高一数学对数函数及其性质4
数学必修一第四章知识点总结
高中数学人教必修第一册第四章知识点讲解对数函数及其性质1.对数函数的概念(1)定义:一般地,我们把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).(2)对数函数的特征:a x 的系数:1a x 的底数:常数,且是不等于1的正实数a x 的真数:仅是自变量x判断一个函数是否为对数函数,只需看此函数是否具备了对数函数的特征.比如函数y =log 7x 是对数函数,而函数y =-3log 4x 和y =log x 2均不是对数函数,其原因是不符合对数函数解析式的特点.【例1-1】函数f (x )=(a 2-a +1)log (a +1)x 是对数函数,则实数a =__________.解析:由a 2-a +1=1,解得a =0,1.又a +1>0,且a +1≠1,∴a =1.答案:1【例1-2】下列函数中是对数函数的为__________.(1)y =log(a >0,且a ≠1);(2)y =log 2x +2;(3)y =8log 2(x +1);(4)y =log x 6(x >0,且x ≠1);(5)y =log 6x .解析:答案:2.对数函数y =log a x (a >0,且a ≠1)的图象与性质(1)图象与性质a >10<a <1图象性质(1)定义域{x |x >0}(2)值域{y |y R }(3)当x =1时,y =0,即过定点(1,0)(4)当x >1时,y >0;当0<x <1时,y <0(4)当x >1时,y <0;当0<x <1时,y >0(5)在(0,+∞)上是增函数(5)在(0,+∞)上是减函数谈重点对对数函数图象与性质的理解对数函数的图象恒在y 轴右侧,其单调性取决于底数.a >1时,函数单调递增;0<a <1时,函数单调递减.理解和掌握对数函数的图象和性质的关键是会画对数函数的图象,在掌握图象的基础上性质就容易理解了.我们要注意数形结合思想的应用.(2)指数函数与对数函数的性质比较解析式y =a x (a >0,且a ≠1)y =log a x (a >0,且a ≠1)性质定义域R (0,+∞)值域(0,+∞)R过定点(0,1)(1,0)单调性单调性一致,同为增函数或减函数奇偶性奇偶性一致,都既不是奇函数也不是偶函数(3)底数a 对对数函数的图象的影响①底数a 与1的大小关系决定了对数函数图象的“升降”:当a>1时,对数函数的图象“上升”;当0<a <1时,对数函数的图象“下降”.②底数的大小决定了图象相对位置的高低:不论是a >1还是0<a <1,在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.点技巧对数函数图象的记忆口诀两支喇叭花手中拿,(1,0)点处把花扎,若是底数小于1,左上穿点渐右下,若是底数大于1,左下穿点渐右上,绕点旋转底变化,顺时方向底变大,可用直线y =1来切,自左到右a 变大.【例2】如图所示的曲线是对数函数y =log a x 的图象.已知a,43,35,110中取值,则相应曲线C 1,C 2,C 3,C4的a 值依次为()A 43,35,110B 43,110,35C .43,,35,110D .43110,35解析:由底数对对数函数图象的影响这一性质可知,C 4的底数<C 3的底数<C 2的底数<C 1的底数.故相应于曲线C 1,C 2,C 3,C 4,43,35,110.答案:A点技巧根据图象判断对数函数的底数大小的方法(1)方法一:利用底数对对数函数图象影响的规律:在x 轴上方“底大图右”,在x 轴下方“底大图左”;(2)方法二:作直线y =1,它与各曲线的交点的横坐标就是各对数的底数,由此判断各底数的大小.3.反函数(1)对数函数的反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数.(2)互为反函数的两个函数之间的关系①原函数的定义域、值域是其反函数的值域、定义域;②互为反函数的两个函数的图象关于直线y =x 对称.(3)求已知函数的反函数,一般步骤如下:①由y =f (x )解出x ,即用y 表示出x ;②把x 替换为y ,y 替换为x ;③根据y =f (x )的值域,写出其反函数的定义域.【例3-1】若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=()A .log 2xB .12xC .12log xD .2x-2解析:因为函数y =a x (a >0,且a ≠1)的反函数是f (x )=log a x ,又f (2)=1,即log a 2=1,所以a =2.故f (x )=log 2x .答案:A【例3-2】函数f (x )=3x (0<x ≤2)的反函数的定义域为()A .(0,+∞)B .(1,9]C .(0,1)D .[9,+∞)解析:∵0<x ≤2,∴1<3x ≤9,即函数f (x )的值域为(1,9].故函数f (x )的反函数的定义域为(1,9].答案:B【例3-3】若函数y =f (x )的反函数图象过点(1,5),则函数y =f (x )的图象必过点()A .(5,1)B .(1,5)C .(1,1)D .(5,5)解析:由于原函数与反函数的图象关于直线y =x 对称,而点(1,5)关于直线y =x 的对称点为(5,1),所以函数y =f (x )的图象必经过点(5,1).答案:A 4.利用待定系数法求对数函数的解析式及函数值对数函数的解析式y =log a x (a >0,且a ≠1)中仅含有一个常数a ,则只需要一个条件即可确定对数函数的解析式,这样的条件往往是已知f (m )=n 或图象过点(m ,n )等等.通常利用待定系数法求解,设出对数函数的解析式f (x )=log a x (a >0,且a ≠1),利用已知条件列方程求出常数a 的值.利用待定系数法求对数函数的解析式时,常常遇到解方程,比如log a m =n ,这时先把对数式log a m =n 化为指数式的形式a n =m ,把m 化为以n 为指数的指数幂形式m =k n (k >0,且k ≠1),则解得a =k >0.还可以直接写出1na m =,再利用指数幂的运算性质化简1nm .例如:解方程log a 4=-2,则a -2=4,由于2142-⎛⎫= ⎪⎝⎭,所以12a =±.又a >0,所以12a =.当然,也可以直接写出124a -=,再利用指数幂的运算性质,得11212214(2)22a ---====.【例4-1】已知f (e x )=x ,则f (5)=()A .e 5B .5eC .ln 5D .log 5e解析:(方法一)令t =e x,则x =ln t ,所以f (t )=ln t ,即f (x )=ln x .所以f (5)=ln 5.(方法二)令e x =5,则x =ln 5,所以f (5)=ln 5.答案:C【例4-2】已知对数函数f (x )的图象经过点1,29⎛⎫⎪⎝⎭,试求f (3)的值.分析:设出函数f (x )的解析式,利用待定系数法即可求出.解:设f (x )=log a x (a >0,且a ≠1),∵对数函数f (x )的图象经过点1,29⎛⎫⎪⎝⎭,∴11log 299a f ⎛⎫== ⎪⎝⎭.∴a 2=19.∴a =11222111933⎡⎤⎛⎫⎛⎫==⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.∴f (x )=13log x .∴f (3)=111331log 3log 3-⎛⎫= ⎪⎝⎭=-1.【例4-3】已知对数函数f (x )的反函数的图象过点(2,9),且f (b )=12,试求b 的值.解:设f (x )=log a x (a >0,且a ≠1),则它的反函数为y =a x (a >0,且a ≠1),由条件知a 2=9=32,从而a =3.于是f (x )=log 3x ,则f (b )=log 3b =12,解得b=123=5.对数型函数的定义域的求解(1)对数函数的定义域为(0,+∞).(2)在求对数型函数的定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.一般地,判断类似于y =log a f (x )的定义域时,应首先保证f (x )>0.(3)求函数的定义域应满足以下原则:①分式中分母不等于零;②偶次根式中被开方数大于或等于零;③指数为零的幂的底数不等于零;④对数的底数大于零且不等于1;⑤对数的真数大于零,如果在一个函数中数条并存,求交集.【例5】求下列函数的定义域.(1)y =5(2x -1)(5x -4);(3)y =.分析:利用对数函数y =log a x (a >0,且a ≠1)的定义求解.解:(1)要使函数有意义,则1-x >0,解得x <1,所以函数y =log 5(1-x )的定义域是{x |x <1}.(2)要使函数有意义,则54>0,21>0,211,x x x -⎧⎪-⎨⎪-≠⎩解得x >45且x ≠1,所以函数y =log (2x -1)(5x -4)的定义域是4,15⎛⎫⎪⎝⎭(1,+∞).