混频器的相位特性测试

混频器的相位特性测试
混频器的相位特性测试

如果混频器的本振是扫描的,那么本振在不同频点处的相位变化将会影响到混频器相位特性曲线的斜率,进而影响到混频器的时延。然而当混频器本振处于扫描状态时,其输入或者输出必定有一个是固定的。假设输入信号和本振同步扫描,输出固定,那么在输出端增加的延迟(比如增加一段传输线)只能表现为一定的相移而无法呈现出相位相对频率的函数,因此在测试时体现在混频器相位特性曲线上的也仅仅是一个相移而不是斜率的变化,这对于我们关注的混频器从输入到输出的时延特性是相悖的。因此,当混频器的本振处于扫描状态时,通常会改变测试的思路,由于器件在输出频率处都会有一定的带宽,可以将输入信号扫频的范围分成若干个小段,而本振变成步进的状态,在每个分段中采用固定本振的测试方法得到每个带宽范围内器件的时延,将所有分段中心频点处的时延连起来,就能够拼接成本振扫描状态下的器件时延。

现有的混频器时延或相位非线性测试方法主要有向下/向上变换(三混频器)法,调制信号法(包括双音法),矢量混频器测试法(VMC)和相位相参接收机测试法(SMC+Phase)等。

3.1.向下/向上变换法

该方法是采用一个额外的与被测混频器(MUT)频率范围相同,变频方向相反的逆变换混频器,比如MUT是下变频器(从RF变到IF),那么逆变换混频器就是上变频器(从IF变到RF),两者本振共享。将两个变频器串联后形成的链路,输入和输出信号则是同频的,可以直接用网络分析仪进行幅度和相位测试,得到串联后链路的传输特性,即为MUT和逆变换混频器传输特性的乘积。

如果再找到一个与MUT频率范围相同的互易混频器(可以上变频也可以下变频,两个变频方向的传输特性一致,即SC21=SC12),将该混频器作为上变频器与MUT串联,同样可以得到串联后的传输特性,即为MUT和互易混频器传输特性的乘积。

然后将该互易混频器作为下变频器与第一步中的逆变换混频器串联,则能够得到互易混频器和逆变换混频器传输特性的乘积。

考虑到混频器的工作特点,为了防止镜像信号也被逆变换混频器或者互易混频器转换到输出频段,在下变频器的输出端需要采用一个带通滤波器。

假定互易混频器为A,逆变换混频器为B,MUT为C,测试原理图如下:

?步骤较多,而且需要两个额外的混频器,其中一个还要是互易的。当测试频率提高到微波或毫米波频段时,很难找到合适的互易混频器。

?所有的混频器必须共用同一个本振源,因此当被测混频器的本振无法由外部提供时,该方法将无法完成测试。

?忽略了混频器和IF滤波器之间端口失配的影响,测试结果误差较大。

测试中使用的是宽带检波器/鉴频器,灵敏度较差,且假定其特性在混频器的输入到输出频段是平坦的,实际的频响特性对测试精度以及动态范围都存在不利的影响

?为了提高示波器的测试精度,调制信号的频率要越高越好(具有更陡的边沿),相应的混频器时延分辨率会变得很差

?无法修正端口失配带来的误差

?互易混频器,SC21_Cal=SC12_Cal

?带镜像抑制滤波器

?单程损耗不超过10dB,SC21_Cal≤-10dB

?在矢量网络仪端口1和端口2间进行双端口校准,修正仪表的方向性误差,端口失配以及反射跟踪误差。频率包括输入和输出频段,此处为同频测试,开关打在内部位置,参考信号不经过参考混频器

?将校准混频器接到矢网端口1,在校准混频器末端连接校准件进行单端口校准,提取校准混频器的散射参数。此时开关依然打在内部位置,参考信号不经过参考混频器

?将校准混频器接到矢网端口1和端口2之间进行直通校准,此时开关切到外部,将参考混频器接入参考路径,修正矢网的正向传输跟踪误差。VMC只在正向采用了参考混频器,因此无法测试反向变频特性。

与前两个测试方法相比,VMC有如下优势:

?测试过程中只需要将被测混频器接入即可,减少了多次连接引入的误差

?矢量网络仪是窄带的接收机,具有更高的测试灵敏度和动态范围

?被测混频器的输入输出是直接连到矢量网络仪的测试端口上的,可以通过校准去除被测件和仪表之间端口失配的影响

?矢量网络仪能够自行选取被测混频器的输出信号,不需要额外的镜像抑制滤波器?不要求被测混频器与参考混频器共本振,对于本振内嵌的混频器,可以采用算法估计出其内嵌本振的漂移(具体过程将在4.1中介绍)

基于以上几点,VMC已经被广泛的应用于高精度的变频器测试并作为相位测量的标准,不过它还存在一个问题,当LO频率发生变化时,需要重新提取校准混频器的参数,如果需要测试多个LO频率下的混频器特性,校准步骤会大大增加。

上式中,很容易获得,如果再测到。aLO

?将梳状波发生器输出口连接到矢网的端口2,提取B接收机在不同频段上的相位响应,为了提高信噪比,通常会把端口2的定向耦合器反接(Port2通过定耦的直通臂接入B 接收机)。

?将功率计接到矢网的端口1,校准矢网的输出功率以及R1接收机的幅度响应。

?保持端口2定耦反接的状态,在矢网的端口1和端口2之间做全双端口的校准,获取此时的系统误差,并通过系统误差项将B接收机的相位响应以及R1接收机的幅度响应传递到其他接收机进行幅度和相位校准。

?正常情况下矢网端口2的定耦不是反接的,此时需要把定耦恢复到正常状态,在矢网的端口1和端口2之间再做一次全双端口校准,与上一步获取到的校准数据结合起来,获取正常状态下矢网端口1和端口2之间的系统误差以及各个接收机的幅度/相位响应。

由于矢网的硬件非常稳定,这部分校准数据的有效性可以维持几个月,这段时间内不需要重复校准,只要在使用时调用保存好的校准数据(Calset)即可。

实际测试时,矢网和被测件之间通常需要根据实际情况选择合适的测试电缆和连接器,它们的影响通过第二部分的校准进行修正:

