常见可变配气系统总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见可变配气系统介绍
摘要:在发动机中,进气系统对发动机性能影响很大。因此,汽车厂家为了提高在原有基础上大幅度的提升发动机性能,都选择了去修改进气系统,其中可变配气系统技术得到了广泛发展,在实现可变配气系统方面,各大厂家可谓是八仙过海,各显神通。轿车发动机上常见的VTEC、i-VTEC、VVT-i、VVTL-i、VVT、VVL等字母,表示了这些发动机都采用了可变气门正时技术。
关键词:可变配气正时(VVT);本田VTEC系统;丰田VVTL-i系统; 保时捷Variocam系统;宝马可变气门正时Valvetronic系统;大众VVT系统;日产VVEL系统
目前,大多数轿车发动机的配气相位可以随发动机转速、负荷变化而自动调整。常见调整方式主要有进气门升程、进气门相位、进排气门相位调整。进气门升程调整又可分为两级调整和连续调整;
应用于进气门相位调整的装置可分为叶片式、螺旋式和时规链式。配气相位调整装置装在凸轮轴正时齿轮(或正时链轮)与凸轮轴之间,接受发动机计算机的指令,对发动机配气相位进行自动调整。如本田汽车的i-VTEC,丰田汽车的VVT-i等。
1.进气门升程两级调整
(1)本田VTEC系统
VTEC意为可变气门正时和气门升程电子控制系统。采用VTEC技术的发动机具有4个气门,能够提高进排气截面积。进排气截面积越大,高速气流的流量也就越大,提高了发动机的功率。发动机低转速
时,气门升程很小,以减小进气道面积,增大汽缸内真空度和吸力,提高进气流的惯性,以提高进气效率;发动机高转速时,增大
气门升程,增大了进气道截面积,以减小进气阻力,增加进气流量。气门升程可变,保证了发动机在高、低转速时都能获得良好性能。VTEC 有两段或三段调节,当气门从一个升程转换到另一个升程时,由于进气流量突然增大,发动机的输出功率也突然增大,导致发动机在整个转速范围内的输出并不是线性的,也就是说工作不柔和。VTEC发动机在加速时有突如其来的推背感,这在很大程度上提高了驾驶乐趣。但舒适性和发动机运转的平顺性较差。当然,要想做到动力线性的输出,则需要在技术上下更大的功夫,做到气门升程无级调节。VTEC 是利用不同高度的凸轮来改变气门升程,所以低转速凸轮使气门开启升程和时间都短,高速凸轮的形状能让气门开启时间更长,改变了配气相位。可变气门升程的控制原理,如图1所示。PCM根据发动机的负荷、转速、水温和车速等信息,决定何时改变气门升程及正时。改
变气门升程
及正时条件
有:发动机
转速为
2300~3200r
/min(依进气歧管压力而定);车速为10km/h或更快;发动机冷却水温度为70℃或更高;发动机负荷由进气压力传感器判断。低速时,发动机控制模
块(PCM)使电磁阀截止,发动机机油不能通过电磁阀到达进气摇臂轴内,主摇臂内油压降低,止推活塞在弹簧作用下,将中间摇臂活塞、推回原位,三摇臂分离。这时主气门打开,升程较小。次气门微开,让空气流动,以免混合汽遇到冷的进气管壁析出汽油。这样提高了发动机在2300~3200r/min以下的充气效率,增加了低转速扭矩,满足发动机低速时耗油少,废气排放低的要求。高速时,发动机控制模块(PCM)使电磁阀接通时,发动机机油通过电磁阀到达进气摇臂轴内,进入主摇臂,机油压力推动活塞A、活塞B、中间摇臂活塞,将三个摇臂贯穿在一起,三摇臂连接为一体。中间凸轮驱动中间摇臂,中间摇臂带动主、次摇臂一启动作,同时打开两个进气门,而且升程最大,使进气量增大,满足发动机大功率的要求。图1中VTEC压力开关起反馈作用。若VTEC电磁阀断电关闭时,则VTEC电磁阀后的机油压力低,压力开关闭合,其电阻为0。VTEC电磁阀通电打开,如果机压力开关电阻不为0,则贮存故障码21。
(2)丰田VVTL-i系统
VVTL-i意为智能可变气门正时系统,如图2所示,由移动滑销控制不同的凸轮工作。发动机转速低时,由于摇臂内的滑销未移动,所以是低速凸轮顶到摇臂,驱动气门开关,此时,高速凸轮空转,如图
示。高转
速时,摇
臂内的滑
销移动,
高速凸轮
顶到摇臂,驱动气门开关,此时,低速凸轮高度和角度小,不起作用,如图2(c)所示。(3)保时捷Variocam系统图3所示为保时捷911跑车发动机采
用的可变气门正时Variocam系统。气门的行程由高速和低速两组凸轮控制。发动
机低转速时,
液压挺柱上端
的控制活塞停
留在内挺柱
里。这样内、
外挺柱分离,
低速凸轮驱动
内挺柱向下运
动,气门升程
较小。当发动机高转速时,液压将锁定柱塞推入外挺柱的孔中,把内、外挺柱刚性连接起来,高速凸轮驱动整个液压挺柱,使气门获得最大
2.连续调整
宝马760豪华轿车发动机采用的可变气门正时Valvetronic系统,如图4所示,可连续改变气门升程和进气相位。ECU控制电机通
过蜗杆驱动齿轮,使
Valvetronic凸轮旋转,改
变Valvetronic摇臂与凸
轮轴的位置,从而连续改
变气门的升程,使发动机
线性输出动力。
二、进气相位调整
1.叶片式进气相位调整装
置
本田i-VTEC、丰田VVT-i以及大众VVT采用的都是叶片式进气相位调整装置。VVT-i意为智能可变配气正时系统,是控制进气凸轮轴气门正时的装置,由传感器、液压控制电磁阀、控制器、ECU组成,如图5所
示。发动
机ECU
根据曲
轴位置
传感器、
空气流量计、节气门轴位置传感器、凸轮轴位置传感器、水温传感器和车速信号,计算最优气门正时,控制机油控制阀的位置,使VVT-i 控制器产生提前、滞后或保持动作,从而使凸轮轴相对于时规带轮旋转,改变配气相位。此外,发动机ECU根据来自凸轮轴位置传感器和曲轴位置传感器的信号检测实际的气门正时,从而尽可能地进行反馈控制,以获得预定的气门正时。
2.螺旋式进气门相位调整装置
丰田凌志L400、L430等高级轿车采用螺旋式VVT-i控制器,安装在进气凸轮轴上。LS400发动机是V型8缸4气门,有两根进气凸轮轴和两根排气凸轮轴,采用的螺旋式VVT-i控制器,可在50°范围内
调整进气凸轮轴转角,使配气正时满足有优化控制发动机工作状态的要求,从而提高发动机在所有转速范围内的动力性、经济性和降低尾气的排放。螺旋式VVT-i控制器如图6所示,可动活塞在内齿轮与外
齿轮之间。
活塞的内
外表面有
螺旋形花
键。活塞沿
轴向的移
动,改变
内、外齿轮