(3)要使函数有意义,则0.5430,log(43)0,x x ->⎧⎨-≥⎩解得34<x ≤1,所以函数y =的定义域是3<14x x ⎧⎫≤⎨⎬⎩⎭.6.对数型函数的值域的求解(1)充分利用函数的单调性和图象是求函数值域的常用方法.(2)对于形如y =log a f (x )(a >0,且a ≠1)的复合函数,其值域的求解步骤如下:①分解成y =log a u ,u =f (x )这两个函数;②求f (x )的定义域;③求u 的取值范围;④利用y =log a u 的单调性求解.(3)对于函数y =f (log a x )(a >0,且a ≠1),可利用换元法,设log a x =t ,则函数f (t )(t ∈R )的值域就是函数f (log a x )(a >0,且a ≠1)的值域.注意:(1)若对数函数的底数是含字母的代数式(或单独一个字母),要考查其单调性,就必须对底数进行分类讨论.(2)求对数函数的值域时,一定要注意定义域对它的影响.当对数函数中含有参数时,有时需讨论参数的取值范围.【例6-1】求下列函数的值域:(1)y =log 2(x 2+4);(2)y =212log (32)x x +-.解:(1)∵x 2+4≥4,∴log 2(x 2+4)≥log 24=2.∴函数y =log 2(x 2+4)的值域为[2,+∞).(2)设u =3+2x -x 2,则u =-(x -1)2+4≤4.∵u >0,∴0<u ≤4.又y =12log u 在(0,+∞)上为减函数,∴12log u ≥-2.∴函数y =212log (32)x x +-的值域为[-2,+∞).【例6-2】已知f (x )=2+log 3x ,x ∈[1,3],求y =[f (x )]2+f (x 2)的最大值及相应的x 的值.分析:先确定y =[f (x )]2+f (x 2)的定义域,然后转化成关于log 3x 的一个一元二次函数,利用一元二次函数求最值.解:∵f (x )=2+log 3x ,x ∈[1,3],∴y =[f (x )]2+f (x 2)=(log 3x )2+6log 3x +6且定义域为[1,3].令t =log 3x (x ∈[1,3]).∵t =log 3x 在区间[1,3]上是增函数,∴0≤t ≤1.从而要求y =[f (x )]2+f (x 2)在区间[1,3]上的最大值,只需求y =t 2+6t +6在区间[0,1]上的最大值即可.∵y =t 2+6t +6在[-3,+∞)上是增函数,∴当t =1,即x =3时,y max =1+6+6=13.综上可知,当x =3时,y =[f (x )]2+f (x 2)的最大值为13.7.对数函数的图象变换及定点问题(1)与对数函数有关的函数图象过定点问题对数函数y =log a x (a >0,且a ≠1)过定点(1,0),即对任意的a >0,且a ≠1都有log a 1=0.这是解决与对数函数有关的函数图象问题的关键.对于函数y =b +k log a f (x )(k ,b 均为常数,且k ≠0),令f (x )=1,解方程得x =m ,则该函数恒过定点(m ,b ).方程f (x )=0的解的个数等于该函数图象恒过定点的个数.(2)对数函数的图象变换的问题①函数y =log a x (a >0,且a ≠1)――----------------→向左(b >0)或向右(b <0)平移|b |个单位长度函数y =log a (x +b )(a >0,且a ≠1)②函数y =log a x (a >0,且a ≠1)――---------------→向上(b >0)或向下(b <0)平移|b |个单位长度函数y =log a x +b (a >0,且a ≠1)③函数y =log a x (a >0,且a ≠1)―----------------―→当x >0时,两函数图象相同当x <0时,将x >0时的图象关于y 轴对称函数y =log a |x |(a >0,且a ≠1)④函数y =log a x (a >0,且a ≠1)――----------------------------------------→保留x 轴上方的图象同时将x 轴下方的图象作关于x 轴的对称变换函数y =|log a x |(a >0,且a ≠1)【例7-1】若函数y =log a (x +b )+c (a >0,且a ≠1)的图象恒过定点(3,2),则实数b ,c 的值分别为__________.解析:∵函数的图象恒过定点(3,2),∴将(3,2)代入y =log a (x +b )+c (a >0,且a ≠1),得2=log a (3+b )+c .又∵当a >0,且a ≠1时,log a 1=0恒成立,∴c =2.∴log a (3+b )=0.∴b =-2.答案:-2,2【例7-2】作出函数y =|log 2(x +1)|+2的图象.解:(第一步)作函数y =log 2x 的图象,如图①;(第二步)将函数y =log 2x 的图象沿x 轴向左平移1个单位长度,得函数y =log 2(x +1)的图象,如图②;(第三步)将函数y =log 2(x +1)在x 轴下方的图象作关于x 轴的对称变换,得函数y =|log 2(x +1)|的图象,如图③;(第四步)将函数y =|log 2(x +1)|的图象,沿y 轴方向向上平移2个单位长度,便得到所求函数的图象,如图④.8.利用对数函数的单调性比较大小两个对数式的大小比较有以下几种情况:(1)底数相同,真数不同.比较同底数(是具体的数值)的对数大小,构造对数函数,利用对数函数的单调性比较大小.要注意:明确所给的两个值是哪个对数函数的两个函数值;明确对数函数的底数与1的大小关系;最后根据对数函数的单调性判断大小.(2)底数不同,真数相同.若对数式的底数不同而真数相同时,可以利用顺时针方向底数增大画出函数的图象,再进行比较,也可以先用换底公式化为同底后,再进行比较.(3)底数不同,真数也不同.对数式的底数不同且指数也不同时,常借助中间量0,1进行比较.(4)对于多个对数式的大小比较,应先根据每个数的结构特征,以及它们与“0”和“1”的大小情况,进行分组,再比较各组内的数值的大小即可.注意:对于含有参数的两个对数值的大小比较,要注意对底数是否大于1进行分类讨论.【例8-1】比较下列各组中两个值的大小.(1)log31.9,log32;(2)log23,log0.32;(3)log aπ,log a3.141.分析:(1)构造函数y=log3x,利用其单调性比较;(2)分别比较与0的大小;(3)分类讨论底数的取值范围.解:(1)因为函数y=log3x在(0,+∞)上是增函数,所以f(1.9)<f(2).所以log31.9<log32.(2)因为log23>log21=0,log0.32<log0.31=0,所以log23>log0.32.(3)当a>1时,函数y=log a x在定义域上是增函数,则有log aπ>log a3.141;当0<a<1时,函数y=log a x在定义域上是减函数,则有log aπ<log a3.141.综上所得,当a>1时,log aπ>log a3.141;当0<a<1时,log aπ<log a3.141.【例8-2】若a2>b>a>1,试比较log a ab,log bba,log b a,log a b的大小.分析:利用对数函数的单调性或图象进行判断.解:∵b>a>1,∴0<ab<1.∴log a ab<0,log a b>log a a=1,log b1<log b a<log b b,即0<log b a<1.由于1<b a <b ,∴0<log b b a <1.由log b a -log b ba=2log b a b ,∵a 2>b >1,∴2ab>1.∴2log b a b >0,即log b a >log b b a.∴log a b >log b a >log b b a >log a ab.9.利用对数函数的单调性解对数不等式(1)根据对数函数的单调性,当a >0,且a ≠1时,有①log a f (x )=log a g (x )⇔f (x )=g (x )(f (x )>0,g (x )>0);②当a >1时,log a f (x )>log a g (x )⇔f (x )>g (x )(f (x )>0,g (x )>0);③当0<a <1时,log a f (x )>log a g (x )⇔f (x )<g (x )(f (x )>0,g (x )>0).(2)常见的对数不等式有三种类型:①形如log a f (x )>log a g (x )的不等式,借助函数y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论.②形如log a f (x )>b 的不等式,应将b 化为以a 为对数的对数式的形式,再借助函数y =log a x 的单调性求解.③形如log a f (x )>log b g (x )的不等式,基本方法是将不等式两边化为同底的两个对数值,利用对数函数的单调性来脱去对数符号,同时应保证真数大于零,取交集作为不等式的解集.