?调用第一步保存好的校准数据,然后在实际的测试端口上做一个覆盖输入和输出频段的普通全双端口校准。

?PNA/PNA-X可以提取出测试电缆和连接器的S参数,并将它们与第一步的校准数据相结合,将第一部分的校准端面外延到与被测件连接的端口。

?因此,SMC+Phase的实际测试过程非常简单,在VMC的基础上又增加了以下的优点:

?连接简单,只需要将输入,输出和本振连到矢网上,不需要额外的参考/校准混频器。?所有的校准件都是标准的,容易获取,且都可以回溯到NIST。

?第一步的校准可以覆盖矢网的全频段,改变LO的频率最多只需在变化后的输入/输出频段上再做一次双端口校准即可。

?倍频器,本振内嵌的混频器同样适用。

SMC+Phase也有一定的局限性,为了保证稳定的相位响应,每次扫描得到的变频相位曲线都是对轨迹上的某个固定频点做归一化之后的结果,如果要测试的变频器件内部有移相器(比如TR组件),与移相相关的测试无法通过SMC+Phase完成。因为移相器是在工作频

凸轮轴位置传感器

曲轴和凸轮轴位置传感器 1、功用与类型 曲轴位置传感器(Crankshaft Position Sensor,CPS)又称为发动机转速与曲轴转角传感器,其功用是采集曲轴转动角度和发动机转速信号,并输入电子控制单元(ECu),以便确定点火时刻和喷油时刻。 凸轮轴位置传感器(Camshaft Position Sensor,CPS)又称为气缸识别传感器(Cylinder Identification Sensor,CIS),为了区别于曲轴位置传感器(CPS),凸轮轴位置传感器一般都用CIS表示。凸轮轴位置传感器的功用是采集配气凸轮轴的位置信号,并输入ECU,以便ECU识别气缸1压缩上止点,从而进行顺序喷油控制、点火时刻控制和爆燃控制。此外,凸轮轴位置信号还用于发动机起动时识别出第一次点火时刻。因为凸轮轴位置传感器能够识别哪一个气缸活塞即将到达上止点,所以称为气缸识别传感器。 2.光电式曲轴与凸轮轴位置传感器 (1)结构特点 日产公司生产的光电式曲轴与凸轮轴位置传感器是由分电器改进而成的,主要由信号盘(即信号转子)、信号发生器、配电器、传感器壳体和线束插头等组成。 信号盘是传感器的信号转子,压装在传感器轴上,如图2-22所示。在靠近信号盘的边缘位置制作有均匀间隔弧度的内、外两圈透光孔。其中,外圈制作有360个透光孔(缝隙),间隔弧度为1。(透光孔占0.5。,遮光孔占0.5。),用于产生曲轴转角与转速信号;内圈制作有6个透光孔(长方形孑L),间隔弧度为60。,用于产生各个气缸的上止点信号,其中有一个长方形的宽边稍长,用于产生气缸1的上止点信号。 信号发生器固定在传感器壳体上,它由Ne信号(转速与转角信号)发生器、G信号(上止点信号)发生器以及信号处理电路组成。Ne信号与G信号发生器均由一个发光二极管(LED)和一个光敏晶体管(或光敏二极管)组成,两个LED分别正对着两个光敏晶体管。 (2)工作原理 光电式传感器的工作原理如图2-22所示。信号盘安装在发光二极管(LED)与光敏晶体管(或光敏二极管)之间。当信号盘上的透光孔旋转到LED 与光敏晶体管之间时,LED发出的光线就会照射到光敏晶体管上,此时光敏晶体管导通,其集电极输出低电平(0.1~O.3V);当信号盘上的遮光部分旋转到LED与光敏晶体管之间时,LED发出的光线就不能照射到光敏晶体管上,此时光敏晶体管截止,其集电极输出高电平(4.8~5.2V)。 如果信号盘连续旋转,透光孔和遮光部分就会交替地转过LED而透光或遮光,光敏晶体管集电极就会交替地输出高电平和低电平。当传感器轴随曲轴和配气凸轮轴转动时,信号盘上的透光孔和遮光部分便从LED与光敏晶体管之间转过,LED发出的光线受信号盘透光和遮光作用就会交替照射

旋转编码器详解

增量式编码器的A.B.Z 编码器A、B、Z相及其关系

TTL编码器A相,B相信号,Z相信号,U相信号,V相信号,W相信号,分别有什么关系? 对于这个问题的回答我们从以下几个方面说明: 编码器只有A相、B相、Z相信号的概念。 所谓U相、V相、W相是指的电机的主电源的三相交流供电,与编码器没有任何关系。“A相、B相、Z相”与“U相、V相、W相”是完全没有什么关系的两种概念,前者是编码器的通道输出信号;后者是交流电机的三 相主回路供电。 而编码器的A相、B相、Z相信号中,A、B两个通道的信号一般是正交(即互差90°)脉冲信号;而Z相是零脉冲信号。详细来说,就是——一般编码器输出信号除A、B两相(A、B两通道的信号序列相位差为90度)外,每转一圈还输出一个零位脉冲Z。 当主轴以顺时针方向旋转时,输出脉冲A通道信号位于B通道之前;当主轴逆时针旋转时,A通道信号则位于B通道之后。从而由此判断主轴是正转还是反转。 另外,编码器每旋转一周发一个脉冲,称之为零位脉冲或标识脉冲(即Z相信号),零位脉冲用于决定零位置或标识位置。要准确测量零位脉冲,不论旋转方向,零位脉冲均被作为两个通道的高位组合输出。由于通道之间的相位差的存在,零位脉冲仅为脉冲长度的一半。 带U、V、W相的编码器,应该是伺服电机编码器 A、B相是两列脉冲,或正弦波、或方波,两者的相位相差90度,因此既可以测量转速,还可以测量电机的旋转方向Z相是参考脉冲,每转一圈输出一个脉冲,脉冲宽度往往只占1/4周期,其作用是编码器自我校正用的,使得编码器在断电或丢失脉冲的 时候也能正常使用。 ABZ是编码器的位置信号,UVW是电机的磁极信号,一般用于同步电机; AB对于TTL/HTL编码器来说,AB相根据编码器的细分度不同,每圈有很多个,但Z相每圈只有一个; UVW磁极信号之间相位差是120度,随着编码器的角度转动而转动,与ABZ 之间可以说没有直接关系。 /#############################################################

