7.【阅读理解】

我们知道,当a>0且b>0时,(﹣)2≥0,所以a﹣2 +≥0,从而a+b≥2

(当a=b时取等号),

【获得结论】设函数y=x+ (a>0,x>0),由上述结论可知:当x= 即x= 时,函

数y有最小值为2

(1)【直接应用】

若y1=x(x>0)与y2= (x>0),则当x=________时,y1+y2取得最小值为________.(2)【变形应用】

若y1=x+1(x>﹣1)与y2=(x+1)2+4(x>﹣1),则的最小值是________

(3)【探索应用】

在平面直角坐标系中,点A(﹣3,0),点B(0,﹣2),点P是函数y= 在第一象限内图象上的一个动点,过P点作PC⊥x轴于点C,PD⊥y轴于点D,设点P的横坐标为x,四边形ABCD的面积为S

①求S与x之间的函数关系式;

②求S的最小值,判断取得最小值时的四边形ABCD的形状,并说明理由.

8.如图,一次函数y=k1x+5(k1<0)的图象与坐标轴交于A,B两点,与反比例函数y= (k2>0)的图象交于M,N两点,过点M作MC⊥y轴于点C,已知CM=1.

(1)求k2﹣k1的值;

(2)若= ,求反比例函数的解析式;

(3)在(2)的条件下,设点P是x轴(除原点O外)上一点,将线段CP绕点P按顺时针或逆时针旋转90°得到线段PQ,当点P滑动时,点Q能否在反比例函数的图象上?如果能,求出所有的点Q的坐标;如果不能,请说明理由.

相关文档
最新文档