④形如f (log a x )>0的不等式,可用换元法(令t =log a x ),先解f (t )>0,得到t 的取值范围.然后再解x 的范围.【例9-1】解下列不等式:(1)1177log log (4)x x >-;(2)log x (2x +1)>log x (3-x ).解:(1)由已知,得>0,4>0,<4,x x x x ⎧⎪-⎨⎪-⎩解得0<x <2.所以原不等式的解集是{x |0<x <2}.(2)当x >1时,有21>3,21>0,3>0,x x x x +-⎧⎪+⎨⎪-⎩解得1<x <3;当0<x <1时,有21<3,21>0,3>0,x x x x +-⎧⎪+⎨⎪-⎩解得0<x <23.所以原不等式的解集是20<<1<<33x x x ⎧⎫⎨⎬⎩⎭或.【例9-2】若22log 3a ⎛⎫ ⎪⎝⎭<1,求a 的取值范围.解:∵22log 3a ⎛⎫ ⎪⎝⎭<1,∴-1<2log 3a <1,即12log log log 3a a a a a <<.(1)∵当a >1时,y =log a x 为增函数,∴123a a <<.∴a >32,结合a >1,可知a >32.(2)∵当0<a <1时,y =log a x 为减函数,∴12>>3a a .∴a <23,结合0<a <1,知0<a <23.∴a 的取值范围是230<<>32a a a ⎧⎫⎨⎬⎩⎭,或.10.对数型函数单调性的讨论(1)解决与对数函数有关的函数的单调性问题的关键:一是看底数是否大于1,当底数未明确给出时,则应对底数a 是否大于1进行讨论;二是运用复合法来判断其单调性;三是注意其定义域.(2)关于形如y =log a f (x )一类函数的单调性,有以下结论:函数y =log a f (x )的单调性与函数u =f (x )(f (x )>0)的单调性,当a >1时相同,当0<a <1时相反.例如:求函数y =log 2(3-2x )的单调区间.分析:首先确定函数的定义域,函数y =log 2(3-2x )是由对数函数y =log 2u 和一次函数u =3-2x 复合而成,求其单调区间或值域时,应从函数u =3-2x 的单调性、值域入手,并结合函数y =log 2u 的单调性考虑.解:由3-2x >0,解得函数y =log 2(3-2x )∞设u =3-2x ,x ∞∵u =3-2x ∞y =log 2u 在(0,+∞)上单调递增,∴函数y =log 2(3-2x )∞∴函数y =log 2(3-2x )∞【例10-1】求函数y =log a (a -a x )解:(1)若a >1,则函数y =log a t 递增,且函数t =a -a x 递减.又∵a -a x >0,即a x <a ,∴x <1.∴函数y =log a (a -a x )在(-∞,1)上递减.(2)若0<a <1,则函数y =log a t 递减,且函数t =a -a x 递增.又∵a -a x >0,即a x <a ,∴x >1.∴函数y =log a (a -a x )在(1,+∞)上递减.综上所述,函数y =log a (a -a x )在其定义域上递减.析规律判断函数y =log a f (x )的单调性的方法函数y =log a f (x )可看成是y =log a u 与u =f (x )两个简单函数复合而成的,由复合函数单调性“同增异减”的规律即可判断.需特别注意的是,在求复合函数的单调性时,首先要考虑函数的定义域,即“定义域优先”.【例10-2】已知f (x )=12log (x 2-ax -a )在1,2⎛⎫-∞-⎪⎝⎭上是增函数,求a 的取值范围.解:1,2⎛⎫-∞-⎪⎝⎭是函数f (x )的递增区间,说明1,2⎛⎫-∞- ⎪⎝⎭是函数u =x 2-ax -a 的递减区间,由于是对数函数,还需保证真数大于0.令u (x )=x 2-ax -a ,∵f (x )=12log ()u x 在1,2⎛⎫-∞-⎪⎝⎭上是增函数,∴u (x )在1,2⎛⎫-∞-⎪⎝⎭上是减函数,且u (x )>0在1,2⎛⎫-∞- ⎪⎝⎭上恒成立.∴1,2210,2a u ⎧≥-⎪⎪⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩即1,10.42a aa ≥-⎧⎪⎨+-≥⎪⎩∴-1≤a ≤12.∴满足条件的a 的取值范围是112a a ⎧⎫-≤≤⎨⎬⎩⎭.11.对数型函数的奇偶性问题判断与对数函数有关的函数奇偶性的步骤是:(1)求函数的定义域,当定义域关于原点不对称时,则此函数既不是奇函数也不是偶函数,当定义域关于原点对称时,判断f (-x )与f (x )或-f (x )是否相等;(2)当f (-x )=f (x )时,此函数是偶函数;当f (-x )=-f (x )时,此函数是奇函数;(3)当f (-x )=f (x )且f (-x )=-f (x )时,此函数既是奇函数又是偶函数;(4)当f (-x )≠f (x )且f (-x )例如,判断函数f (x )=log )a x (x ∈R ,a >0,且a ≠1)的奇偶性.解:∵f (-x )+f (x )==log )a x -+log )a x )=log a (x 2+1-x 2)=log a 1=0,∴f (-x )=-f (x ).∴f (x )为奇函数.【例11】已知函数f (x )=1log 1axx+-(a >0,且a ≠1).(1)求函数f (x )的定义域;(2)判断函数f (x )的奇偶性;(3)求使f (x )>0的x 的取值范围.分析:对于第(2)问,依据函数奇偶性的定义证明即可.对于第(3)问,利用函数的单调性去掉对数符号,解出不等式.解:(1)由11xx+->0,得-1<x <1,故函数f (x )的定义域为(-1,1).(2)∵f (-x )=1log 1ax x -+=1log 1a xx+--=-f (x ),又由(1)知函数f (x )的定义域关于原点对称,∴函数f (x )是奇函数.(3)当a >1时,由1log 1a x x +->0=log a 1,得11xx+->1,解得0<x <1;当0<a <1时,由1log 1ax x +->0=log a 1,得0<11xx+-<1,解得-1<x <0.故当a >1时,x 的取值范围是{x |0<x <1};当0<a <1时,x 的取值范围是{x |-1<x <0}.12.对数型函数模型的实际应用地震震级的变化规律、溶液pH 的变化规律、航天问题等,可以用对数函数模型来研究.此类题目,通常给出函数解析式模型,但是解析式中含有其他字母参数.其解决步骤是:(1)审题:弄清题意,分清条件和结论,抓住关键的词和量,理顺数量关系;(2)建模:将文字语言转化成数学语言,利用数学知识,求出函数解析式模型中参数的值;(3)求模:求解函数模型,得到数学结论;(4)还原:将用数学方法得到的结论还原为实际问题的结论.由此看,直接给定参数待定的函数模型时,利用待定系数法的思想,代入已知的数据得到相关的方程而求得待定系数.一般求出函数模型后,还利用模型来研究一些其他问题.代入法、方程思想、对数运算性质,是解答此类问题的方法精髓.【例12】我国用长征二号F 型运载火箭成功发射了“神舟”七号载人飞船,实现了中国历史上第一次的太空漫步,令中国成为世界上第三个有能力把人送上太空并进行太空漫步的国家(其中,翟志刚完全出舱,刘伯明的头部和手部部分出舱).在不考虑空气阻力的条件下,假设火箭的最大速度y (单位:km/s)关于燃料重量x (单位:吨)的函数关系式为y =k ln(m +x )-k )+4ln 2(k ≠0),其中m 是箭体、搭载的飞行器、航天员的重量和.当燃料重量为-1)m 吨时,火箭的最大速度是4km/s .(1)求y =f (x );(2)已知长征二号F 型运载火箭的起飞重量是479.8吨(箭体、搭载的飞行器、航天员、燃料),火箭的最大速度为8km/s ,求装载的燃料重量(e =2.7,精确到0.1).解:(1)由题意得当x =(-1)m 时,y =4,则4=k ln[m +-1)m ]-k ln()+4ln 2,解得k =8.所以y =8ln(m +x )-)+4ln 2,即y =8ln m xm+.(2)由于m +x =479.8,则m =479.8-x ,令479.888ln479.8x=-,解得x ≈302.1.故火箭装载的燃料重量约为302.1吨.。
4-4 第二节 对数函数的图像和性质(教学课件)-高一数学人教A版(2019)必修第一册
新知探索
探究新知——“思”
上节课的学习中我们以y = log 2 x、 = 1 两个对数函
2
数为例,认识了什么叫做对数函数,那么同学们思考一下对
数函数的定义域、值域是什么?有没有定点呢?单调性呢?
新知探索
活动一:(小组合作完成对数函数的图像,观察两个函数图像有什么特点)
完成, 的对应值表,并用描点法画出函数 = 、 = 的图象.
底数越小,图象越靠近x 轴
底
大
图
低
题型一:对数函数的图象问题
例1.如图,若1 ,2 分别为函数 = 和 = 的图象,则(
A. 0 < < < 1
B. 0 < < < 1
C. > > 1
D. > > 1
).
解:由图知,对数函数在定义域内单调递减,所以0 < < 1,0 < < 1.