凸轮轴工作原理介绍

凸轮轴需要承载的冲击力非常的大,因此凸轮轴材质的强度和承载力的需求也非常的高,一般要求是碳钢和合金钢锻造,凸轮轴的位置一般分为上中下三种,还分为了单、双、顶等多个数量的集聚。现在使用的凸轮轴多的还是顶置式,这种构造形式主要带来的是运动件少、传动链短、刚度大等优点。下面带大家简单了解一下凸轮轴工作原理。 【凸轮轴工作原理】 凸轮轴介只是活塞发动机里面的一个配件,主要是通过他来进行气门的开启和关闭的。需要承载的冲击力非常的大,因此凸轮轴材质的强度和承载力的需求也非常的高。制造的材料一般都是好的碳钢和合金钢锻造,还有是使用合金铸铁或者是球墨铸铁铸造而成的,凸轮轴工作表面还会进行热处理和磨光处理。 凸轮轴构造:凸轮轴的位置一般分为上中下三种,还分为了单、双、顶等多个数量的集聚。上置式一般处于的位置在气缸盖上,中置式一般处于的位置在机体的上面,下置式一般处于的位置在曲轴箱内部。现在使用的凸轮轴多的还是顶置式,这种构造形式主要带来的是运动件少、传动链短、刚度大等优点。

一、凸轮轴单顶置:直列形式的4缸或者6缸使用的这种,工作的原理主要是通过摇臂控制气门的开启,内置弹簧让其气门回到关闭的位置。由于气门的速度很快,所以在弹簧的选择时追求的是材质够强劲,气门一定好和弹簧与摇臂相连接。如果弹簧不够强劲造成的后果就是过多的磨损,使其缸体损坏。主要是通过皮带驱动。 二、凸轮轴双顶置:也就是每一个缸体内有两个凸轮,一些直列的发动机一般就会有两个凸轮。也是由于一个凸轮提供的做功不够而增加的一个,也是尽量的满足进气和排气的需求。工作原理其实和单顶置一样,带来的进出气更加的顺畅。主要是通过皮带驱动。 三、凸轮轴顶置:刚刚有说到这种形式的使用是广泛的,工作原理也是和前面两种一样。他主要是位于气缸的头上,没有位于发动机的缸体内部。由于上面两种是通过顶杆,在工作的过程中还增加了惯性的动力,这样也使得弹簧的负荷也相应的增加,这样也会限制发动机的转速。顶置形式的出现使其发动机的高速成为了可能,然而顶杆发动机又是通过齿轮或者短链进行驱动的。从驱动方式来看就比前面两种更稳固、更高速。

磁旋转编码器常见问题

磁旋转编码器常见问题 常见问题:磁旋转编码器I C 一般性问题 Q1:芯片如果不能按预期工作,我需要进行哪些测试才能找出原因? Q2:可以在不编程的情况下使用旋转编码器芯片吗? Q3:如何知道上电之后角度数据何时有效? Q4:启动时间是否会随温度而改变? Q5:不同类型的输出可用于哪些应用? Q6:我可以利用数字输出驱动大于4m A的电流,例如驱动一个10m A的L E D吗?Q7:为什么已存在下拉电阻还必须将P R O G连接到V S S? Q8:对准模式下限制数值32是什么意思? Q9:可以得到的最佳精度是多少? Q10:可以得到优于0.1度的精度吗? Q11地利微电子可以校准芯片以实现最佳的精度吗? Q12:数据资料中显示的误差曲线对于所有产品都是一样的吗? Q13:编码器的重复性是指什么? Q14:重复性怎样随着温度改变? Q15:C S n引脚可以永久地连接到V S S吗? Q16:角度数据采样与C S n是同步的吗? Q17:奥地利微电子可以提供预先编程的定制化编码器吗? Q18:编码器可承受的振动水平怎样? Q19:怎样降低A S5040/43/45的功耗? 磁铁相关问题 Q20:推荐的磁铁水平偏离容差是多少? Q21:如果不能将磁铁对准在推荐的容差内,会发生什么呢? Q22:我可以将编码器I C安装在环形磁铁的周围吗? Q23:怎样才能扩展磁铁的垂直间距? Q24:如果在―绿色‖(适当)范围之外使用传感器会有什么后果? Q25:哪些类型的磁铁可以和A S5035/40/43/45配合使用? Q26:在旋转轴内安装磁铁的时候需要注意什么? Q27:为什么在移除磁铁的时候不能触发C O F和L I N报警? Q28:为什么即使移除磁铁时我仍可以得到随机的角度数据? Q29:在什么磁场范围可以得到M a g I n c/-D e c、L I N和C O F报警信号? Q30:如何分辨磁铁场强过弱(或丢失)与磁铁场强过强的情况? Q31:要获得零位读数时,磁铁要处于哪一个缺省位置? Q32:磁编码器是如何做到对于外部磁场不敏感的? A S5035,A S5040,A S5045 磁旋转编码器产品系列常见问题 A S50000磁旋转编码器产品系列 常见问题 Q33:是否需要屏蔽传感器以避免外部磁场的影响? Q34:B L D C电动机的强磁场转子磁铁会对编码器造成什么影响? Q35:我可以将其它材料放置到磁铁和I C之间吗?

matlab仿真一阶低通滤波器幅频特性和相频特性

freqs 模拟滤波器的频率响应 语法: h = freqs(b,a,w) [h,w] = freqs(b,a) [h,w] = freqs(b,a,f) freqs(b,a) 描述: freqs返回一个模拟滤波器的H(jw)的复频域响应(拉普拉斯格式) 请给出分子b和分母a h = freqs(b, a, w) 根据系数向量计算返回模拟滤波器的复频域响应。freqs计算在复平面虚轴上的频率响应h,角频率w确定了输入的实向量,因此必须包含至少一个频率点。 [h, w] = freqs(b, a) 自动挑选200个频率点来计算频率响应h [h, w] = freqs(b, a, f) 挑选f个频率点来计算频率响应h 例子: 找到并画出下面传递函数的频率响应 Matlab代码: a = [1 0.4 1]; b = [0.2 0.3 1]; w = logspace(-1, 1);

logspace功能:生成从10的a次方到10的b次方之间按对数等分的n个元素的行向量。n如果省略,则默认值为50。 freqs(b, a, w); You can also create the plot with: h = freqs(b,a,w); mag = abs(h); phase = angle(h); subplot(2,1,1), loglog(w,mag) subplot(2,1,2), semilogx(w,phase) To convert to hertz, decibels, and degrees, use: f = w/(2*pi); mag = 20*log10(mag); phase = phase*180/pi; 算法: freqs evaluates the polynomials at each frequency point, then divides the numerator response by the denominator response: s = i*w; h = polyval(b,s)./polyval(a,s)