函数
a>1
底数
0<a<1
y
y
图象
1
o
定义域
1
x
(0,+∞)
o
x
(0,+∞)
值域
R
R
定点
(1,0)
(1,0)
值分布
当 x>1 时,y>0
当 0<x <1 时, y<0
当 x>1 时,y<0
当 0<x<1 时,y>0
单调性
趋势
在( 0 , + ∞ ) 上是增函数
底数越大,图象越靠近x轴
在( 0 , + ∞ )上是减函数
对数函数的性质也可以分为0 <
高一数学对数函数及其性质4
高一数学知识点对数函数
高一数学知识点对数函数对数函数是数学中重要的一类函数,它在高一数学学习中占据着重要的地位。
本文将对数函数的定义、性质和应用进行探讨,帮助同学们更好地理解和应用对数函数。
一、对数函数的定义对数函数是指以一个正数为底数,另一个正数为真数,求得的指数称为对数。
对数函数可以表示为y=logₐx,其中a为底数,x 为真数,y为对数。
在对数函数中,底数a通常取常用对数的底数10或自然对数的底数e。
二、对数函数的性质1. 对数函数的定义域和值域对数函数的定义域是正实数集,即x>0。
值域是全体实数集,即y∈R。
2. 对数函数的单调性对数函数随着真数的增大而单调增加。
3. 对数函数的图像特点对数函数的图像是一条逐渐上升的曲线,对数函数在x轴上的渐近线是y=0,对数函数在y轴上的渐近线是x=0。
4. 对数函数的奇偶性对数函数是奇函数,即f(-x)=-f(x)。
三、对数函数的应用1. 对数函数在科学计算中的应用对数函数在科学计算中有着广泛的应用。
以常用对数为例,常用对数的底数为10,它可以简化大数的运算。
例如,当我们需要计算10的n次方时,可以利用对数函数的性质,将幂运算转化为乘法运算。
2. 对数函数在指数增长中的应用对数函数在描述指数增长过程中经常被使用。
例如,人口增长模型中常常使用对数函数来描述人口的增长趋势,因为人口的增长一开始是指数级的,但随着时间的推移,增长速度逐渐减缓。
3. 对数函数在音乐与声音领域的应用对数函数在音乐与声音领域具有重要的应用。
在音乐中,音高是以对数函数的形式进行调节的,从而使得音高变化更加连续平稳。
在声音领域,声音强度的测量也可以利用对数函数进行,这是由于人类对声音的感知呈现对数关系。
四、对数函数的解题技巧在解题过程中,对数函数可以利用其性质和公式来简化计算。
常见的计算技巧包括:1. 对数与指数的互化对数函数和指数函数之间可以相互转化,通过利用对数函数和指数函数之间的相互关系,可以简化问题的计算。
高一数学对数函数及其性质4
英国威廉希尔官方网站
[单选]将某个证据与本案其他证据联系起来进行综合对比分析,加以认证,这种证据的审查方法是()。A.整合认证法B.资格确认法C.对照分析法D.比较取舍法 [问答题,简答题]何谓区段负责制? [单选,A1型题]下列各项中,不属于母儿血型不合的诊断要点的是()。A.血型、抗体效价测定B超检查C.胎盘功能检查D.羊水检查E.依据病史及症状 [单选,A1型题]下列有关偏倚分类,正确的是()A.分为选择偏倚、失访偏倚、信息偏倚和混杂偏倚四类B.分为失访偏倚、回忆偏倚和调查偏倚三种C.分为选择偏倚、信息偏倚和混杂偏倚三种D.分为Berkson偏倚,Neyman偏倚,检出征候偏倚和时间偏倚四种E.以上均正确 [判断题]轿车空调所需的动力和驱动汽车的动力都来自同一发动机,而采用专用发动机驱动制冷压缩机的一般是大客车空调系统。()A.正确B.错误 [单选]除规范有特殊规定外,人员密集场所一般要求每一个防火分区的安全疏散出口不应少于()个A、1B、2C、3D、4 [单选]慢性支气管炎肺气肿的酶系统改变,下面哪一项是正确的()A.α抗胰蛋白酶减少B.磷酸二酯酶减少C.真性胆碱酯酶活性正常D.腺苷酸环化酶增多E.蛋白分解酶减少 [单选]红色看起来觉得温暖,蓝色看起来觉得清凉是感觉的()现象A.适应B.后象C.对比D.联觉 [单选]下颌关节间隙正常值为()A.1.5mmB.1.8mmC.2.0mmD.2.5mmE.3.0mm [单选]反映岩层有机质丰度的指标不包括()。A.石油类沥青含量B.剩余有机碳含量C.烃与有机质的比值D.烃含量 [单选]测血压时,松开气门使汞柱缓慢下降,听到第一声搏动音时,袖带内压力A.大于心脏收缩压B.等于心脏收缩压C.小于心脏收缩压D.等于心脏舒张压E.小于心脏舒张压 [单选]具有祛风,通络,止痉作用的药物是()。A.白附子B.木瓜C.蕲蛇D.桑枝E.丝瓜络 [单选]下图所示的100元纸币是票面剩余二分之一至四分之三以下的残缺人民币,金融机构应()向持有人兑换。A、按原面额的一半B、按原面额全额C、按原面额的三分之一D、不予以 [单选,A型题]确定白喉棒状杆菌是否产毒素的依据是()A.菌体排列及异染颗粒B.在亚碲酸钾平板上的菌落生长特点C.Elek平板毒力试验D.锡克试验E.生化反应 [单选]以下关于索赔的说法中,不正确的是()。A.索赔具有双向性B.索赔只能由承包商向业主提出C.索赔以实际发生了经济损失或权利损害为前提D.索赔可分为工期索赔和费用索赔 [单选]食管癌的组织学分类中,最常见的是()A.腺癌B.梭状细胞癌C.髓样癌D.燕麦细胞癌E.鳞状细胞癌 [单选]患者,男,54岁,工人,吞咽时困难1个月,查体发现左锁骨上淋巴结肿大,如蚕豆大小.质硬,食管钡餐造影显示食管中段管壁僵硬,有充盈缺损,下列措施哪一项最合理()A.胸部CT检查B.纤维食管镜检查C.带网气囊食管脱落细胞检查D.同位素31P检查E.颈部淋巴结检查 [单选,A1型题]关于B超检查在诊断尿路结石方面的价值,下列哪项是错误的()A.能发现尿路平片不能显示的小结石和透光结石B.能发现结石所致的肾脏结构改变C.可直接显示双肾功能改变D.可用于无尿、慢性肾衰竭患者E.可用于对碘剂过敏或孕妇合并结石患者 [单选,A4型题,A3/A4型题]26岁女性,已婚2年,G1P0,婚后一直服用短效口服避孕药避孕,但意外妊娠,于孕50天行人工流产术。患者打算2年后妊娠,希望继续避孕,下列建议正确的是()A.停用口服避孕药,改用IUD避孕B.停用口服避孕药,改用长效避孕针C.停用口服避孕药,改用皮下埋植D [单选,A2型题,A1/A2型题]全脂奶粉按重量调配,奶粉与水的比例是()。A.1:8B.1:6C.1:4D.4:1E.2:1 [单选]下列不属于招标采购合同基本法律特点的是()。A.招标采购合同是一种民事法律行为B.招标采购合同是一种刑事法律行为C.招标采购合同是合同当事人意思表示一致的协议D.招标采购合同以设立、变更、终止民事权利义务关系为目的 [单选]客运专线预制梁混凝土拌和物入模前含气量应控制在()A、3.0~5.0%B、2.0~4.0%C、4.0~6.0% [填空题]夏季男西裤臀围的加放量是()厘米。 [问答题,简答题]燃烧调整的基本要求有哪些? [名词解释]微观市场营销学 [单选]乳疽的局部症状有()A.乳肿软绵B.乳坚硬木痛C.乳红肿热痛D.乳坚硬如石E.乳头溢液 [单选,A1型题]管饲饮食,一般配方含有()A.牛奶B.豆浆C.鸡蛋D.蔗糖E.以上都有 [单选]房屋建筑工程施工总承包一级资质项目经理()人以上。A.50B.30C.15D.12 [单选]具有翼板,能同时扩大上下牙弓的活动矫治器是()A.上颌双侧?垫矫治器B.带翼扩弓活动矫治器C.螺旋器分裂基托矫治器D.斜面导板矫治器E.Ctozat矫治器 [单选,A2型题,A1/A2型题]对注意缺陷多动障碍患儿的量表评定下列说法不正确的是()A.瑞文测试B.感觉统合核对表C.Achenbach儿童行为量表D.FIM量表E.希内智测法 [单选]无限大容量电力系统是指()。A.电源系统容量无限大B.当用户供电系统短路时,系统容量近似不变C.当用户供电系统短路时,系统输出电压近似不变。D.当用户供电系统短路时,系统输出功率不变 [单选,A1型题]有大毒,而功专拔毒祛腐的药是()A.铅丹B.升药C.白矾D.硼砂E.朱砂 [单选]滑坡裂缝出现在堤顶或堤坡上、顺堤方向、两端()延伸。A.直线B.无限C.向坡上D.向坡下弯曲 [问答题,简答题]优质护理服务的内涵是什么? [名词解释]电子数据交换 [单选]信用衍生工具是指信用活动与信用交易的衍生载体,它是一种价值变动的交易合约()属于信用衍生工具A.信贷协议B.期货合约C.股票D.存折 [问答题,简答题]主变中性点避雷器的作用? [单选]下列卵巢粘液性囊腺瘤声像图特点,哪一项是错误A.肿瘤体积较大B.囊腔内有较多的分隔C.囊内有细小点状回声D.少数有乳头状生长E.囊腔内无分隔 [判断题]凡人民币票面被揭去一面的损伤,应按票面半额进行兑付。A.正确B.错误 [单选]以下关于程序流程图、N-S盒图和决策表的叙述中,错误的是()。A.N-S盒图可以避免随意的控制转移B.N-S盒图可以同时表示程序逻辑和数据结构C.程序流程图中的控制流可以任意转向D.决策表适宜表示多重条件组合下的行为
高一数学对数函数及其性质4
大陆娱乐
[单选,A2型题,A1/A2型题]不属于病人权利的内容是()A.受到社会尊重和理解B.遵守医疗部门规章制度C.享受医疗服务D.保守个人秘密E.免除或部分免除健康时的社会责任 [单选,A型题]关于预激综合征心电图特征的描述,不正确的是()。A.QRS波群起始部有delta波B.PR间期<0.12sC.PJ间期延长D.大多有继发性ST-T改变E.QRS波群增宽≥0.12s [单选]下列不会引起下消化道出血的疾病是()A.急性细菌性痢疾B.缺血性结肠炎C.右膈下脓肿D.结肠息肉E.结肠癌 [单选]女,45岁,有交感神经兴奋综合征及弥漫性甲状腺肿,欲作单纯性甲状腺肿及毒性弥漫性甲状腺肿之鉴别,试问以下哪项体征对毒性弥漫性甲状腺肿最具诊断意义()A.皮肤温暖多汗,体重减轻B.目光炯炯少瞬动C.弥漫性甲状腺肿大伴血管杂音及震颤D.心房颤动E.手、眼睑震颤 [单选,A2型题]一个4岁儿童早餐通常吃一个鸡蛋,喝一杯牛奶,家长认为孩子的早餐非常有营养,但通过咨询营养专家,发现早餐应该增加的食物是()A.面包+蔬菜B.蔬菜+水果C.鱼类+馒头D.瘦肉+米饭E.豆腐+米饭 [单选]微观调查范围小,调查对象比较()。A、复杂B、单一C、凌乱D、协调 [单选]关于单发性骨软骨瘤的临床表现,下列不正确的是()A.多见于年轻人B.好发于干骺端C.随年龄增长而持续发展D.1%的病人可有恶化E.较多发性骨软骨瘤恶化机会少 [单选]当签订合同后,当事人对合同的格式条款的理解发生争议时,以下做法不正确的是()。A.应按通常的理解予以解释B.有两种以上解释的,应做出有利于提供格式条款的一方的解释C.有两种以上解释的,应做出不利于提供格式条款的一方的解释D.在格式条款与非格式条款不一致时,应采用 [单选]决定深度知觉的主要线索是()A.生理线]砂轮牌号为WA46KV5P300×40×127,其中P代表:()。A.磨料B.粒度C.结合剂D.形状 [问答题,案例分析题]背景:某工厂,由于某项工艺不够好,影响了产品质量,现在计划将该项工艺加以改进。取得新工艺有两条途径:一是从国外引进成套设备,需投资160万元,估计谈判成功的可能性是0.8。若成功,前2年为投产试运营期,考虑价格因素后预计年净现金流量为30万元,之后再 [单选]下列哪种反应不属于光致化学作用()A.光致分解B.光致氧化C.光致聚合D.光致化合E.光致敏化 [填空题]2009年七人制橄榄球锦标赛于()举行。 [多选,X型题]以下关于粉末直接压片的描述,正确的是()A.简单、方便B.适用于湿、热不稳定的药物C.要求粉末的流动性和可压性好D.不经制粒直接把药物和辅料的混合物进行压片的方法E.微晶纤维素、可压性淀粉可作为粉末直接压片的辅料 [单选]下列哪种是气体激光器的工作物质()A.原子气体B.分子气体C.准分子气体D.离子气体E.以上均是 [填空题]高等级公路导线测量必须与()进行连接测量。 [单选,A2型题,A1/A2型题]珠蛋白生成障碍性贫血最常见下列哪种异常形态红细胞增多()A.球形红细胞B.破碎红细胞C.靶形红细胞D.泪滴形红细胞E.镰形红细胞 [单选]关于朊毒体蛋白PrPsc,下列说法不正确的是()A.由宿主染色体编码B.有2种异构体C.不同重叠的株型之间基因同源性很高D.能抵抗尿酸、苯酚等变性剂E.可以自行复制 [单选]()接口:承载PCF和PDSN之间的信令传输,用于维护BSS到PCF之间的A10连接。A8B.A9C.A10D.A11 [单选]在我国,高血压病最常见的并发症是().A.尿毒症B.高血压危象C.心力衰竭D.主动脉夹层E.脑血管意外 [单选]廉租住房租金收入主要用于()。A、维修费和利润B、维修费和管理费 C、维修费、管理费和利润D、维修费、利润和税金 [单选]港口与航道工程中船舶保险中,航次险包含在()保险中。A.船舶保险全损险B.船舶保险一切险C.工伤事故险D.第三者责任险 [单选]水力清淤时,应该注意()。A、在用水季节施行B、按先下游后上游,分阶段进行C、引入含沙量较少的清水D、关闭一切闸门 [单选]引起呼吸衰竭最常见的疾病是A.肺炎B.肺结核C.自发性气胸D.慢性阻塞性肺病E.支气管肺癌 [问答题,简答题]现实市场的形成需要具备哪些条件? [单选]电子商务的安全风险不包括()A.信息传输的风险B.非信用风险C.管理风险D.法律风险 [单选]燥热病邪致病有别于其它温邪的基本特点是:().A.多发生在秋季B.从口鼻上受C.以肺经为病变中心D.病起即见鼻唇咽等明显津液干燥征象 [单选]钢中炭的含量超过1.00%时,钢材的性能表现为()。A.塑性大B.强度下降C.硬度大D.易于加工 [问答题]在野外怎样避震? [单选]在家庭财产保险中,保险事故发生后,保险人对于室内财产采取的赔偿处理方式是()。A、推定损失赔偿方式B、第一危险赔偿方式C、限额责任赔偿方式D、比例赔偿赔偿方式 [多选]根据劳动合同法律制度的规定,下列情形中,职工不能享受当年年休假的有()。A,依法享受寒暑假,其休假天数多于年休假天数的B.请事假累计20天以上,且单位按照规定不扣工资的C.累计工作满1年不满10年,请病假累计2个月以上的D.累计工作满20年以上,请病假累计满3个月的 [判断题]气囊控制模块备用电源的作用是,当车辆发生碰撞导致蓄电池或发电机与控制模块之间的电路切断时,能在一定的时间内提供足够的点火能量来引爆点火剂。()A.正确B.错误 [判断题]距离保护安装处至故障点的距离越远,距离保护的动作时限越短。()A.正确B.错误 [单选]下列有关行政法规制定程序的说法哪一项是正确的?()A.行政法规的民族语言文本由国家民族事务委员会与国务院办公厅共同审定B.行政法规修改后,应公布新的行政法规文本C.国务院年度立法工作计划一经确定,应严格执行,不得改变和调整D.起草行政法规时,对涉及的有关管理体制 [单选]下列卵巢粘液性囊腺瘤临床表现与声像图特点,哪一项是错误的A.囊腔内有较多分隔B.分隔呈不均匀性增厚C.不伴有腹水D.增厚的囊壁可向周围浸润E.肿瘤新生血管频谱多普勒测定呈低阻波形 [单选,A2型题,A1/A2型题]男性,43岁。3小时前呕血1次,自觉头晕、乏力、出汗。查体:心率110次/分,血压100/70mmHg,肝掌,腹壁静脉曲张,超声示腹水。该患者的出血量可能为()A.>5mlB.50~70mlC.250~300mlD.500~1000mlE.>1500ml [单选]《国内航行海船法定检验技术规则(2004)》对航行于港区附近距岸不超过10nmile的水域(台湾海峡及类似水域不超过5nmile),船舶满载并以营运航速航行航程不超过2h,限制蒲氏风级不超过6级,目测波高不超过2m的海况下航行。系指()A、相当遮蔽航区营运限制B、遮蔽航区C、沿 [单选]医疗机构对本单位内被传染病病原体污染的场所、物品、医疗废物应依法()A.封闭场所并销毁物品B.强制隔离治疗C.实施消毒和无害化处理D.报上级卫生行政部门处理E.报卫生防疫部门处理 [单选]女性,20岁,反复发作喘息、呼吸困难、咳嗽2年。体检:双肺散在哮鸣音,心脏无异常。下列检查结果中有助于明确诊断的是()A.最大呼气流量显著降低B.一秒钟用力呼气容积降低C.最大呼气中段流量降低D.支气管舒张试验阳性E.X线胸片显示肺纹理稍多 [单选,A2型题,A1/A2型题]甲状旁腺功能减退症患者在滴注外源性PTH后,下列说法正确的是()。A.尿磷增加尿cAMP降低B.尿磷与尿cAMP无变化C.尿磷与尿cAMP降低D.尿磷降低尿cAMP增加E.尿磷与尿cAMP显著增加
高一数学对数函数及其性质4
高一人教A版《4.4对数函数》说课课件
设计意图:考察函数定义域,加深对对数
函数的概念的理解,改为填空,节省时间,
点到为止。
环节二
(一)对数函数的概念
2.对数函数与指数函数的关系:
互为反函数
设计意图:对数函数的概念比较抽象,利用已经学
过的知识逐步分析,这样引出对数函数的概念过渡
自然,学生易于接受。因为对数函数是指数函数的
反函数,让学生比较它们的定义域、值域、对应法
log .