巴特沃斯数字低通滤波器要点说明

目录 1.题目........................................................ .................................. .2 2.要求........................................................ (2) 3.设计原理........................................................ . (2) 3.1 数字滤波器基本概念......................................................... (2) 3.2 数字滤波器工作原理......................................................... (2) 3.3 巴特沃斯滤波器设计原理 (2) 3.4脉冲响应不法......................................................... .. (4) 3.5实验所用MATLAB函数说

明 (5) 4.设计思路........................................................ .. (6) 5、实验内容........................................................ . (6) 5.1实验程序......................................................... . (6) 5.2实验结果分析......................................................... . (10) 6.心得体会........................................................ . (10) 7.参考文献........................................................ . (10) 一、题目:巴特沃斯数字低通滤波器 二、要求:利用脉冲响应不变法设计巴特沃斯数字低通滤波器,通带截止频率100HZ,采样频率1000HZ,通带最大衰减为0.5HZ,阻带最小衰减为10HZ,画出幅频、相频相应相应曲线。并假设一个信号x(t)=sin(2*pi*f1*t)+sin(2*pi*f2*t),其中f1=50HZ,f2=200HZ。用此信号验证

利用相位特征判断故障的方法 (DEMO)

利用相位特征判断故障的方法 一、相位的基本概念 相位表示在给定时刻振动部件被测点相对于某一固定参考点或其他振动部件的位置。在实际应用中相位主要用于比较不同振动运动之间的关系,或确定一个部件相对于另一个部件的振动状况。 相位反映了振动信号与参考点之间时间关系或位置关系。相位是从单频率的简谐振动中引出的。因此、对于实际振动信号,也是考虑其中某频率分量与转子相位标志之间的相位差。比较有用的频率成分主要是基频及其倍频。相位测量可用于1)谐波分析;2)动平衡测定;3)振型测量; 4)判断共振点。 转子初相位代表着转子的质量高点在某一特定时刻的特定位置,可为故障分析诊断提供重要的依据。 监测振动的时域信号经过FFT变换,可以得到频域上的幅值谱和相位谱,幅值谱表明了振动中所含各振动分量以及它们的幅值大小,相位谱给出了各阶分量的初相位。相位谱的初相位是由各阶分量振幅的虚数和实数部分相比求反切而得到的,而在实际采样过程中采样的初始点是随机的,因而FFT得到各阶分量的初相位也将随之改变,无法得到各阶分量确定的初相位。由此可知、FFT直接变换得到的相位谱是无法确定各阶振动分量的初相位的。但各阶分量相对于基频分量的初相位的相位差将不受采样初始点的影响,因而只要精确地求出基频分量的初相位,问题将迎刃而解了。 故障分析中,在确定转子不平衡量的方向,以及不对中等一些由转子的几何形状、质量或受力不对称所引起的振动时,有时要考虑振动与转子相位标志之间的相位差。它同样也可以应用于构件空间面是否存在的力偶(弯矩)的判断(了

解构件是否存在变形应力)。 初相位定义:转子键相信号的脉冲下降沿与频率的高点之差,称为初始相位。 二、振动信号相位分析 相位分析分类: 1)绝对相位是指从键相器信号触发到振动信号第一正峰值之间的角度。 2)相对相位是角度表示的从一个信号波形的某一点到另一信号最近的对应点之间的关系。 相位监测可以判断设备振动状态有无发生变化。比如一台设备,其振动幅值没有变化,但相位变化了140°,如果仅仅对比振幅变化,说明运行没有改变。但相位的突变说明事实上设备运行状态已经有了巨大的变化,很可能是转子叶片松动,转轴裂纹或者其它潜在的严重问题引起的。 轴早期出现裂纹时,振幅无太大的变化,但相位有突变;当轴发生摩擦时,振幅会变小,但轴与轴承会受到破坏。 如果相位发生偏转,说明振动形态发生了巨大的变化。轴心轨迹椭圆中有一直边,说明转子不排出单方向摩擦的可能。 相位(φ): 相位表示在给定时刻振动部件被测点相对于某一固定参考点或其他振动部件的位置。 在实际应用中相位主要用于比较不同振动运动之间的关系,或确定一个部件相对于另一个部件的振动状况。例如,在图1—1—4中给出了A和B两个弹簧质量系统。假设A、B两质量块的振幅和频率相同,但A位于上限位置,而B则位于其下限位置。在给定的起始时刻位移峰值相差180o,也就是说这两个振动180o异相。在图l—1-5中质量A和B在同一时刻分别位于上限位置和平衡位置(向下),于是我们说质量A和B的振动相位差为90o。而在图1—1—6中质量A、B 在同一时刻位于同一位置,因此其振动同步,或者说它们的振动相位差为0o。

AS5048A-HTSP 14位绝对式旋转编码器IC

General Description The AS5048 is an easy to use 360° angle position sensor with a 14-bit high resolution output. The maximum system accuracy is 0.05° assuming linearization and averaging is done by the external microcontroller. The IC measures the absolute position of the magnet’s rotation angle and consists of Hall sensors, analog digital converter and digital signal processing. The zero position can be programmed via SPI or I2C command. Therefore no programmer is needed anymore. This simplifies the assembly of the complete system because the zero position of the magnet does not need to be mechanically aligned. This helps developers to shorten their developing time. The sensor tolerates misalignment, air gap variations, temperature variations and as well external magnetic fields. This robustness and wide temperature range (-40°C up to +150°C) of the AS5048 makes the IC ideal for rotation angle sensing in harsh industrial and medical environments. Several AS5048 ICs can be connected in daisy chain for serial data read out. The absolute position information of the magnet is directly accessible over a PWM output and can be read out over a standard SPI or a high speed I2C interface. Version AS5048A comes with SPI and PWM Interface. Version AS5048B is configured with the I2C interface and has also a PWM output. An internal voltage regulator allows the AS5048 to operate at either 3.3 V or 5 V supplies. Key Features & Benefits ? 360° contactless angle position sensor ? Standard SPI or high speed I2C interface and PWM ? Simple programmable zero position via SPI or I2C command ? No programmer needed ? 14-bit full scale resolution 0.0219°/LSB ? Angle accuracy 0.05°after system linearization and averaging ? Daisy chain capability ? Tolerant to air gap variations magnetic field input range: 30mT – 70mT ? -40°C to +150°C ambient temperature range ? 3.3V / 5V compliant ? 14-pin TSSOP package (5x6.4mm) Applications ? Robotic joint position detection ? Industrial motor position control ? Medical robots and fitness equipment Block Diagram

旋转编码器的输出电路以及常用术语介绍

旋转编码器的输出电路以及常用术语介绍 来源:互联网 旋转编码器是用来测量转速的装置,光电式旋转编码器通过光电转换,可将输出轴的角位移、角速度等机械量转换成相应的电脉冲以数字量输出(REP)。当旋转编码器轴带动光栅盘旋转时,经发光元件发出的光被光栅盘狭缝切割成断续光线,并被接收元件接收产生初始信号。该信号经后继电路处理后,输出脉冲或代码信号。旋转编码器的特点是体积小,重量轻,品种多,功能全,频响高,分辨能力高,力矩小,耗能低,性能稳定,可靠使用寿命长等特点。其主要种类有增量式编码器、绝对值编码器、正弦波编码器。 输出电路图解 1、NPN电压输出和NPN集电极开路输出线路 PNP开路集电极输出

电压输出 此线路仅有一个NPN型晶体管和一个上拉电阻组成,因此当晶体管处于静态时,输出电压是电源电压,它在电路上类似于TTL逻辑,因而可以与之兼容。在有输出时,晶体管饱和,输出转为0VDC的低电平,反之由零跳向正电压。 随着电缆长度、传递的脉冲频率、及负载的增加,这种线路形式所受的影响随之增加。因此要达到理想的使用效果,应该对这些影响加以考虑。集电极开路的线路取消了上拉电阻。这种方式晶体管的集电极与编码器电源的反馈线是互不相干的,因而可以获得与编码器电压不同的电流输出信号。 2、PNP和PNP集电极开路线路 该线路与NPN线路是相同,主要的差别是晶体管,它是PNP型,其发射极强制接到正电压,如果有电阻的话,电阻是下拉型的,连接到输出与零伏之间。 3、推挽式线路 这种线路用于提高线路的性能,使之高于前述各种线路。事实上,NPN电压输出线路的主要局限性是因为它们使用了电阻,在晶体管关闭时表现出比晶体管高得多的阻抗,为克服些这缺点,在推挽式线路中额外接入了另一个晶体管,这样无论是正方向还是零方向变换,输出都是低阻抗。推挽式线路提高了频率与特性,有利于更长的线路数据传输,即使是高速率时也是如此。信号饱和的电平仍然保持较低,但与上述的逻辑相比,有时较高。任何情况下推挽式线路也都可应用于NPN或PNP线路的接收器。

旋转编码器和接近开关的工作原理

1.接近开关 接近开关是一种无需与运动部件进行机械直接接触而可以操作的位置开关,当物体接近开关的感应面到动作距离时,不需要机械接触及施加任何压力即可使开关动作,从而驱动直流电器或给计算机(plc)装置提供控制指令。接近开关是种开关型传感器 (即无触点开关),它既有行程开关、微动开关的特性,同时具有传感性能,且动作可靠,性能稳定,频率响应快,应用寿命长,抗干扰能力强等、并具有防水、防震、耐腐蚀等特点。产品有电感式、电容式、霍尔式、交、直流型。接近开关又称无触点接近开关,是理想的电子开关量传感器。当金属检测体接近开关的感应区域,开关就能无接触,无压力、无火花、迅速发出电气指令,准确反应出运动机构的位置和行程,即使用于一般的行程控制,其定位精度、操作频率、使用寿命、安装调整的方便性和对恶劣环境的适用能力,是一般机械式行程开关所不能相比的。它广泛地应用于机床、冶金、化工、轻纺和印刷等行业。在自动控制系统中可作为限位、计数、定位控制和自动保护环节等。

性能特点: ?在各类开关中,有一种对接近它物件有“感知”能力的元件——位移传感器。利用位移传感器对接近物体的敏感特性达到控制开关通或断的目的,这就是接近开关。 ?当有物体移向接近开关,并接近到一定距离时,位移传感器才有“感知”,开关才会动作。通常把这个距离叫“检出距离”。但不同的接近开关检出距离也不同。 ?有时被检测验物体是按一定的时间间隔,一个接一个地移向接近开关,又一个一个地离开,这样不断地重复。不同的接近开关,对检测对象的响应能力是不同的。这种响应特性被称为“响应频率”。

分类: ?无源接近开关这种开关不需要电源,通过磁力感应控制开 关的闭合状态。当磁或者铁质 触发器靠近开关磁场时,和开 关内部磁力作用控制闭合。特 点:不需要电源,非接触式, 免维护,环保

简单二阶有源低通滤波器电路及幅频特性

简单二阶有源低通滤波器电路及幅频特性 为了使输出电压在高频段以更快的速率下降,以改善滤波效果,再加一节RC o (1)通带增益 当f=0时,各电容器可视为开路,通带内的增益为 低通滤波环节,称为二阶有源滤波电路。它比一阶低通滤波器的滤波效果更好二阶LPF的电路图如图6所示,幅频特性曲线如图7所示。 1- (2)二阶低通有源滤波器传递函数根据图8-2.06可以写出