小结:既不同底数,也不同真数的对数比大
小的方法:找中间量(常用0、1)
环节三
典型例题,巩固达标
ቤተ መጻሕፍቲ ባይዱ
(三)同真数的对数比大小(小组合作探究)
例3.比较下列各题中两个值的大小:
() log
(2)log .
log
log .
(学生以小组为单位探究解题方法)
对数函数的定义,在概念理解上,用步步设问、课
堂讨论来加深理解。在对数函数图像的画法上,我
借助多媒体,演示作图过程及图像变化的动画过程,
从而使学生直接地接受并提高学生的学习兴趣和积
极性,很好地突破难点和提高教学效率。
说学法
学法指导
对照比较
学习法:
学习对数
函数,处处
与指数函
数相对照
合作探究
式学习法:
学生通过
看待数学知识,形成一个逻
角度分析之前熟悉的指数变化规律,
辑严密的知识体系.
通过与指数函数的联系更好地理解
对数函数
对数函数的研究内容和方
法既有继承也有发展,借助
性质研究环节不仅研究对数函数
对数函数的研究,可以进一
自身的性质,还增加了同底指对
4.4.2对数函数图像与性质2024-2025学年高一上学期数学人教A版(2019)必修第一册
0.5
1
2
4
8
16
y
-1
0
1
2
3
4
根据对数函数的运算法则,log 1 = − log 2 ,则两函数图像关于x轴对称
2
图像
y
o
y = log 2
y
x
x
o
y=log 1
2
探究性质
请同学们分组讨论,尝试归纳总结出图像的变化规律与特性
图像位置
全在y轴右侧,与y轴无限接近
与坐标轴的关系
与y轴无交点,过定点(1,0)
(1)y = log10 8与y = log10 6
(2)y = log 0.3 7与y = log 0.3 5
大家自己动手做一做
课堂小结
(1)对数函数的图像特征
(2)对数函数的性质
(3)对数函数性质的简单应用
作业布置
课后练习第一题、第二题、第四题
谢谢观看
(2)y = log a (4 − x);
分析:y = log a 的定义域为(0,+∞),
则令(1)中 2 >0,(2)中 4-x>0,
解得定义域分别为(0,+∞),(-∞,4)
例2、比较下列各题中两个数的大小
(1)y = log 2 5与y = log 2 4
(2)y = log 0.2 7与y = log 0.2 9
(3)y = log 3 π与y = log π 3
分析:(1)y = log 2 x 为增函数,则 log 2 5>log 2 4;
(2) y = log 0.2 x为减函数,则log 0.2 7 > log 0.2 9
高一数学对数函数及其性质4
Hale Waihona Puke 皇冠多少钱 [单选]声卡是多媒体计算机不可缺少的硬件设备,以下(1)采样频率是其不支持的,(2)功能也是声卡不支持的。空白(2)处应选择()A.录制声音B.MIDI合成CD播放D.语音识别 [单选]国家信息化的首要核心任务是()。A.信息技术应用B.信息资源的开发利用C.建设国家信息网络D.发展信息技术与产业 [单选]拆结构复杂的桥梁或拆除过程复杂、困难时,应采取()手段,确保施工安全。A.仪器监测B.计算分析C.实时控制D.局部临时加固 [判断题]空调压缩机润滑油的牌号越大,黏度越大,凝固点越高。()A.正确B.错误 [单选]将充有nmLNO和mmLNO2气体的试管倒立于盛水的水槽中,然后通入nmLO2。m>n,则充分反应后,试管中气体在同温同压下的体积为()。A.(m-n)/3mLB.(n-m)/3mLC.(4m-1)/13mLD.3/(m-n)mL [单选]()是指反映企业在某一特定日期的财务状况的会计报表。A.利润表B.现金流量表C.附注D.资产负债表 [单选]女性,45岁。间歇性无痛性肉眼血尿2个月,伴蚯蚓状血块。膀胱镜检查:膀胱内未见肿瘤。左输尿管口喷血。为尽快明确诊断,最有价值的检查是()A.CTB超C.MRID.左肾穿刺顺行造影E.左肾盂输尿管逆行造影 [单选]病人X线片可见Codman三角,可能的诊断为()A.脂肪肉瘤B.骨肉瘤C.皮质旁肉瘤D.骨髓瘤E.骨巨细胞瘤 [多选]队列研究中的发病密度具有下列哪些特征()A.适应于一个观察人数变动较大的动态人群B.是表示一定时期内的平均发病率C.没有时间单位D.分子为一个人群在一定时期内新发生的病例数E.分母是研究人群中所有成员所提供的人时的总和 [单选,A型题]以下属于胃癌的X线征象是()A.黏膜皱襞纠集B.胃蠕动增强C.龛影显著D.胃腔变形和狭窄E.激惹征 [单选]行李室考核制度规定:受到公司通报表扬的,奖当月绩效工资的()。A.20%B.10%C.15%D.5% [判断题]某些病原菌生长过程中能产生对动物体有害的毒素,称为类毒素。()A.正确B.错误 [多选]角速度的SI单位可写成()。ABCD [填空题]甲醇的密度为();沸点为()。 [单选,A1型题]枕先露肛诊检查时,胎头下降程度为+2是指()A.胎头最低点在坐骨棘平面下2cmB.胎儿头部最低在坐骨结节平面下2cmC.胎头颅骨最低点在坐骨棘平面下2cmD.胎儿顶骨在坐骨棘平面上2cmE.胎儿顶骨在坐骨结节平面上2cm [问答题,案例分析题]某建设项目的一期工程基坑土方开挖任务委托给某机械化施工公司。该场地自然地坪标高-0.60m,基坑底标高-3.10m,无地下水,基坑底面尺寸为20×40(m2)。经甲方代表认可的施工方案为:基坑边坡1:m=1:0.67(Ⅲ类土),挖出土方量在现场附近堆放。挖土采用 [单选]作为荧光抗体标记的荧光素必须具备的条件中,可以提高观察效果的是()A.必须具有化学上的活性基团能与蛋白稳定结合B.性质稳定不会影响抗体的活性C.荧光效率高,荧光与背景组织色泽对比鲜明D.与蛋白质结合的方法简便快速E.与蛋白质的结合物稳定 [多选]下列叙述或操作正确的是()。A.浓硫酸具有强氧化性,稀硫酸无氧化性B.浓硫酸不慎沾到皮肤上,立即用大量的水冲洗C.稀释浓硫酸时应将浓硫酸沿着烧杯壁慢慢地注入盛有水的烧杯中,并不断搅拌D.浓硫酸与铜的反应中,浓硫酸仅表现强氧化性 [单选,B型题]属于同期控制的是()A.急救物品完好率B.压疮发生率C.护理差错事故发生次数D.查对医嘱及时纠正E.基础护理合格率 [单选]根据显像剂对病变组织的亲和能力可将放射性核素显像分为()A.局部显像和全身显像B.静态显像和动态显像C.平面显像和断层显像D.早期显像和晚期显像E.阴性显像和阳性显像 [单选]拟定沿岸航线,确定航线离岸距离时应考虑下列哪项因素()。Ⅰ.经济航速;Ⅱ.船员技术水平;Ⅲ.船舶操纵性能;Ⅳ.测定船位的难易;Ⅴ.能见度的好坏。A.Ⅱ~ⅤB.Ⅰ~ⅢC.Ⅰ,Ⅱ,Ⅳ,ⅤD.Ⅰ,Ⅱ,Ⅲ,Ⅴ [问答题,简答题]我国现行国库的权限主要有哪些? [问答题,简答题]简述啤酒厂糖化设备的组合方式及优点: [单选]以下性传播疾病不是由病毒引起的是()A.尖锐湿疣B.生殖器疱疹C.艾滋病D.扁平湿疣 [单选]等角正圆柱投影在航海上常被用来绘制()。A.半球星图B.大圆海图C.墨卡托航用海图D.大比例尺港泊图 [单选,A1型题]一侧瞳孔散大,直接和间接光反射消失,对侧间接光反射正常,病损位于()。A.对侧视神经B.同侧视神经C.对侧动眼神经D.同侧动眼神经E.同侧视神经及动眼神经 [单选]Smith骨折的典型移位是()A.远侧端向掌侧、尺侧移位B.远侧端向尺侧移位C.远侧端向桡、背侧移位D.近侧端向背侧移位E.近侧端旋转移位 [单选,A2型题,A1/A2型题]吴茱萸汤的功用是()A.温中补虚,和里缓急B.温中祛寒,益气健脾C.温中补虚,降逆止呕D.温肾暖脾,涩肠止泻E.温中补虚,散寒止痛 [单选]美国心理学家卡特尔认为,()是人的一种潜在智力,很少受社会教育的影响,它与个体通过遗传获得的学习和解决问题的能力有联系。