丄“盘斗丄〕 俯二一礎 通常有,联立求解以上三式,可得滤波器的传递函数 臥)—九… (3)通带截止频率 将s 换成j 3,令3 0 = 2n f o=1/(RC)可得 当f=fp时,上式分母的模 ="丿厶 I Vo Z 与理想的二阶波特图相比,在超过fO以后,幅频特性以-40 dB/dec的速率下降,比一阶的下降快。但在通带截止频率fp -fO之间幅频特性下降的还不够快。 摘要设计一种压控电压源型二阶有源低通滤波电路,并利用MultisimIO仿真软件对电路的频率特性、特征参量等进行了仿真分析,仿真结果与理论设计一致,为有源滤波器的电路设计提供了EDA手段和依据。 关键词二阶有源低通滤波器;电路设计自动化;仿真分析;MultisimIO 滤波器是一种使用信号通过而同时抑制无用频率信号的电子装置,在信息处理、数据传送和抑制干扰等自动控制、通信及其它电子系统中应用广泛。滤波一般可分为有源滤波和无源滤波,有源滤波可以使幅频特性比较陡峭,而无源滤波设计简单易行,但幅频特性不如有源滤波器,而且体积较大。从滤波器阶数可分为一阶和高阶,阶数越高,幅频特性越陡峭。高阶滤波器通常可由一阶和二阶滤波器级联而成。采用集成运放构成的RC有源滤波器具有输入阻抗高,输出阻抗低,可提供一定增益,截止频率可调等特点。压控电压源型二阶低通滤波电路是有源滤波电路的重要一种,适合作为多级放大器的级联。本文根据实际要求设计一种压控电压源型二阶有源低通滤波电路,采用EDA仿真软件Multisim1O对压控电压源型二阶有源低通滤波电路进行仿真分析、调试,从而实现电路的优化设计。 1设计分析 1.1二阶有源滤波器的典型结构 二阶有源滤波器的典型结构如图1所示。其中,丫1?丫5为导纳,考虑到UP=UN

凸轮轴和配气相位:配气机构精髓所在

凸轮轴和配气相位:配气机构精髓所在对于四冲程汽油机来说,发动机能够良好工作的基础有四点:一是需要良好的气缸密封性,保证气缸压力正常,这由活塞、气缸、活塞环、气缸垫、气门、缸盖保证;二是合适混合气的浓度,这由燃油供给系统指供;三是良好的润滑和冷却、这由发动机的冷却系统来保证;四是足够的点火能量,这由点火系统提供;五是正确的配气时间和点火时间:即在进气时进气门适时的打开,当压缩和作功时必须关闭,当排气时排气门要及时打开,保证燃烧后的废气排出。在混合气被压缩到一定程度后,点火系统要适时的点燃混合气。对于这些必需有时间保证的控制,在原系统的设计的基础上,需要维修工在装配时保证配气时间和点火时间的正确,这些操作的理论基础即是发动机的工作原理和配气相位。面对多种设计的配气机构和点火系统,本文将分析发动机工作原理和配气机位在发动机维修中的指导意义。 配气相位是研究发动机工作时气门的开启和关闭时间的,配气相位的基础是气门的早开和晚关。因为气门的开启和关闭由凸轮驱动,而凸轮的曲线设计决定了气门在打开和关闭时需要一段时间,而全开的时间更短,为了保证充气效率,在凸轮设计上保证气门提前打开并迟后关闭。 理解四冲程发动机的工作原理对理解配气相位有重要作用 为了了解配气相位,要从四冲程发动机的工作原理中应掌握三点内容: 一是进气、压缩、作功、排气这四个冲程中活塞的运动方向,冲程开始时活塞处于哪个点、结束时处于哪个点:进气和作功活塞下行,开始于上止点、结束于下止点;压缩与排气活塞上行,开始于下止点、结束于上止点。

二是四个冲程中气门的状态:进气时进气门打开、排气时排气门打开,在其它冲程时处于关闭状态; 三是什么时间点火:压缩即将结束,活塞到达上止点前的某一时刻,火花塞点燃气缸的混合气; 进气门开启时间:为了实现进气门早开,在进气冲程的前一个冲程即排气冲程即将结束时,也就是活塞到达上止点前某刻进气门开始开启,当排气结束活塞处于上止点时,进气门处于微开状态,这体现了进气门的早开。 进气门完全关闭时间:进气结束活塞处于下止点时,进气门并没有完全关闭,当活塞上行一段,此时已是压缩冲程,进气门才完全关闭,这体现了进气门的晚关。 排气门开启时间:为了实现排气门早开,在排气冲程的前一个冲程即作功冲程即将结束时,也就是活塞到达下止点前某刻排气门开始开启,当作功结束活塞处于下止点时,排气门处于微开状态,这体现了排气门的早开。 排气门完全关闭时间:排气结束活塞处于上止点时,排气门并没有完全关闭,当活塞下行一段,此时已是进气冲程,排气门才完全关闭,这体现了排气门的晚关。 配气相位中重要的是两个点:压缩结束上止点和排气结束上止点。在压缩结束活塞处于上止点时,进气门和排气门均处于完全关闭状态;而在排气结束活塞处于上止点时,进气门和排气门均没有完全关闭,此时即将完全关闭的是排气门、而即将打开的是进气门。 维修中的应用主要是能依据凸轮轴位置来判断某缸是处于压缩结束还是排气结束上止点。 多缸发动机同位缸的概念 多缸发动机为了保证工作平稳,要求各缸作功应均匀间隔,所以在曲轴的设计上出现了有两个缸的活塞运动方向相同,此时的两个缸被称为同位缸。当两缸活塞上行时,一个缸处于压缩冲程、另一个缸处于排气冲程,当他们处于上止点时,运用配气相位的知识,通过凸轮轴位置可以判断哪个缸处于排气结束,哪个缸处于压缩结束:两个气门均完全关闭的气缸处于压缩结束,而两个气门均处于微开一点的气缸是排气结束。 满足配气相位的要求,在曲轴的驱动下,定时的打开的关闭气门;采取化油器供油的发动机,凸轮轴上还设有偏心轮,用于驱动汽油泵;同时凸轮轴上的螺旋齿轮驱动分电器,有些发动机的螺旋齿轮同时驱动分电器和机油泵

高压真空断路器动作特性测试——实验指导书

实验一高压真空断路器动作特性测试 一、实验目的 1.熟悉12kV真空断路器的技术参数以及认识其内部结构。 2.掌握其储能、合闸、分闸操作过程。 3.利用断路器动特性分析仪测量得到合闸、分闸的相关数据。 二、主要实验设备 1.ZN63A(VS1)型户内高压真空断路器4台 2.TLHG-305断路器动特性分析仪 3.旋转传感器 三、实验方法 VS1(ZN63A)型户内高压真空断路器(以下简称断路器)是用于12KV电力系统中的户内开关设备,作为电网设备、工矿企业动力设备的保护和控制单元。由于真空断路器的特殊优越性,尤其适用于要求额定工作电流的频繁操作或多次开断短路电流的场所。 断路器采用操动机构与断路器本体一体式设计,既可作固定安装单元,也可配置专用推进机构,组成手车单元使用。 1.真空断路器的技术参数和内部结构 主要规格及技术参数见下表。

操动机构为平面布置的弹簧操动机构,具有手动储能和电动储能,操动机构置于灭弧室前的机箱内,机箱被四块中间隔板分成五个装配空间,其间分别装有操动机构的储能部分、传动部分、脱扣部分和缓冲部分,断路器将灭弧室与操动机构前后布置组成统一整体,即采用整体型布置,这种结构设计,可使操作机构的操作性能与灭弧室开合所需性能更为吻合,减少不必要的中间传动环节,降低了能耗和噪声,使断路器的操作性能更为可靠,断路器既可装入手车式开关柜,也可装入固定式开关柜(具体参见图1、图2)。

2.实验步骤与内容 (1)掌握断路器的储能、合闸、分闸操作过程。 1)储能操作:使用摇把插入手动储能孔中逆时针摇动带动链轮传动系统运动,链轮转动时带动储能轴跟随转动,并通过拐臂拉伸合闸弹簧进行储能。到达储能位置时,框架上的限位杆压下滑块使储能轴与链条传动系统脱开,储能保持掣子顶住滚轮保持储能位置,同时储能轴上连板带动储能指示牌翻转显示“已储能”标记,此时断路器处于合闸准备状态。 2)合闸操作:用手按下“合闸”按钮使储能保护轴转动,使掣子松开滚轮,合闸弹簧收缩同时通过拐臂使储能轴和轴上的凸轮转动,凸轮又驱动连杆机构带

低通滤波器设计实验报告

低通滤波器设计 一、设计目的 1、学习对二阶有源RC 滤波器电路的设计与分析; 2、练习使用软件ORCAD (PISPICE )绘制滤波电路; 3、掌握在ORCAD (PISPICE )中仿真观察滤波电路的幅频特性与相频特性曲线 。 二、设计指标 1、设计低通滤波器截止频率为W=2*10^5rad/s; 2、品质因数Q=1/2; 三、设计步骤 1、考虑到原件分散性对整个电路灵敏度的影响,我们选择R1=R2=R,C1=C2=C ,来减少原件分散性带来的问题; 2、考虑到电容种类比较少,我们先选择电容的值,选择电容C=1nF; 3、由给定的Wp 值,求出R 12121C C R R Wp ==RC 1=2*10^5 解得:R=5K ? 4、根据给定的Q ,求解K Q=2121C C R R /K)RC -(1+r2)C1+(R1= K -31 解得:K=3-Q 1=1.286 5、根据求出K 值,确定Ra 与Rb 的值

Ra=2 K=1+ Rb Ra=Rb 这里取Ra=Rb=10K?; 四、电路仿真 1、电路仿真图: 2、低通滤波器幅频特性曲线 3、低通滤波器相频特性曲线 注:改变电容的值:当C1=C2=C=10nF时 低通滤波器幅频特性曲线 低通滤波器相频特性曲线 五、参数分析 1、从幅频特性图看出:该低通滤波器的截止频率大约33KHz, 而我们指标要求设计截止频率 f= Wp/2?=31.847KHz 存在明显误差; 2、从幅频特性曲线看出,在截至频率附近出现凸起情况,这是二阶滤波器所特有的特性; 3、从相频特性曲线看出,该低通滤波器的相频特性相比比较好。 4、改变电容电阻的值,发现幅频特性曲线稍有不同,因此,我们在设计高精度低误差的滤波器时一定要注意原件参数的选择。 六、设计心得: 通过对给定参数指标的地滤波器的仿真设计,一方面学会了在

旋转编码器在线速度检测控制中的应用

在电缆生产线上,通常需要检测电缆的走线速度,用来控制收线电机的转速和计算线缆的长度。成缆工艺参数的稳定,直接关系到电线电缆的质量。 该项目是为某电缆厂的技术改造项目,要改造的设备是利用束线原理制造的盘绞式成缆机,改造的内容是更换全部电气控制系统。这种成缆机的放线盘固定,而收线盘固定在盘绞架上同时完成绞合和收线的双重运动。工作时,在线缆盘直流电机的带动下,完成电缆的收线运动,在排线电机的带动下实现电缆在收线盘的整齐排列。在大盘电机的带动下,通过齿轮箱带动盘绞架实现轴向旋转,完成电缆绞合运动,是保证节距的关键。线速度是由收线盘的旋转速度决定的,如果收线电机的转速恒定,收线盘随着收线轴的变粗,线速度会增大,因此,为保证收线速度恒定,要逐渐降低收线电机的转速。 1 系统设计原理 根据电缆的生产工艺要求,不同型号的电缆,其走线速度是恒定的。通常,电缆的运行速度是由电缆带动旋转编码器来检测的。电缆线速度测速示意图如图1所示。 该项目中,采用的旋转编码器的型号是TRDJ1000系列,旋转一周输出1 000个脉冲。因此,根据在一定时间内检测到的脉冲数,就可以计算出电缆的走线速度。实际应用中,将其与一加工精度极高、周长为500 mm的旋转编码器测量主动轮与旋转编码器同轴安装,主动轮与电缆接触。在电缆生产运动过程中,依靠摩擦力拉动测量轮旋转,这样就把电缆的直线位移(长度)转化为旋转编码器的脉冲数字信号输出。