A.普通智力B.晶体智力C.特殊智力D.流体智力 [填空题]化验室大量使用玻璃仪器,是因为玻璃具有很高的()、()有很好的()一定的()和良好绝缘性能. [单选]通过遥控器的以下组合操作来操作高清变焦摄像机的变焦()A、shift键↑+滚转指令→B、shift键↑+俯仰指令↓↑C、shift键↑+滚转指令←D、shift键↑+油门指令↓↑ [单选]对心律失常患者进行病史采集时,下列哪项不能提供对诊断有用的线索().A.心律失常的存在及其类型B.心律失常的诱发因素,如烟、酒、咖啡、运动及精神刺激等C.心律失常发作的频繁程度、起止方式D.心律失常是触发机制还是自律性增高E.心律失常对药物和非药物方法(如体位、呼 [填空题]犹豫期一般是()天,但对于银保渠道销售的保险产品犹豫期延长至()天。 [单选]甲公司作为上市公司,欲对目标公司乙公司实施收购行为,根据预测分析,得到并购重组后乙公司未来8年的增量自由现金流量的现值为1000万元,8年后以后每年的增量自由现金流量均为600万元,折现率为10%,乙公司的负债总额为2000万元,则乙公司的预计总体价值为()万元。[已知 [单选]专一保险合同与重复保险合同的主要区别在于()。A.保险标的是否为特定物B.保险金额的确定方式C.保险人的数量D.保险人所负责任的次序 [单选,A2型题,A1/A2型题]点彩红细胞胞质中的颗粒为()A.残存变性的DNAB.残存变性的RNAC.残存变性的脂蛋白D.核糖体E.金属颗粒沉淀 [多选]命令统一原则,的内容的说法正确的是?()A、命令的精神要一致B、命令要逐级发布C、避免多头指挥D、监督不等于命令 [单选]在银行贷款的偿还方式中,分期还本付息的基本特征是()。A.在整个借款期内,按某一相等金额偿付借款本金和利息B.分期等额偿还本金,对未还本金则按期支付利息C.按约定时间支付借款利息D.借款到期后一次偿还本金 [单选]现代企业对信息处理的要求可归结为及时、适用、经济和()。A、准确B、保存C、统一D、共享 [单选]初孕妇,平时月经正常,停经43周,无产兆,NST2次无反应,OCT10min内宫缩2次持续40~50s,均出现晚期减速,1周前雌激素/肌酐(E/C)比值为15,现仅为8。应如何处理?()A.催产素引产B.人工破膜引产C.立即剖宫产D.吸氧密观1周后复查E.服雌激素3天后复查
4.4.2对数函数图像和性质课件-2024-2025学年高一上学期数学人教A版(2019)必修第一册
探究1:对数函数图象
在坐标系中用描点法画出对数函数
y log 2 x 的图象。
x
1 1 1
…42
y log 2 x …
2 48…
…
(1)作y=log2x图象
列X 表 y=log2x
…1 1
42
… -2 -1
1 0
2 1
4… 2…
描 点
y 2
1 11
42
连
0 1 23 4
线 -1
-2
y=log2x
x
(2)作 y log 1 x 的图象
列
x
2
… 1/4 1/2
1
24
…
表 y log 2 x … -2 -1
0 1 2…
y log 1 x … 2 1 0 -1 -2 … 2
y
描
2
y=log2x
点
1 11
42
0 1 23 4
x
这两个函数 的图象有什
连
-
么关系呢?
线
1-
2
y log 1 x
2
y
y logb x y log a x
x
O
y logd x
y logc x
d<c<1<b<a.
练习1:比较下列各题中两个值的大小:
⑴ log106 < log108 ⑵ log0.56 < log0.54 ⑶ log0.10.5 > log0.10.6
(4)log51.4 > log5.51.4
关于x轴对称
(3)再分别选取底数为
3和
1 ,在同一平面直角坐标系 3
内分组作出相应对数函数的图象.
高一数学人必修件第四章对数函数的概念
在化学领域,酸碱度的测量使用对数刻度,即pH值。这是因为酸 碱度的变化与氢离子浓度的对数呈线性关系。
跨学科综合应用案例
01
生物医学中的药物剂量计算
在生物医学领域,药物剂量的计算常常涉及对数函数。通过使用对数函
数,医生可以根据患者的体重、体表面积等因素精确地计算药物剂量。
02 03
对数定义及性质
对数的性质 $log_a 1 = 0$ $log_a a = 1$
对数定义及性质
$log_a (MN) = log_a M + log_a N$
$log_a frac{M}{N} = log_a M - log_a N$ $log_a M^n = nlog_a M$
对数运算规则
对数的换底公式
对于底数大于1的对数函数,其图像 位于第一象限;对于底数小于1的对 数函数,其图像位于第四象限。
恒过定点(1,0)
所有对数函数的图像都经过点(1,0 )。
x轴为渐近线
对数函数的图像无限接近x轴,但永 远不会与x轴相交。
单调性
底数大于1的对数函数在第一象限内 单调递增;底数小于1的对数函数在 第四象限内单调递减。
04
幂指对综合运算技巧
幂指对运算法则回顾
幂的运算法则
包括同底数幂的乘法、除 法、乘方和幂的乘方等运 算法则。
指数的运算法则
包括指数的加法、减法、 乘法和除法等运算法则。
对数的运算法则
包括对数的乘法、除法、 指数和换底等运算法则。
幂指对互换原理及应用
幂指对互换原理
在特定条件下,幂、指数和对数 之间可以相互转换,从而简化计 算或解决问题。
高一数学人必修件第四章对数 函数的概念
数学高一上对数函数知识点
数学高一上对数函数知识点对数函数是高中数学中的重要知识点之一,在高一上学期,学生首次接触到了对数函数的概念和基本性质。
下面我们就来系统地了解一下高一上对数函数的知识点。
1. 对数函数的定义和性质:对数函数是指满足一定条件的函数,其中最常见和常用的是以10为底的对数函数,即常用对数函数。
常用对数函数的定义是:y = log10x,其中x和y分别表示自变量和因变量,log10x表示以10为底的x的对数。
对数函数的性质有:- 定义域:对数函数的定义域是正实数集。
- 值域:对数函数的值域是实数集。
- 单调性:对于正数x1和x2,如果x1 > x2,则log10x1 >log10x2。
也就是说,对数函数是递增函数。
- 零点:对数函数的零点是x = 1,因为log101 = 0。
- 对称性:对数函数关于直线y = x对称。
- 拉伸和压缩:对数函数y = log10(x/a)表示将函数的图像沿x轴拉伸a倍,而y = log10(ax)表示将函数的图像沿x轴压缩a倍。
- 幂函数与对数函数的互逆关系:指数函数与对数函数是互为反函数的关系。
2. 对数函数的图像和性质:对数函数的图像特点与函数的性质密切相关。
对数函数y =log10x的图像在x轴的右侧是递增的,而在x轴的左侧是递减的。
当x取正数时,函数图像在y轴的右侧上方,当x取0时,函数图像经过(0, -∞)的点,当x取负数时,函数图像在y轴的左侧下方。
对数函数的图像是一个渐近线为y = 0的曲线,该曲线在点(1, 0)处与x轴相交。
当x趋近于无穷大时,函数的值也趋近于无穷大,反之亦然。
3. 对数函数的运算和性质:对数函数的运算是基于指数函数的运算规律的。
对数函数的运算包括:- 指数和对数之间的互化:指数函数和对数函数是互为反函数的关系,两者之间可以通过指数函数的计算特性进行换算。
- 对数的乘除法:log10(a * b) = log10a + log10b,log10(a / b) = log10a - log10b。
4.4.2对数函数的图象和性质(教学课件)高一数学(人教A版2019)
lg[H ],
国家规定,饮用纯净水的pH应该在5.0 ~ 7.0之间.
3.反函数
已知函数 y=2x (x∈R ,y ∈(0,+∞)) 可得到x=log2y ,对于任意一个 y∈(0,+∞),通过式子x=log2y ,x在R中都有唯一确定的值和它对应。也就 是说,可以把y作为自变量,x作为y的函数,这是我们就说x=log2y (y∈(0, +∞))是函数 y=2x ( x∈R) 的反函数。
从图象中你能发现函数y=2x 与 y=log2x的图象间有什么关系?
y=2x
y
y=x
y (1)x 2
y
y=x
2A
2
两个函数的图象
B
1 11
42A10 1B来自2 3y=log2x4
x
1 11
关于直线y=x对称.
42
0 1 23 4
x
-
-
1-
1-
y log 1 x
2
2
2
1.(多选)对于函数 f(x)=3-x,g(x)=log 1 x,下列说法正确的是( )
目录
1 学习目标 3 课本例题 5 题型分类讲解 7 课后作业
2 新课讲解 4 课本练习 6 随堂检测
学习目标
1.通过具体对数函数图象,掌握对数函数的图象和性质 特征,并能解决问题。
2.知道同底的对数函数与指数函数互为反函数。
情境导入
历史上纳皮尔是当之无愧的“对数缔造者”,理应在数学史上享有这份殊 荣。伟大的导师恩格斯在他的著作《自然辩证法》中,曾经把笛卡尔的坐标 、纳皮尔的对数、牛顿和莱布尼兹的微积分共同称为十七世纪的三大数学发 明。法国著名的数学家、天文学家拉普拉斯(PierreSimonLaplace,17491827)曾说:对数,可以缩短计算时间,“在实效上等于把天文学家的寿命 延长了许多倍”.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传说中的嫦娥,是谁的妻子? 质老形大的烹饪原料需采用小火、长时间加热。A.正确B.错误 是银行盈利能力分析中既考虑预期损失,有考虑非预期损失,同时也是银行进行价值管理的核心指标。A.风险调整后资本回报率B.净利息收益率C.平均净资产回报率D.拨备前利润 关于ARDS诊断依据,下列哪项正确A.PaO2FiO2比PaO2更能反应呼吸衰竭的程度B.呼吸频率开始快,后来逐渐减慢C.肺泡气与动脉氧分压差(PA-aDO2)及肺内分流量减少D.早期X线片示两肺边缘模糊或斑片状阴影E.呼吸频率由慢变快 事务所对质量控制制度承担最终责任。A.注册会计师B.项目合伙人C.副主任会计师D.主任会计师 29岁,男,因发热、头痛、全身酸痛、软弱无力6天入院。当天起出现心慌、气促,体温39.6℃。体检:面色苍白,腓肠肌压痛,心率130次/分,呼吸36次/分。肺部散在湿性啰音。血象:血白细胞计数9.2×10/L,中性粒细胞0.76,淋巴细胞0.24。X线摄片示:两肺纹理增多,有散在性点状阴影 血清壁细胞抗体阳性多见于A.急性单纯性胃炎B.慢性胃窦炎C.慢性胃体炎D.胃溃疡E.促胃液素瘤 阀型避雷器中阀片电阻是非线性电阻。A.正确B.错误 行政法调整的社会关系不包括()。A.平等主体之间的人身关系B.行政法制监督关系C.行政救济关系D.行政管理关系 关于天疱疮的描述,不正确的是A.棘层松解,上皮内庖形成B.黏膜固有层有炎症细胞浸润,主要为巨噬细胞和淋巴细胞C.直接荧光免疫可见鱼网状翠绿色荧光环D.荧光图形主要为IgG或IgA及IgM在棘细胞间的沉积E.口腔出现表征者多为寻常型天疱疮 只有行政机关工作人员先行使职权的行为,才有可能引起国家赔偿。以下行为中,不是行政机关工作人员的职权行为。A.公安机关对某一违法者进行处罚B.消防队灭火前后,在乖车途中交通肇事的行为C.勤务时间以外执行职务的行为D.工作时间内购买办公设备的行为 以下不属于ECB(电子控制盒)控制的是:A、APU启动的顺序及监控B、监控APU引气C、监控APU燃油消耗量 在急性上呼吸道感染发病期间,应注意的事项,以下不正确的是A.戒烟B.休息C.多饮水D.多运动提高免疫力E.保持室内空气流通 对屈曲型肱骨髁上骨折,以下论述错误的是。A.多为间接暴力引起B.典型骨折移位是近折端向后下移位,远折端向前移位C.常合并神经血管损伤D.骨折线常呈斜形骨折E.治疗可采用手法复位外固定 大量不保留灌肠时,肛管插入直肠深度为()</br>小量不保留灌肠时,肛管插入直肠深度为()</br>保留灌肠时,肛管插入直肠深度为()</br>肛管排气时,肛管插入直肠深度为()A.5~7cmB.7~10cmC.10~15cmD.15~18cmE.18~22cm 关于臀位,哪项错误A.为最常见的异常胎位B.胎儿病死率比枕前位高3~8倍C.多见于经产妇D.必须在妊娠28周左右行外转胎位术E.后出头困难时需产钳助产 包装一般可分为:商业包装、。A.出售包装B.储存包装C.运输包装D.简单包装 阀门的作用是:接通或管道各段的介质,调节管道的和压力。 标高数字要标注到小数点后的第位,线性尺寸以为单位,标高数字以为单位。 目前建筑业中已出现了两大国际标准,即。A.ISOB.IAIC.IFCD.STEPE.PPP 下列几种正常发育的成年动物中,总产热量最大的是A、马B、鸡C、绵羊D、小白鼠 高温灌肠和低温灌肠杀菌温度分别为℃。 按照四阶段安全教育法,下列排列顺序正确的是.Ⅰ、不明白时即确定其为提问对象Ⅱ、令其边作业边加以说明Ⅲ、讲解、示范和写出主要步骤Ⅳ、让受训人员明确应掌握的程度和要求A、ⅠⅡⅢⅣB、ⅣⅢⅡⅠC、ⅢⅡⅠⅣD、ⅢⅠⅡⅣ 戊二醛-酚溶液使用的稀释度是A.1:2B.1:4C.1:8D.1:16E.1:32 哪种类型肺癌对放射治疗最为敏感A.腺癌B.鳞状上皮细胞癌C.未分化癌D.肺泡癌E.类癌 胆固醇结石形成的主要原因。A.慢性胆道感染B.胆汁中胆固醇浓度增加C.胆道内蛔虫残体存留D.胆汁中胆盐和磷脂相对减少E.胆道梗阻 更年期妇女某些器官发生结构与功能退行性变化,主要的器官是。A.外阴B.阴道C.尿道D.卵巢E.乳房 有关血管造影的并发症中,下列哪项可除外A.穿刺部位血肿B.血管内膜剥离C.假性动脉瘤D.原发病加重E.血管破裂 信息化战争 在设计过程中,如果业主改变其建设要求,就会引起设计单位的设计变更,这是影响设计进度的因素。A.工程变更的影响B.建设意图和要求改变的影响C.设计各专业之间协调配合的影响D.材料代用、设备选用失误的影响 少量卸货时,忽略KM变化,则当货物的重心高于船舶的重心时,卸货后船舶的初稳性高度值将。A.减小B.不变C.增大D.变化趋势不定 男孩,2+岁,发热3天,伴口唇稍红,发热时双眼球结膜轻度充血,咽部可见均匀稀薄白色附着物。首先考虑的诊断是A.川崎病B.幼年类风湿关节炎C.传染性单核细胞增多症D.麻疹E.咽结合膜热 流式细胞术是一种对单细胞或其他生物粒子膜表面以及内部的化学成分,进行定量分析和分选的检测技术,它可以高速分析上万个细胞,并能从一个细胞中测得多个参数,是目前最先进的细胞定量分析技术。流式细胞仪的技术特点不包括A.采用鞘流原理B.以激光做激发光源C.使用散射光检测D.检 上蔟适期 信息来源的可靠性由四个因素决定:___________,__________,_________和_________。 以下不属于按材料分类的建筑类型是A、砖木结构B、框架结构C、混合结构D、钢结构 下列哪组为乌梅丸的组成成分A.党参、当归B.蜀椒、肉桂C.黄连、黄芩D.生姜、细辛E.桂枝、炮附子 肝损害型毒蕈中毒的特殊治疗药物是A.阿托品B.巯基解毒剂C.亚甲蓝D.美兰E.抗生素 如图所示,流行性出血热的病原体属于A.细菌B.立克次体C.病毒D.螺旋体E.衣原体 釉质外观呈淡黄色的原因是A.釉质形成不全B.釉质矿化不全C.釉质矿化程度高,透出深部牙