设旋转编码器每旋转一周,其计数脉冲个数为NP(脉冲个数/转),则旋转编码器角分辨率(单位:(°)/个)为: P=360/NP 假定固定在旋转编码器转轴上的主动导向轮半径为r m,则旋转编码器位移分辨率(单位:m/个)为: Ps=27πr/NP 这时,若计数脉冲个数为N(个),则由旋转编码器测量的位移量S(单位:m)为: S=Ps·N 线缆走线速度V(单位:m/s)为: V=S/T 式中:T为接收N个脉冲所用的时间(单位:s)。 2 硬件电路设计原理 该检测电路以AT89C51单片机为控制核心,如图2所示,旋转编码器输出的脉冲,经过电平转换,变成O~5 V的TTL电平脉冲,送到AT89 C51单片机的外部中断INT0端。每收到

四种滤波器的幅频特性

四种滤波器的幅频特性 本次实验是观察四种滤波器(低通、高通、带宽、带阻)的幅频特性,以加强对各 种滤波器的功能认知。本次实验我们选用的放大器为324型,其功能图如下所示: 下面我们来逐步观察一下四种滤波器的特性。 1.低通滤波器 其电路图如下所示: 图中,电阻R1=R2=R=10KΩ,C1=C2=,Ro==8Ω,Vcc+=+12V, Vcc-=-12V,低通滤波器的传递函数 2 2 2 ) ( ω αω ω + + = s s K s H p, ,其中 2 2 2 1 1 2 1 2 1 1 1 1 1 ; 1 ; 1 C R K R R C C C R R R R K K f f p - + ?? ? ? ? ? + = = + = =αω ω 带入数据w。=10000rad/s,Kp=,α=, ()()22 2 2 2 2 25 / 24 25 /7 8.1 ) ( ω ω ω ω ω + - = j H;

当w =0时)(ωj H =,;w 增加且w<4800rad/s 时,)(ωj H 增加;当>4800rad/s 时, )(ωj H 减小,;w 趋近无穷时, )(ωj H 趋近于0。此时wc=s 。 对于不同的α,滤波器的幅频特性也不相同 对于实验中的低通,α=,与的相似,我们对于实验数据的测量如下: 输入为100mV 频率f (Hz ) 输出V (v ) 频率f (Hz ) 输出V (v ) 10 2200 30 2300 50 2400 100 2500 200 2600 500 2700 800 2800 1000 2900 1100 3000 1200 3500 1300 4000 1400 4500 1500 5000 1600 5500 1700 6000 1800 7000 1900 8000 2000 9000 2100 10000 范围10~6kHz 输出不失真 绘出的幅频特性图如下:

绝对旋转编码器

绝对旋转编码器 增量式编码器的缺点是启用或加电时要执行回零操作以确定位置参数的起点,而即使是很短时间的停电也会造成位置信息的丢失。而绝对式编码器则没有这样的缺点。 绝对编码器的码盘由多个同心的码道(track)组成,这些码道沿径向顺序具有各自不同的二进制权值。每个码道上按其权值划分为遮光和透光段,分别代表二进制的O和1。与码道个数相同的光电器件分别与各自对应的码道对准并沿码盘的半径直线排列。通过这些光电器件的检测可以产生绝对位置的二进制编码。绝对编码器对于转轴的每个位置均产生唯一的二进制编码,因此可用于确定绝对位置。绝对位置的分辨率取决于二进制编码的位数亦即码道的个数。例如一个10码道的编码器可以产生1024个位置,角度的分辨率为21,6”。目前绝对编码器已可以做到有17个码道。

可以图12.5中的4位绝对码盘来说明旋转绝对编码器的工作原理。图中左边的码盘采用标准二进制编码,其优点是可以直接用于进行绝对位置的换算。但是这种码盘在实际中很少采用,因为其在两个位置的边缘交替或来回摆动时,由于码盘制作或光电器件排列的误差常会产生编码数据的大幅度跳动,导致位置显示和控制的失常。例如在位置0111与1000的交界处,可能会出现1111、1110、1011、0101等数据。因此绝对编码器一般采用图12.5中右边的又称为格雷码的循环二进制码盘。 格雷编码的特点是相邻两个数据之间只有一位数据的变化,因此在测量过程中不会产生数据大幅度跳动即通常所称的不确定或模糊现象。格雷码在本质上是一种对二进制的加密处理,其每位不再具有固定的权值,必须经过一个解码过程转换为二进制码,然后才能得到位置信息。这个解码过程可通过硬件解码器或软件来实现。格雷码和二进制的关系及其特点可概括如下: (1)两者的最高有效位相等。 (2)格雷码中除最高位外,其他各位以总数的1/2对称。 (3)两种编码除最高位以外其他各位的关系由下式计算

四种滤波器的幅频特性教程文件

四种滤波器的幅频特 性

四种滤波器的幅频特性 本次实验是观察四种滤波器(低通、高通、带宽、带阻)的幅频特性,以加强对各种滤波器的功能认知。本次实验我们选用的放大器为324型,其功能图如下所示: 下面我们来逐步观察一下四种滤波器的特性。 1.低通滤波器 其电路图如下所示: 图中,电阻R1=R2=R=10KΩ,C1=C2=0.01uF,Ro=0.8R=8Ω,Vcc+= +12V,

Vcc-=-12V ,低通滤波器的传递函数20 02 2 )( ω αωω++=s s K s H p , ,其中 2 221102 121001111; 1; 1C R K R R C C C R R R R K K f f p -+???? ??+== +==αωω带入数据w 。=10000rad/s ,Kp =1.8,α=1.2, ()( ) 2 2 2202 2 25/2425/78.1)(ωωω ωω+-= j H ; 当w =0时)(ωj H =1.8,;w 增加且w<4800rad/s 时,)(ωj H 增加;当>4800rad/s 时, )(ωj H 减小,;w 趋近无穷时, )(ωj H 趋近于0。此时wc=1.17rad/s 。 对于不同的α,滤波器的幅频特性也不相同 对于实验中的低通,α=1.2,与1.25的相似,我们对于实验数据的测量如下: 输入为100mV 频率f (Hz ) 输出V (v ) 频率f (Hz ) 输出V (v ) 10 1.965 2200 0.756 30 1.965 2300 0.698 50 1.960 2400 0.650 100 1.950 2500 0.596 200 1.945 2600 0.548

相关文档
最新文档